I. kolo kategorie Z7
|
|
- Josef Zeman
- před 9 lety
- Počet zobrazení:
Transkript
1 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin číslic tohoto součinu, poté znova součin číslic nového součinu atd., nutně po nějakém počtu kroků dospějeme k jednomístnému číslu. Tento počet kroků nazýváme perzistence čísla. Např. číslo 723 má perzistenci 2, neboť7 2 3=42(1.krok)a4 2=8(2.krok). 1. Najděte největší liché číslo, které má navzájem různé číslice a perzistenci Najděte největší sudé číslo, které má navzájem různé nenulové číslice a perzistenci Najděte nejmenší přirozené číslo, které má perzistenci 3. (S. Bednářová) Možnéřešení.1.Vzadánínenířečeno,ževtomtopřípaděnesmímepoužítnulu.Je- -lijednazčíslicnulová,znamenáto,žesoučinvprvnímkrokujerovněžnulaatedy perzistence je 1. Stačí tedy sestavit největší liché číslo s navzájem různými číslicemi; tím je Tentokrát nulu použít nesmíme. Znamená to, že ciferný součin hledaného čísla musí být číslo jednomístné, přičemž se snažíme získat co největší počet navzájem různých činitelů (počet činitelů pak určuje počet číslic tohoto čísla, tedy čím více činitelů, tím vyšší číslo). Uvažujme tedy všechny možné rozklady jednomístných čísel na součiny přirozených čísel. Protože hledáme sudé číslo, potřebujeme, aby alespoň jeden činitel ciferného součinu bylsudéčíslo.toznamená,žecifernýsoučinjerovněžsudéčíslo,takžesepřihledání rozkladůstačíomezitnačísla2,4,6a8.dálesemůžemezaměřitpouzenarozklady, jejichž činitelem je i 1. Příslušná čísla jsou vždy o jeden řád vyšší než čísla odpovídající rozkladům bez 1. 2=1 2,možnosti:12, 4=1 4,možnosti:14, 4=1 2 2,nelze(stejníčinitelé), 6=1 6,možnosti:16, 6=1 2 3,možnosti:132,312, 8=1 8,možnosti:18, 8=1 2 4,možnosti:124,142,214,412. Z nalezených možností je nejvyšší číslo Tento úkol můžeme řešit tak, že postupně procházíme vícemístná čísla počínaje nejmenším(tj. 10) a zjišťujeme jejich perzistenci. První nalezené číslo s perzistencí 3 je hledané číslo. Dvojmístná čísla obsahující číslici 1 nebo 0 mají perzistenci 1, protože příslušný ciferný součin je nejvýše 9. Podobně dvojmístná čísla obsahující číslici 2 mají perzistenci nejvýše 2, protože příslušný ciferný součin je nejvýše 18. Na základě těchto úvah stačí začít prověřovat přirozená čísla až od 33: 33,3 3=9,perzistence1, 34,3 4=12,1 2=2,perzistence2, 8
2 35,3 5=15,1 5=5,perzistence2, 36,3 6=18,1 8=8,perzistence2, 37,3 7=21,2 1=2,perzistence2, 38,3 8=24,2 4=8,perzistence2, 39,3 9=27,2 7=14,1 4=4,perzistence3. Nejmenší přirozené číslo s perzistencí 3 je 39. Z7 I 2 Ondranavýletěutratil 2 3 penězazezbytkudalještě 2 3 naškoluprodětiztibetu.za 2 3 novéhozbytkuještěkoupilmalýdárekpromaminku.zděravékapsyztratil 4 5 zbylých peněz,akdyžzezbylýchdalpůlkumalésestřičce,zůstalamuprávějednakoruna.sjakým obnosem šel Ondra na výlet? (M. Volfová) Možné řešení. Počet Ondrových korun před výletem označíme x. Ondranavýletěutratil 2 3 peněz,zbylomutedy 1 3 xkorun. NaškoluvTibetudal 2 3 zbylýchpeněz,zbylomu Dárekmamincestál 2 3 zbytku,zbylomu x= 1 3 x= 1 9 xkorun. 27 xkorun. Ztohoztratil 4 5,zbylomu x= xkorun. Půlkuzbylýchpenězdalsestřeajemuzůstaladruhápůlka,tj byla 1 koruna. 1 Je-li 270x=1,je x=270.ondrašelnavýletsobnosem270korun. 135 x= 1 Jiné řešení. Úlohu je možné řešit také odzadu podle následujícího schématu: 270 x,ato :3 :3 :3 :5 :2 výlet škole mamce ztratil sestře 1 Postupně, zprava doleva, dostáváme následující hodnoty: 1 2 = 2, 2 5 = 10, 10 3 = 30, 30 3=90a90 3=270.Ondramělpředvýletem270korun. Z7 I 3 Šárka prohlásila: Jsmetřisestry,jájsemnejmladší,LíbajestaršíotřirokyaEliškaoosm.Naše mamkarádaslyší,ženámvšem(isní)jevprůměru21let.přitomkdyžjsemsenarodila, bylomamceuž29. Před kolika lety se Šárka narodila? (M. Volfová) Možnéřešení.PokudvěkŠárkyvletechoznačíme x,potomlíběje x+3,elišce x+8 amamce x+29let.věkovýprůměrvšechje21let,tzn. po úpravě Šárka se narodila před 11 lety. (x+(x+3)+(x+8)+(x+29)):4=21, 4x+40=84, x=11. 9
3 Z7 I 4 Jindra měl napsáno čtyřmístné číslo. Toto číslo zaokrouhlil na desítky, na stovky a na tisíce a všechny tři výsledky zapsal pod toto číslo. Všechna čtyři čísla správně sečetl a dostal Které číslo měl Jindra napsáno? (M. Petrová) Možné řešení. Celé zadání si napíšeme jako sčítání čtyř čísel. Zároveň napíšeme nuly natamísta,kdemusíbýtpozaokrouhlenídanéhočísla,naostatnímístasinapíšeme hvězdičky, které budeme postupně doplňovat. 0 Nejprve si všimneme posledního sloupce, ve kterém je jediná neznámá číslice. Na místo příslušné hvězdičky můžeme doplnit pouze číslici 3, takže neznámé číslo má na místě jednotek číslici Třetí sloupec: Je zřejmé, že se při zaokrouhlování na desítky zaokrouhluje dolů. Proto na místě desítek u prvního a druhého čísla musí být stejné číslice. Protože sčítání na místě jednotek nebylo přes desítku, hledáme číslo, jehož dvojnásobek má na místě jednotek číslici4.namístědesítekmůžebýtbuďa)číslice2,nebob)číslice7. a) doplníme číslici 2: Poslední dvojčíslí hledaného čísla je Druhý sloupec: I při zaokrouhlování na stovky zaokrouhlujeme dolů, takže na místě stovek prvního, druhého a třetího čísla je stejná číslice. Protože sčítání desítek nebylo přes desítku, opět nic nepřipočítáváme. Hledáme tedy číslo, jehož trojnásobek končí na číslici 4. Tomu vyhovuje jen číslice 8, takže poslední trojčíslí hledaného čísla je Prvnísloupec:Protože8+8+8=24,připočítáváme2.Zároveňhledanéčíslozaokrouhlujemenatisícenahoru,takžečíslicenamístětisícůuposledníhočíslajeo1většínežzbylé 10
4 tři.toznamená,žečtyřnásobekčíslicenamístětisícůje5 2 1=2.Toovšemnelze splnit, takže tato možnost nevyhovuje, tzn. číslice 2 na místě desítek být nemůže. b) doplníme číslici 7: Poslední dvojčíslí hledaného čísla je Druhý sloupec: Protože 7 +7 = 14, připočítáváme 1 z předchozího součtu. Zároveň hledané číslo zaokrouhlujeme na stovky nahoru, takže číslice na místě stovek u třetího čísla je o 1 většínežzbylédvě(resp.mohoubýtprvnídvě9atřetí0).toznamená,žetrojnásobek číslicenamístěstovekkončínačíslici4 1 1=2.Tomuvyhovujejenčíslice4.Hledané číslo končí na trojčíslí První sloupec: Hledané číslo se zaokrouhluje na tisíce dolů, takže všechny čtyři chybějící číslice jsou stejné. Má smysl doplnit na místo tisíců pouze číslici 1. Snadno ověříme, že po jejím doplnění je písemné sčítání správně Jedinýmřešenímječíslo1473,takžeJindramělnapsánočíslo1473. Z7 I 5 Libor narýsoval kružnici se středem S a body A, B, C, D, jak ukazuje obrázek. Zjistil, žeúsečky SCa BDjsoustejnědlouhé.Vjakémpoměrujsouvelikostiúhlů ASCa SCD? C D A S B 11
5 (L. Hozová) Možnéřešení.Zezadánívíme,že SC = BD,navíc SC = SD,protožejdeovelikost poloměru kružnice. Trojúhelníky CSD a BDS jsou proto rovnoramenné. Označme DSB = DBS =δ,vizobrázek. C D A S δ δ B Protožesoučetvnitřníchúhlůvtrojúhelníku BDSje180,platí ajelikožúhel BDCjepřímý,platí δ+ δ+ BDS =180, SDC + BDS =180. Zuvedenýchdvourovnicjezřejmé,že SDC =2δ.Protožetrojúhelník CSDjerovnoramenný,jei SCD =2δ.Poněvadžsoučetvnitřníchúhlůvtrojúhelníku CSDje180 a úhel BSA je přímý, dostáváme tyto rovnice: 2δ+2δ+ CSD =180, ASC + CSD +δ=180. Znichvyplývá,že ASC =3δ.Úlohaseptánapoměr ASC : SCD.Podosazení dostaneme3δ:2δ,neboli3:2. Z7 I 6 Najděte všechna trojmístná přirozená čísla, která jsou beze zbytku dělitelná číslem 6 a ve kterých můžeme vyškrtnout jakoukoli číslici a vždy dostaneme dvojmístné přirozené číslo, jež je také beze zbytku dělitelné číslem 6. (L. Šimůnek) Možné řešení. Číslice hledaného čísla označíme takto: x je na místě stovek, y na místě desítek a z na místě jednotek. Přirozené číslo je dělitelné šesti, právě když je součet jeho číslic roven násobku tří a číslice na místě jednotek je sudá. Nejprve uvažujeme pouze o první části této podmínky, podle které musí být součet x+y+ zdělitelnýtřemi.povyškrtnutíčíslice zdostanemedvojmístnéčíslo,ježmábýt rovněžnásobkemšesti.totočíslomásoučetčíslic x+yatenmusíbýttéždělitelnýtřemi. Vyškrtnutáčíslice ztakmohlabýtpouze0,3,6nebo9.stejnouúvahoulzedojítktomu, žetakéčíslice xačíslice ymohoubýtpouze0,3,6nebo9. 12
6 Nyní uvažujme i o druhé podmínce dělitelnosti šesti. Původní číslo a dvojmístná čísla, kterázněj získámevyškrtnutímjedné číslice,majínamístějednotek buď z,nebo y. Číslice z a y tedy musejí být sudé. Podle zadání dostaneme po vyškrtnutí jakékoli číslice dvojmístné přirozené číslo. Toto číslo může začínat číslicí x nebo y, tyto číslice proto nemohou být nulové. Shrneme-livševýšeuvedené, xmůžebýt3,6nebo9, ymusíbýt6, zmůžebýt0 nebo6.všechnahledanáčíslajsoutedy360,366,660,666,960a
I. kolo kategorie Z5
60. ročník Matematické olympiády I. kolo kategorie Z5 Z5 I 1 Vítek má napsána dvě čísla, 541 a 293. Z šesti použitých číslic má nejprve vyškrtnout dvě tak, aby součet dvou takto získaných čísel byl největší
Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel
Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu
I. kolo kategorie Z8
68. ročník Matematické olympiády I. kolo kategorie Z8 Z8 I 1 Ferda a David se denně potkávají ve výtahu. Jednou ráno zjistili, že když vynásobí své současné věky, dostanou 38. Kdyby totéž provedli za čtyři
Úlohy krajského kola kategorie C
67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =
Prvočísla a čísla složená
Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,
Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1
1 of 9 20. 1. 2014 12:05 Matematická olympiáda - 48. ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7 Zadání úloh Z5 II 1 Do prostředního kroužku je možné zapsat pouze čísla 8
1.5.7 Znaky dělitelnosti
1.5.7 Znaky dělitelnosti Předpoklady: 010506 Pedagogická poznámka: Příklad 1 je dořešení zadání z minulé hodiny. Je třeba se u něj nezdržovat. Př. 1: Na základní škole ses učil pravidla, podle kterých
I. kolo kategorie Z7
68. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Na každé ze tří kartiček je napsána jedna číslice různá od nuly (na různých kartičkách nejsou nutně různé číslice). Víme, že jakékoli trojmístné
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
I. kolo kategorie Z7
66. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Čtverec se stranou 4 cm je rozdělen na čtverečky se stranou 1 cm jako na obrázku. Rozdělte čtverec podél vyznačených čar na dva útvary s obvodem
Kód trezoru 1 je liché číslo.
1 Kód trezoru 1 je liché číslo. Kód trezoru 1 není prvočíslo. Každá číslice kódu trezoru 1 je prvočíslo. Ciferný součet kódu trezoru 1 je 12. Druhá cifra kódu trezoru 1 je sudá, ostatní jsou liché. Jeden
II. kolo kategorie Z9
60. ročník Matematické olympiády II. kolo kategorie Z9 Z9 II 1 Čtyřmístným palindromem nazveme každé čtyřmístné přirozené číslo, které má na místě jednotek stejnou číslici jako na místě tisíců a které
Úlohy krajského kola kategorie C
6. ročník matematické olympiády Úlohy krajského kola kategorie C. Pro libovolná reálná čísla x, y, z taková, že x < y < z, dokažte nerovnost x 2 y 2 + z 2 > (x y + z) 2. 2. Honza má tři kartičky, na každé
I. kolo kategorie Z7
67. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Petr řekl Pavlovi: Napiš dvojmístné přirozené číslo, které má tu vlastnost, že když od něj odečteš totéž dvojmístné přirozené číslo akorát napsané
II. kolo kategorie Z6
Z6 II 1 Pat napsal na tabuli příklad: 62. ročník Matematické olympiády II. kolo kategorie Z6 589+544+80=2013. Mat chtěl příklad opravit, aby se obě strany skutečně rovnaly, a pátral po neznámém čísle,
N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 1 2 5, R A P O T Í N N á z e v p r o j e k t u : V e s v a z k o v é š k o l
N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 1 2 5, R A P O T Í N N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě - i n t e r a k t i v n ě Č í s l o
Úlohy domácí části I. kola kategorie C
68. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými. (Michal Rolínek) Řešení. Pokud by
II. kolo kategorie Z9
68. ročník Matematické olympiády II. kolo kategorie Z9 Z9 II 1 Maruška napsala na tabuli dvě různá přirozená čísla. Marta si vzala kartičku, na jejíž jednu stranu napsala součet Maruščiných čísel a na
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
56. ročník Matematické olympiády. tedy číslice 1, 2, a 3. Dále nám zbývají zlomky. Má-li být jejich součet co nejmenší,
6 ročník Matematické olympiády Komentáře k domácímu kolu kategorie Z8 1 Z číslic 1,2,,9 jsme vytvořili tři smíšená čísla a b c Potom jsme tato tři čísla správně sečetli Jaký nejmenší součet jsme mohli
Návody k domácí části I. kola kategorie B
Návody k domácí části I. kola kategorie B 1. Najděte všechna osmimístná čísla taková, z nichž po vyškrtnutí některé čtveřice sousedních číslic dostaneme čtyřmístné číslo, které je 2 019krát menší. (Pavel
Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444
ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní
Moravské gymnázium Brno s.r.o.
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby
Úlohy krajského kola kategorie B
65. ročník matematické olympiády Úlohy krajského kola kategorie B 1. Určete všechny trojice celých kladných čísel k, l a m, pro které platí 3l + 1 3kl + k + 3 = lm + 1 5lm + m + 5. 2. Je dána úsečka AB,
II. kolo kategorie Z5. Z čísel a vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých
II. kolo kategorie Z5 Z5 II 1 Z čísel 959 362 a 192 075 vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých čísel odečteme číslo menší. Jaký nejmenší rozdíl můžeme dostat? Řešení. Z jednoho čísla
(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,
1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo
Matematická olympiáda ročník ( ) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Z5 II 2 Z5 II 3
1 of 6 20. 1. 2014 12:14 Matematická olympiáda - 49. ročník (1999-2000) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Jirka půjčil Mirkovi předevčírem přibližně 230 Kč, tj. 225
Svobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš
METODICKÝ LIST DA10 Název tématu: Autor: Předmět: Dělitelnost Rozklad na součin prvočísel Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti:
Algebrogramy. PaedDr. Libuše Sekaninová Martin Blahák (grafická úprava)
Algebrogramy PaedDr. Libuše Sekaninová Martin Blahák (grafická úprava) Materiál byl zpracován v rámci projektu "Systémová podpora trvalého profesního rozvoje (CPD) pedagogických pracovníků propojením pedagogické
Úlohy domácí části I. kola kategorie B
6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Mezi všemi desetimístnými čísly dělitelnými jedenácti, v nichž se žádná číslice neopakuje, najděte nejmenší a největší. Řešení. Uvažovaná
62.ročník Matematické olympiády. I.kolo kategorie Z6
62.ročník Matematické olympiády I.kolo kategorie Z6 Z6 I 1 Libor si myslí trojmístné přirozené číslo, které má všechny své číslice liché. Pokud kněmupřičte421,dostanetrojmístnéčíslo,kterénemáanijednusvoučíslicilichou.najděte
Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly
METODICKÝ LIST DA6 Název tématu: Autor: Předmět: Dělitelnost dělitel a násobek, sudá a lichá čísla, prvočísla a čísla složená Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky:
Úlohy krajského kola kategorie A
62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,
CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.
Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =
Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).
Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před
I. kolo kategorie Z6
68. ročník atematické olympiády I. kolo kategorie Z6 Z6 I Ivan a irka se dělili o hrušky na míse. Ivan si vždy bere dvě hrušky a irka polovinu toho, co na míse zbývá. Takto postupně odebírali Ivan, irka,
7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky
0 Učivo Vysvětlení Př. + pozn. Zlomek vyjádření části celku část snědla jsem kousky celek a pizza byla rozdělena na kousky Pojem zlomek Vyjádření zlomku Základní tvar: čitatel a jmenovatel jsou nesoudělná
DĚLITEL A NÁSOBEK DIGITÁLNÍ UČEBNÍ MATERIÁL VY_32_INOVACE_TR_01-20_MA-6. autor Hana Trundová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE
Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 DĚLITEL
53. ročník matematické olympiády. q = 65
53. ročník matematické olympiády! 1. V rovině je dán obdélník ABCD, kde AB = a < b = BC. Na jeho straně BC eistuje bod K a na straně CD bod L tak, že daný obdélník je úsečkami AK, KL a LA rozdělen na čtyři
Úlohy klauzurní části školního kola kategorie A
62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,
Dělitelnost přirozených čísel - opakování
Dělitelnost přirozených čísel - opakování Do kolika různých obdélníků můžeme sestavit 60 čtvercových dlaždic tak, abychom vždycky spotřebovali všechny dlaždice a nerozbíjeli je? Závěr: Všichni tito dělitelé
KATEGORIE Z6. (L. Hozová)
Z5 I 1 KATEGORIE Z5 Vítekmánapsánadvěčísla,541a293.Zšestipoužitýchčíslicmá nejprve vyškrtnout dvě tak, aby součet dvou takto získaných čísel byl největší možný. Poté má z původních šesti číslic vyškrtnout
CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13
CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu
Řešení úloh z TSP MU SADY S 1
Řešení úloh z TSP MU SADY S 1 projekt RESENI-TSP.CZ úlohy jsou vybírány z dříve použitých TSP MU autoři řešení jsou zkušení lektoři vzdělávací agentury Kurzy-Fido.cz Masarykova univerzita nabízí uchazečům
Úlohy domácí části I. kola kategorie B
66. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B 1. Každému vrcholu pravidelného 66úhelníku přiřadíme jedno z čísel 1 nebo 1. Ke každé úsečce spojující dva jeho vrcholy (straně nebo
Klauzurní část školního kola kategorie A se koná
56. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1. rčete všechna reálná čísla s, pro něž má rovnice 4x 4 20x 3 + sx 2 + 22x 2 = 0 čtyři různé reálné kořeny, přičemž součin
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Úlohy klauzurní části školního kola kategorie A
6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami
Návody k úlohám domácí části I. kola 59. ročníku MO kategorie B
Návody k úlohám domácí části I kola 59 ročníku MO kategorie B Soutěžní úloha 1 Na stole leží tři hromádky zápalek: v jedné 009, ve druhé 010 a v poslední 011 Hráč, který je na tahu, zvolí dvě hromádky
Úlohy krajského kola kategorie C
65. ročník matematické olympiády Úlohy krajského kola kategorie. Najděte nejmenší možnou hodnotu výrazu x xy + y, ve kterém x a y jsou libovolná celá nezáporná čísla.. Určete, kolika způsoby lze všechny
pro každé i. Proto je takových čísel m právě N ai 1 +. k k p
KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,
Úlohy klauzurní části školního kola kategorie B
65. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie B 1. Kolika způsoby je možno vyplnit čtvercovou tabulku 3 3 čísly,, 3, 3, 3, 4, 4, 4, 4 tak, aby součet čísel v každém čtverci
Dělitelnost přirozených čísel. Násobek a dělitel
Dělitelnost přirozených čísel Násobek a dělitel VY_42_INOVACE_ČER_10 1. Autor: Mgr. Soňa Černá 2. Datum vytvoření: 2.1.2012 3. Ročník: 6. 4. Vzdělávací oblast: Matematika 5. Vzdělávací obor: Matematika
Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.
Instrukce: Vytiskněte si tenhle přehled, vybarvěte důležité části (zvýrazňovačkou, pastelkami) tak, aby jste se rychle orientovali. Při počítání příkladů jej mějte před sebou! a dívejte se do něj. Možná
Úlohy krajského kola kategorie B
68. ročník matematické olympiády Úlohy krajského kola kategorie B 1. Pro nezáporná reálná čísla a, b platí a + b = 2. Určete nejmenší a největší možnou hodnotu výrazu V = a2 + b 2 ab + 1. 2. Najděte všechna
I. kolo kategorie Z5
68. ročník Matematické olympiády I. kolo kategorie Z5 Z5 I 1 Míšamápětpastelek.VojtajichmáméněnežMíša.Vendelínjichmátolik,kolik Míša a Vojta dohromady. Všichni tři dohromady mají sedmkrát více pastelek,
Úlohy domácí části I. kola kategorie C
63. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete, jaké nejmenší hodnoty může nabýt výraz V = (a b) + (b c) + (c a), splňují-li reálná čísla a, b, c dvojici podmínek a +
Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků dělitelnosti
METODICKÝ LIST DA8 Název tématu: Autor: Předmět: Dělitelnost dělitelnost čtyřmi, šesti, osmi a devíti Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: Cíl výuky:
Návody k domácí části I. kola kategorie C
61. ročník Matematické olympiády Návody k domácí části I. kola kategorie C 1. Najděte všechny trojčleny p(x) = ax 2 + bx + c, které dávají při dělení dvojčlenem x + 1 zbytek 2 a při dělení dvojčlenem x
Moravské gymnázium Brno s.r.o.
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika1.ročník Elementární teorie čísel. Ročník 1. Datum
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr
MATEMATICKÁ OLYMPIÁDA
MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 65. ROČNÍK, 2015/2016 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste
67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018
67. ročník matematické olympiády III. kolo kategorie Přerov, 8.. března 08 MO . Ve společnosti lidí jsou některé dvojice spřátelené. Pro kladné celé číslo k 3 řekneme, že společnost je k-dobrá, pokud
Dělitelnost šesti
1.3.11 Dělitelnost šesti Předpoklady: 010310 Př. 1: Zopakuj si všechny znaky dělitelnosti a roztřiď je do skupin podle podobnosti. Probrali jsme tři druhy pravidel pro dělitelnost: podle poslední číslice:
2. Elementární kombinatorika
2.1. Kombinace, variace, permutace bez opakování 2. Elementární kombinatorika Definice 2.1. Kombinace je neuspořádaná k-tice prvků z dané n-prvkové množiny. Variace je uspořádaná k-tice prvků z dané n-prvkové
MATEMATIKA 6. ROČNÍK. Sada pracovních listů CZ.1.07/1.1.16/
MATEMATIKA 6. ROČNÍK CZ.1.07/1.1.16/02.0079 Sada pracovních listů Resumé Sada pracovních listů zaměřená na opakování, procvičení a upevnění učiva 6. ročníku přirozená čísla a desetinná čísla. Může být
64. ročník matematické olympiády III. kolo kategorie A. Praha, března 2015
64. ročník matematické olympiády III. kolo kategorie Praha, 22. 25. března 2015 O 1. Najděte všechna čtyřmístná čísla n taková, že zároveň platí: i) číslo n je součinem tří různých prvočísel; ii) součet
Úlohy domácí části I. kola kategorie C
6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete všechny dvojice (x, y) reálných čísel, která vyhovují soustavě rovnic (x + )2 = y, (y )2 = x + 8. Řešení. Vzhledem k tomu,
II. kolo kategorie Z9
Z9 II 1 62. ročník Matematické olympiády II. kolo kategorie Z9 Dotřídychodí33žáků.PředVánocemibylishajnýmvleseplnitkrmelce.Dívky si rozebraly balíky sena. Chlapci se rozdělili na dvě skupiny: někteří vzali
Co víme o přirozených číslech
Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.
Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.
Úlohy klauzurní části školního kola kategorie A
64. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1. Určete počet cest délky 14, které vedou po hranách sítě na obrázku z bodu do bodu. élka každé hrany je jedna.. Je dán rovnoběžník,
Metodický list. Šablona: Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základní
Projekt: Tvořivá škola, registrační číslo projektu CZ.1.07/1.4.00/21.3505 Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
Počítání s neúplnými čísly 1
Aproximace čísla A: Počítání s neúplnými čísly 1 A = a ± nebo A a, a + Aproximace čísla B: B = b ± β nebo B b β, b + β nebo a A a+ nebo b β B b + β Součet neúplných čísel odvození: a + b β A + B a+ + (b
53. ročník Matematické olympiády. a prvních 10 jsme sečetli. Jaký jsme dostali výsledek, pokud jsme počítali správně?
53. ročník Matematické olympiády Komentáře k domácímu kolu kategorie Z5 1. Víceciferné číslo, jehož číslice se ve směru zleva doprava zvětšují (tj. počet jednotek je větší než počet desítek, počet desítek
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
Úlohy II. kola kategorie A
5. ročník matematické olympiády Úlohy II. kola kategorie A 1. Najděte základy z všech číselných soustav, ve kterých je čtyřmístné číslo (1001) z dělitelné dvojmístným číslem (41) z.. Uvnitř strany AB daného
I. kolo kategorie Z9
60. ročník Matematické olympiády I. kolo kategorie Z9 Z9 I 1 PanVlkčekalnazastávcepředškolounaautobus.Zoknaslyšelslovaučitele: Jaký povrch může mít pravidelný čtyřboký hranol, víte-li, že délky všech jeho
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
16. Goniometrické rovnice
@198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T BŘEZNA 07 D : 4 BŘEZNA 07 P P P : 964 : 0 M M : 0 : 8,8 M : 8,8 % S : -7,5 M P : -,5 :,8 Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na
čtyřicet ponožek od jedné barvy a po třech ponožkách od všech ostatních, tedy celkem = 58
1. Vlado má dvoje digitální hodinky (oboje ukazují čas od 0 do 24h). Jedny se každou hodinu o tři minuty předbíhají, druhé se každou hodinu o dvě minuty zpožd ují. Stejný čas ukazovaly dnes ve 12.00. Jaký
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3
Příklad 1 a) Určete počet všech přirozených trojciferných čísel, v jejichž desítkovém zápisu se vyskytuje každá číslice nejvýše jednou s tím, že na prvním místě nesmí stát nula, jak je obvyklé při chápání
55. ročník matematické olympiády
. ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě
Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např.
Matice přechodu Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. u příkladu 7 (v ) dostaneme: Nyní bychom mohli postupovat jako u matice homomorfismu
66. ročníku MO (kategorie A, B, C)
Příloha časopisu MATEMATIKA FYZIKA INFORMATIKA Ročník 25 (2016), číslo 3 Úlohy I. kola (domácí část) 66. ročníku MO (kategorie A, B, C) KATEGORIE A A I 1 Najděte všechna prvočísla p, pro něž existuje přirozené
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
68. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie A
68. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie 1. Označme x 1, x 2 ne nutně různé kořeny dané rovnice. Podle Viètových vzorců platí x 1 + x 2 = p a x 1 x 2 = q. Z
Faktoriály a kombinační čísla
Faktoriály a kombinační čísla 7. kapitola. Různé In: Jiří Sedláček (author): Faktoriály a kombinační čísla. (Czech). Praha: Mladá fronta, 1964. pp. 72 81. Persistent URL: http://dml.cz/dmlcz/403522 Terms
Úlohy domácí části I. kola kategorie B
65. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Pro přirozená čísla k, l, m platí k + m + klm = 05 404. Určete všechny možné hodnoty součinu klm. Řešení. I když rovnice v zadání
MATEMATIKA. Diofantovské rovnice 2. stupně
MATEMATIKA Diofantovské rovnice 2. stupně LADISLAVA FRANCOVÁ JITKA KÜHNOVÁ Přírodovědecká fakulta, Univerzita Hradec Králové V tomto článku se budeme zabývat některými případy diofantovských rovnic 2.
N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 125 N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě
N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 125 N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě - i n t e r a k t i v n ě Č í s l o p r o j e k t u
Usekne-li Honza 1 hlavu, narostou dva ocasy. Tento tah můžeme zakreslit následujícím způsobem: Usekne-li 2 hlavy, nic nenaroste.
Řešení 2. série Řešení J-I-2-1 1. krok: Číslici 2 ve třetím řádku můžeme dostat jedině násobením 5 4 = 20, 5 5 = 25. Tedy na posledním místě v prvním řádku může být číslice 4 nebo 5. Odtud máme i dvě možnosti
8 Kořeny cyklických kódů, BCH-kódy
24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF
1. Opakování učiva 6. ročníku
. Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla