1. Opakování učiva 6. ročníku
|
|
- Dominika Veronika Bílková
- před 9 lety
- Počet zobrazení:
Transkript
1 . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla tak, aby v každém z nich byly všechny čtyři číslice různé. 3)V čísle 86 škrtněte dvě číslice tak, aby získané číslo bylo co největší. ) Určete dvojciferné číslo, které má ciferný součet a zaměníme-li pořadí jeho číslic, dostaneme číslo o větší. ) Sečtěte čísla DCXXVII a CDXXII. Jejich součet zapište opět římskými číslicemi. 6) Kolik je všech dvojciferných čísel? ) Kolik je všech trojciferných čísel? 8) Zapište všechna trojciferná čísla, která mají ciferný součet 3. 9) Kolik nul je třeba k zapsání všech trojciferných čísel? 0) Vypočtěte : a) d) 6 = e) ) Vypočtěte : a) Čas, hodiny = b) = f) = b) = c) = g) 6 = c) 3 3 = = 0 = 8 8 ) Jana vstala do školy ráno ve čtvrt na osm. Spala deset a půl hodiny. V kolik hodin šla spát? 3) Kolik minut jsou 3 dne? ) Kolik minut je, hodiny? ) Kolikrát od 8.30 h do. h předejde velká hodinová ručička malou? 6) Vlak měl přijet ve. 8 h. Měl však 0 minut zpoždění. V kolik hodin přijel? ) Rozdělte přímkou hodinový ciferník na části tak, aby součet čísel v obou částech byl stejný. 0
2 8) Rozdělte dvěma přímkami hodinový ciferník na 3 části tak, aby součet čísel ve všech částech byl stejný ) V pátek ve 0.00 h si Markéta seřídila své 6 hodinky na přesný čas. Hodinky se jí zpožďují o 3 minuty za každých hodin. Kolik hodin bude ve skutečnosti ve středu, když její hodinky budou ukazovat 0.00 h, jestliže si je po celou dobu již neseřizovala?.3. Obsah, obvod obrazce 0) Převeďte : a) km (m) b) 9 dm (cm) c) 80 cm (dm) d) 8 cm (mm ) e) 00 dm (m ) f) dm cm (cm ) ) Porovnejte obvody a obsahy obrazců : a) čtverec ABCD a = mm; obdélník XYVZ x = mm, y = mm b) čtverec o straně mm; obdélník o stranách 9 mm a cm... Dělitelnost přirozených čísel ) Vypočítejte : a) D ( ; ) b) D ( ; ) c) D ( ; 0) d) D ( ; ) e) n ( ; ) f) n (; ) g) n ( 8; 0) h) n ( 3; ) i) n ( 0; 0) 3) Napište nejmenší pěticiferné číslo, které je dělitelné současně : a) třemi a pěti; b) třemi, čtyřmi a pět; c) dvěma, třemi a osmi; ) Určete nejmenší přirozené číslo, které při dělení třemi, pěti i šesti dává zbytek. ) Zapište všechna čísla větší než 0 a menší než 30, která jsou součtem dvou různých prvočísel.
3 6) Určete všechna trojciferná čísla dělitelná čtyřmi, jejichž ciferný součet je. ) Kolik prvočísel je sudých? 8) Určete dvě přirozená čísla, jejichž součet je 8 a jejichž největší společný dělitel je 6. 9) Skladník převáží pytle cementu. Když na vozík naloží vždy pouze dva pytle, zbude ve skladu pytel. Když převáží po 3 pytlích, zbudou ve skladu pytle. Když po pytlích, zbudou 3 pytle když po, zbudou když po 6, zbude pytlů a když po pytlích, nezbude ve skladu ani jeden pytel. Kolik nejméně pytlů cementu muselo být původně ve skladu? 30) Jak odměří pan Hnilička 0 m stuhy z role, má-li na měření pouze dvě tyčky dlouhé 0 a 80 cm? 3) Kolik je všech možných součtů číslic, které musíme doplnit místo hvězdiček do čísla 3 tak, aby vzniklé pěticiferné číslo bylo dělitelné třemi? 3) Najděte všechna pěticiferná čísla sestavená z číslic 3 a 8, která jsou dělitelná 3 a zároveň... Celá a racionální čísla 33) Vypočtěte : a) = b) = c) = d) = e) = f) i) = j) = g) = h) = 3) Vypočtěte : a). - = b) = c) = d) = e) 0 : - = f) : - g) = h) 0 : : - 3 = i) -0 : = j), : -0,8 + -, : - 3 = k) -0 : -0, , = 3) Porovnejte čísla : 3
4 a),,6 b),00,0 c) 0,96 0,9 d) 0, 0 e) 0, f),, 0 36) Porovnejte dvojice čísel : a) 0, -, b) -8,6-6,8 c) +, +6, d) -, -, e) 0,3-0,3 3) Najděte všechna celá čísla, která vyhovují dané nerovnici: a) < x < 3 b) < x < c) 0 < x d) x -3 38) Zaokrouhlete číslo 9,8 na : a) jednotky b) desítky c) desetiny d) stovky e) setiny f) tisíce 39) Určete přesnost zaokrouhlení ( řád na který zaokrouhlujeme ) : a), () b),6 () c),6 (,) d) 0 (00) e) 00 (0) f) 0,9 (0,) g) 0,9 (0) h), (,) 0) Zaokrouhlete : 38,3 0,93,38 338,98 na desetiny na setiny na celky na stovky na desítky ) Vypočtěte : a) ( + ) + ( + 3 ) = b) ( -3 ) + ( - ) = c) ( -6 ) + ( +39 ) = d) ( + ) + ( - ) = e) ( -0 ) + ( - 8 ) = f) ( ) + ( - ) = g) ( -8 ) + ( - ) = h) ( -0 ) + ( +0) = i) ( - ) + ( - ) = j) ( -6 ) + ( + 6 ) = k) ( - 6 ) + ( + ) = l) ( ) + ( ) = m) ( ) + ( - 9 ) = n ( - ) + ( - 38 ) + ( + ) + ( - ) + ( +8 ) + ( - ) = o) ( - ) + ( + ) + ( - 89 ) + ( ) + ( -8) + ( - ) + ( + 6 ) + = p), + ( +, ) + ( - 9 ) + ( +, ) + ( -,6 ) + ( + ) + ( -,3 ) + ( -,6 ) = ) Vypočtěte :
5 a) ( + ) - ( + ) = b) ( -0 ) - ( - ) = c) ( -6 ) - ( +3 ) = d) ( + ) - ( - ) = e) ( - ) - ( - 0 ) = f) ( 3 ) - ( - ) = g) ( -8 ) - ( - )= h) ( - ) - ( +) = i) ( - ) - ( - ) = j) ( -6 ) - ( + 6 ) = k) ( - 6 ) - ( + ) = l) ( - ) - ( - 8 ) - ( + ) - ( - ) - ( +8 ) - ( - ) = m) ( - ) - ( + ) - ( - 89 ) - ( +86 ) - ( -) - ( - ) - ( + ) - = n),6 - ( - ) - ( +,98 ) - (,89 ) 0, - ( +, ) - ( - 0, ) = 3) Vypočítejte : a),9 + 6,9,96 3, = b) 8 999, + 6,8 63,8 = c) 9 68, 6 89, ,3 = d) 00,003 +, 6,988 = e) 0,6,98 + 0,89 = ) Vypočtěte : a) 00 : ( 0,3 +, ) = b) 0,3 +,8 : 0,9, = ) Vypočtěte : a) ( + ). ( + ) = b) ( - ). ( - ) = c) ( -60 ). ( +3 ) = d) ( + ). ( - ) = f) , ,99 + 8, = g), + (,89-3, ) 0,98 = h) 0, + (,89, ) 0, = i) 0, (,9, ) + 9, = j) (,6,9 ) 8,3 +,96 = c) 0, 0,0. +, : 9 = d) 0, + ( , ) : = e) ( - ). ( - ) = f) ( 0, ). ( - ) = g) ( -0,8 ). ( -, ) = h) ( -0, ). ( +) = i) ( - ). ( - ). ( + ). ( - ). ( + ). ( - ) = j) ( - ). ( + ). ( - ) - ( + ). ( -). ( - ) - ( +). (- ) = 6) Vypočítejte : a) 0,9. 0,00 = b) 0,3. 0, = c) 0,000. 0,0 = d) 8 9,. 0,00 = e) 06,. 0,000 = f) 3 8,. 0,00 = g) 0,. 00 = h) 0,. 0, = i),. 000 = j) ,000 = k) 0, = l),. 0,00 = m) 0,. 00 = n) 0,. 00 = ) Vypočtěte :
6 a),., = b),9. 0, = c) 0,9. 0,6 = 8) Vypočtěte : a) ( + ) : ( +) = b) ( - ) : ( +) = c) ( - ) : ( -) = d) 0. 6,. 3 = e). 6.. = f) 8. 0,. 0, = d) ( + ) : ( -) = e) ( + ) : ( + 3) = f) ( - ) : ( + 3) = g) 6,9.,.,3 = h) 9. 0,8. 3,06 = i).,., = g) ( - ) : ( - 3) = h) ( + ) : ( - 3) = 9) Vypočítejte : a) + [ ( -) + ]. [ ( - ). ( - ) ] = b) - [ ( -8) + (- ) ]. [ ( - ). ( +) ] = c) ( -). [ ( -). ( -) + ( -). ( +) ] ( ) = d) ( +). [ ( +). ( -) - ( -). ( +). ( -) + ( -9) ] ( ). ( -) = e) + [ -. ( - 9 ). ( -8 + ) ] = f) [ - ( + ). ( ) ] ( ) = g) + [ -3. ( - + ) 3. ( ) ] + [ - ( + ). ( ) ] ( ) = 0) Vypočítejte : a) + [ ( -) + ]. [ ( - ). ( - ) ] = b) - [ ( -) + (- ). ( + ) ] + { - [ - ( 6 ) + ( 9 ) ] + } + ( - ) = c) - + [ - ( +).. ( + ) + ] + { - [ -. ( ) + ( 9 ) ] } + ( + ) = d) -. [ - ( + ). ( - - ) ] + ( ). { - [ - ( 6 ) - ( + ) ] - }. ( - ) = ) Vypočtěte : a), : 0,000 = b), : 00 = c) 0, : 0,00 = d) 0, : 00 = e) 0, : 0, = f), : 0,000 = ) Vypočtěte : a) 6,66 :, = b) 9,3 :,89 = c) 0,8939 : 0,9 d),8 : 0,986 = e) 38,689 :, = f) 6,6 : 0,3 = 3) Vypočítejte : a) 3. ( -) : [ ( -3) : ( -) ] = b) [(-). (-6) : ] : (-) = c) (-). (-). (-) : (-0) = d) (-). [(-). (-) : (-0)] = e) (-) = f) 6. ( -) = g) (-).(-)-(-9).0.(-)= h) (-) (-)= i) (-).(6-8).(-3).(-)= j) (-).(-).(-)..(-0)= 6
7 k) (-).6+(8+).3= l) 3.6+.(9-3,)= m) (-).-6:(-3) (-8)= n) (-3). [-6+.(9-3.)]= o) 6-[-(-3)-(-)].(-3)= p) (--):3+:(-).3=.6. Úhel ) Vypočítejte velikost úhlu β, jestliže úhel α =. ) Vypočítejte velikosti úhlů α, β, γ na obrázku. 6) Určete velikost tupého úhlu, který svírají hodinové ručičky v.30 hodin. ) Převeďte : a) 0 ( ) b) 0 ( ) c) 0 ( 0 ) d) 6, 0 ( ) 8) Určete velikost vedlejších úhlů α a β, jestliže úhel α je o 30º větší než úhel β. 9) Vypočítejte součet velikostí úhlů α, β, γ, δ, ε, φ na obrázku.
8 60) Vypočítejte velikosti všech vnitřních úhlů čtyřúhelníka ABCD. 6) Vypočítejte velikost úhlu ADB 6) Jeden vnitřní úhel trojúhelníku má velikost 3. Rozdíl velikostí druhých dvou úhlů je. Je tento trojúhelník tupoúhlý? 63) Jakou velikost má úhel při vrcholu v pravidelném osmiúhelníku? A S B 00 º D 6) Narýsujte bez úhloměru úhly : a) 0 b) 30 0 c) 0 d) 60 0 e) 90 0 f) 0 0 g) 0 0 h) 3 0 i) 0 0 j) Shodná zobrazení 6) Doplňte útvar ABCDEFGHIJKL tak, aby vznikl útvar : a) osově souměrný podle osy o; b) středově souměrný podle bodu E; c) v posunutí daném úsečkou HI A B C D F G H E o L K J 8 I
9 66) Na kterém obrázku jsou narýsovány právě všechny osy souměrnosti obdélníku? A B C D E 6) Který z obrazců na obrázku nemá osu souměrnosti? A B C D 68) Který z obrazců B; C; D odpovídá obrazci A otočenému o čtvrt otáčky vpravo? A B C D D.8. Trojúhelník 69) Rozhodněte, které údaje nemohou platit v trojúhelníku : a) a = 8 cm b = 9 cm c = 0 cm; b) a = 3 cm b = cm γ = 8 0 ; c) a = cm b = cm c = cm; d) α = 30 0 β = 60 0 γ = 90 0 ; e) α = 0 β = 0 c = 0 cm; f) α = 60 0 β = 6 0 γ = ) Vypočtěte zbývající vnitřní a vnější úhly v trojúhelníku, je-li α = 0 β =
10 ) Máme tři různé body A, B, C, které neleží na přímce. Je možné sestrojit kružnici, která prochází všemi třemi body? V kladném případě určete, kde bude střed této kružnice. Danou úlohu narýsujte. ) Sestrojte libovolný trojúhelník ABC, kterému narýsujte : a) osy stran; b) osy úhlů; c) těžnice; d) střední příčky trojúhelníka; e) výšky trojúhelníka; f) opište a vepište kružnici tomuto trojúhelníku. 3) Obvod rovnoramenného trojúhelníka je půl metru. Jeho rameno měří 6 cm. Vypočtěte : a) velikost základny tohoto trojúhelníku; b) velikost přepony tohoto trojúhelníku. ) Úhel při základně rovnoramenného trojúhelníka měří 8 0. Vypočtěte : a) velikost druhého úhlu při základně; b) velikost úhlu při přeponě; c) velikost úhlu při hlavním vrcholu. ) Vnější úhel úhlu při hlavním vrcholu trojúhelníka měří Vypočtěte velikosti vnitřních úhlů trojúhelníka. 6) Určete vnitřní úhly rovnoramenného trojúhelníka, jestliže : a) osa úhlu při hlavním vrcholu svírá s ramenem úhel 8 0 ; b) osa úhlu při základně svírá s ramenem úhel 8 0. ) Sestrojte trojúhelník ABC, je-li dáno : a) a, b, c, e) a, b, t a, b) a, b,, f) a, b, r, c) a, b,, g) a,,, d) a, b, v a, h) a,,, i) a,, v a, j) a,, t a, k) a,, t c, l) a,, r, m) a, v a, t a, n) a, v a, r, o) a, t a, t b, p) a, t b, t c, 8) Vypočtěte zbývající údaje trojúhelníku : a) a = cm b = cm v a = cm v c = 8cm ( S; c; v b ; O; r; ρ ) b) a = 3 cm O = cm v a = cm v b = 3cm ( c; b; v v ; S; r; ρ ) c) v b = 8 cm b = 6 cm c = 0 cm ρ = cm ( O; r; S; a; v c ; v a ).9. Objem a povrch těles 0
11 9) Vypočtěte o kolik je větší objem a povrch kvádru a = 9 cm b = cm c = cm než krychle o hraně 0, dm? 80) Těleso na obrázku je sestaveno z krychlí s hranou dlouhou 3 cm. Vypočítejte jeho povrch. 8) Těleso na obrázku je postaveno z krychlí s hranou délky cm. Vypočítejte jeho povrch. 8) Určete povrch děravé krychle sestavené z jednotkových krychlí (díra má tvar kvádru!). 83) Těleso je složeno z krychliček s hranou délky cm. Vypočítejte povrch tělesa. 8) Vypočtěte objem a povrch trojbokého hranolu pro který platí : a = 9, cm, v a = cm, b =, cm, c = 9 cm, v =, cm. 8) Vypočtěte objem a povrch pravidelného šestibokého hranolu, který má délku podstavné hrany cm, výšku trojúhelníka podstavy v a =,33 cm a výšku tělesa 6 cm. ( Podstava se skládá ze šesti rovnostranných trojúhelníků. ) 86) Vypočtěte velikost zbývající hrany kvádru a jeho povrch : a = dm, c = 0, dm V =, dm 3 8) Vypočtěte velikost zbývající hrany kvádru a její objem : a = 3 cm, b = cm, S cm.
12 88) Co bude dražší? Natření krychle o hraně metrů nebo kvádru o rozměrech m, m, m? 89) Vypočítejte kolik korun bude stát natření celého pravidelného čtyřbokého hranolu o podstavné hraně cm a výšce cm. jestliže na natření dm stojí barva.- Kč a za vlastní práci zaplatíme 00.- Kč. Výsledek zaokrouhlete na celé desetihaléře. 90) Nádoba má tvar hranolu, jehož podstava má obsah 9, m. V nádobě je l vody. Do jaké výše sahá voda v nádobě? 9) Na zahradu s výměrou 800 m napršely 3 mm vody. Kolik desetilitrových konví nám tento déšť nahradil? 9) Vypočítejte objem a povrch krychle ABCDEFGH, jestliže : a) /AB/ = cm b) obvod stěny ABCD je cm c) součet délek všech hran krychle je 30 cm d) kolik desetilitrových konví vody budeme potřebovat, máme-li brouzdaliště naplnit z jedné pětiny? 93) Součet velikostí hran krychle je cm. Jak velký bude její povrch a objem? 9) Dětské brouzdaliště na koupališti je m dlouhé, 0 m široké a 0 m hluboké. Vypočítejte : a) kolik m dlaždic bude třeba na obložení dna a stěn bazénu b) kolik dlaždic čtvercového tvaru o straně cm bude potřeba zakoupit, nepočítáme-li ztráty při obkládání c) kolik budou stát dlaždice, jestliže m dlaždic stojí 3 Kč..0. Kombinatorika ) Vypočítej : a) ( ) = b) ( ) = c) ( ) = d) ( ) = e) ( ) = f) ( ) = g) ( ) = h) ( ) = ch) ( ) = i) ( 8 ) = j) ( 8 ) = k) ( 3 ) = 96) Z 0 písmen vytváříme členné skupiny. a) kolik bude skupin, ve kterých bude právě pět písmen dobře b) kolik bude skupin, kde bude minimálně pět písmen dobře c) kolik bude skupin, kde bude maximálně čtyři písmena dobře.
13 9) Z čísel se losuje 6 čísel. Kolik vznikne kombinací, máme-li uhodnout maximálně dvě čísla? 98) V Minimatesu se z čísel losuje 6. Kolik bude kombinací, mají-li být správně alespoň čtyři čísla? 99) V tanečních se sešlo dívek a chlapců. Kolik vytvoří smíšených tanečních párů? 00) Pro které n platí ( n ) =. 0) Spolek má 0 členů, z toho je 8 žen. Kolikerým způsobem lze vybrat tříčlenný výbor spolku tak, aby v něm byla právě jedna žena? 0) Kolika způsoby lze rozsadit osoby ke stolu se čtyřmi židlemi? ŘEŠENÍ ) 6; 6; 6; 6; 6; 6; ) 03; 03; 30; 30; 03; 30; 3 0; 3 0; 3 0; 3 0; 3 0; 30; 03; 03; 03; 30; 30; 30; 3) 8 6; ) 38; ) 09; MIL; 6) 90; ) 900; 8) 3 6 0; 0; 0; 0; ; 300;9) 80 nul; 0) a) ; b) ; c) ; d) ; e) ; f) ) a) ; b) ; c) ;) ve 0 hodin minut; 3) 960 minut; 0 8 ) 6 minut; ) 6 krát; 6) v 6 h 8 min; 8 ; g) ) 8) 9) přibližně 0 h min; 0) a) 000 m; b) 90 cm; c) 8 dm; d) 800 mm ; e) m ; f) cm ; ) a) čtverec má obvod větší o 0 mm a obsah o 6 mm ; b) obdélník má obvod větší o mm a obsah o mm ; ) a) 3; b) ; c) ; d) ; e) 60; f) ; g) 0; h) ; i) 00; 3) a)0 00; b) 0 00; c) 0 008; ) 3; ) ; ; ; ; 6; 8; 3
14 6) ; 60; 3; 30; 30; ; 0; 00; ) jedno číslo ; 8) ; 6 + ; 9) 9 pytlů; 30) 0 m =. 0 cm cm nebo 0 m =. 0 cm cm; 3) 6 součtů,,, 0, 3, 6; 3) ; ; ; 33) a) ; b) ; c) 0; d) 8; e) 39; f) 8; g) ; h) 89; i) 86; j) 386; 3) a) ; b) 80; c) ; d) 80; e) 0; f) 6; g) 08; h) 3; i) ;j) 3,; k) 00,3; 3) a), <,6 b),00 <,0 c) 0,96 > 0,9 d) > 0, 0 e) 0, = 0 f), <, 36) a) 0, > -,; b) -8,6 < -6,8; c) +, < +6,; d) -, < -,; e) 0,3 > -0,3; 3) a) ( -3;. ); b) ( 3; ; ); c) (-9;.. ); d) neexistuje; 38) a) 9; b) 90; c) 9,8; d) 00; e) 9,8; f) 0; 39) a) jednotky; b) jednotky; c) desetiny; d) desítky nebo stovky; e) tisíce; f) desetiny; g) jednotky a vyšší; h) setiny; 0) na desetiny na setiny na celky na stovky na desítky 38,3 38,3 38, ,93 0,6 0,9 0 0,38,, , , 3 38, ) a) 9; b) -3; c) -; d) -3; e) -; f) 8; g) -9; h) 0; i) -9; j) -00; k) 9 89; l) ; m) ; n) -; o) 90; p) 3,6; ) a) 9; b) -9; c) -9; d) 39; e) -; f) ; g) -6; h) -0; i) ; j) -; k) -9 09; l) -; m) -63; n) 60,8; 3) a) 6,; b) 8 9,08; c) 3 0,806; d) 9,6; e) 6,; f) ,86; g),9; h) 0,39; i) 9,; j) 8,06; ) a) ; b),; c) 0,; d) 3,; ) a) 0; b) ; c) -80; d) -0; e) ; f) -,8; g) 6,8; h) -,; i) ; j) ; 6) a) 0,0009; b) 0,03; c) 0,00000; d) 8,9; e) 0,06;f) 3,8; g) ; h) 0,0; i) 00; j) 0,; k) 0; l) 0,00;m) ; n),; ) a) 8,3; b) 6,30; c) 0,06; d) 9; e) 3; f),6; g) 39,68; h),9; i) 33,6; 8) a) ; b) -; c) +; d) -; e) +; f) -; g) +; h) -; 9) a) ; b) -69; c) 33; d) -6; e) ; f) -30; g) -; 0) a) ; b) ; c) -; d) -36;
15 ) a) 00; b) 0,0; c) 0; d) 0,00; e),; f) 000; ) a),0; b) 0,; c) 0,3; d),6; e),; f),9; 3) a) -; b) -; c) ; d) ; e) -; f) -; g) ; h) ; i) -80; j) 00; k) -39; l) 6; m) 0; n) ; o) ; p) -8; ) β = 6 0 ) α = γ = β = ) 0 ; ) a) 90 ; b) 8 06 ; c) ; d) 0 ;8) α =0 0 β = 0 9) ) α = β = 0 γ = 0 δ = ) 0 0 6) ne 63) 3 0 A B C D 66) D; 6) C; 68) B; D 69) c; f; 0) α = 8 0 ; β = 0 0 γ = 8 0 γ = 0 ; ) Jde o střed kružnice opsané trojúhelníku průsečík os stran 3) a) 8 cm; b) tento trojúhelník není pravoúhlý; ) a) 8 0 ; b) jde o nesmysl; c) 8 0 ; ) 0 0 ; 0 0 ; 80 0 ;6) a) ; b) ; 8) a) S = 0 cm ; c=, cm; ρ =, cm; v b = cm; r =,cm; O =, cm; b) c = cm; b = cm; v v = 3 cm; S = 6 cm ; r =, cm; ρ = cm; c) O = cm; r = cm; S = cm ; ρ = cm; a = 8 cm; v c =,8 cm; 9) větší je objem kvádru o 90 cm 3, větší je povrch kvádru o 36 cm ; 80) 6 cm ; 8) 96 cm ; 8) 80 cm ; 83) 6 cm ; 8) 9, cm,, cm 3 ; 8) 389, cm 3, 309,9 cm ; 86), dm, 8 fm 8) cm, 0 cm 3 ; 88) Natření krychle bude dražší; 89) 66,60 Kč; 90), dm; 9) 0 lahví; 9) a) 6 cm 3, 96 cm ; b) 66,3 cm 3, 8, cm ; c),6 cm 3, 3, cm ;d) 00; 93), cm,, 9, cm 3 ; 9) a) 0 m, b) 6 dlaždic; c) Kč; 9 a) ; b) ; c) 8; d) 36; e) 6; f) ; g) 6; h) 0; ch) ; i) 0; j) 8; l) 0; 96) a) 63; b) 8; c) 3; 9) ; 98) 9; 99) 360 párů; 00) ; 0) 8; 0) ;
Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444
ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní
VíceRozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
VíceTéma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
VíceTělesa můžeme v rovině zobrazit pomocí volného rovnoběžného promítání.
9. Hranol 6. ročník 9. Hranol 9.1. Volné rovnoběžné promítání Tělesa můžeme v rovině zobrazit pomocí volného rovnoběžného promítání. Zásady : 1) Plochy, které jsou rovnoběžné s naší rýsovací plochou zobrazujeme
VíceDoučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy
Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VíceMATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
VíceMATEMATIKA 6. ročník II. pololetí
Úhel a jeho velikost: MATEMATIKA 6. ročník II. pololetí 26A Převeď na stupně a minuty: 126 = 251 = 87 = 180 = 26B Převeď na stupně a minuty: 92 = 300 = 146 = 248 = 27A Převeď na minuty: 3 0 = 1 0 25 =
VíceZákladní geometrické tvary
Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.
Více2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceTest Zkušební přijímací zkoušky
Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)
VíceMatematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:
Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,
Více6. Čtyřúhelníky, mnohoúhelníky, hranoly
6. Čtyřúhelníky, mnohoúhelníky, hranoly 7. ročník - 6. Čtyřúhelníky, mnohoúhelníky, hranoly 6.1. Základní pojmy 6.1.1. n úhelník n - úhelník pro n > 2 je geometrický obrazec, který má n vrcholů ( stran,
Více2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
VíceM - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl
6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,
Více- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů
- 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně
VícePLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
VíceDIDAKTIKA MATEMATIKY
DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body
VíceGEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak
VícePříklady pro 8. ročník
Příklady pro 8. ročník Procenta: 1.A Vyjádřete v procentech: a) desetina litru je % b) polovina žáků je % c) pětina výměry je % d) padesátina délky je % e) tři čtvrtiny objemu je % f) dvacetina tuny je
VíceSTEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VícePříklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
VíceGEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti
GEOMETRIE pracovní sešit pro 6. ročník Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti Tato publikace byla vytvořena v souladu s RVP ZV v rámci projektu
VíceÚvodní opakování, Kladná a záporná čísla, Dělitelnost, Osová a středová souměrnost
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Úvodní opakování, Kladná a záporná čísla, Dělitelnost, Osová a středová souměrnost Prima 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní
VícePřípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
VícePojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),
Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný
Víceje-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!
-----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4
VíceSbírka úloh z matematiky. 6. - 9. ročník
Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3
VíceGeometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
VíceČtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:
Čtyřúhelníky Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 3: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 4: Sestroj rovnoběžník ABCD, je-li
VíceTEMATICKÝ,časový PLÁN vyučovací předmět : matematika ročník: 5. Školní rok_2014/2015 vyučující: Lenka Šťovíčková. Zařazená průřezová témata OSV OSV
Školní rok_2014/2015 vyučující: Lenka Šťovíčková Září Opakuje početní výkony a uplatňuje komutativní, asociativní a distributivní zákon v praxi. G.:narýsuje přímku, polopřímku, kolmici, rovnoběžky, různoběžky.
VíceSTEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
STEREOMETRIE, TĚLESA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Více- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
VíceMáme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.
8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
VíceČtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník
Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky
VícePRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
VíceMateřská škola a Základní škola při dětské léčebně, Křetín 12
Mateřská škola a Základní škola při dětské léčebně, Křetín 12 VY_32_INOVACE_DUM.M.17 Autor: Mgr. Miroslav Páteček Vytvořeno: duben 2012 Matematika a její aplikace Klíčová slova: Třída: Anotace: Zlomky,
Více0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
VíceARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
ARITMETIKA - TERCIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Více+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa
1. Jehlan ( síť, objem, povrch ) Jehlan je těleso, které má jednu podstavu tvaru n-úhelníku. Podle počtu vrcholů n-úhelníku má jehlan název. Stěny tvoří n rovnoramenných trojúhelníků se společným vrcholem
VíceŽák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.
STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní
Více(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m
. Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,
VíceJméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PAD19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Více( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1
Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů
VíceKonkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel
Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada
VíceMatematika. 6. ročník. Číslo a proměnná. desetinná čísla (využití LEGO EV3) číselný výraz. zaokrouhlování desetinných čísel. (využití LEGO EV3)
list 1 / 8 M časová dotace: 4 hod / týden Matematika 6. ročník (M 9 1 01) (M 9 1 02) (M 9 1 03) provádí početní operace v oboru celých a racionálních čísel; čte, zapíše, porovná desetinná čísla a zobrazí
VíceAutor: Jana Krchová Obor: Matematika. Hranoly
Převeď na jednotky v závorce: Hranoly a) 0,5 cm 2 (mm 2 ) = 8,4 dm 2 (cm 2 ) = b) 2,3 m 2 (dm 2 ) = 0,078 m 2 (cm 2 ) = c) 0,09 ha (a) = 0,006 km 2 (a) = d) 4 a (m 2 ) = 540 cm 2 (m 2 ) = e) 23 cm 3 (mm
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
VíceMATEMATIKA 7 M7PID15C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA 7 M7PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
VíceJakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.
MATEMATIKA 5 M5PZD16C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60
VíceMatematický KLOKAN kategorie Kadet
Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Kadet Úlohy za body. Hodnota kterého z výrazů je sudé číslo? (A) 2009 (B) 2 + 0 + 0 + 9 (C) 200 9 (D) 200 9 (E) 200 + 9 2. Hvězda na obrázku
Více6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)
6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,
VícePříprava na závěrečnou písemnou práci
Příprava na závěrečnou písemnou práci Dělitelnost přirozených čísel Osová a středová souměrnost Povrch a objem krychle a kvádru Zlomky 1) Určete, zdali jsou pravdivé následující věty. 2) a) Číslo 544 721
VíceFunkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3].
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
VíceMatematika - 6. ročník Vzdělávací obsah
Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá
VíceTéma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)
Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží
VíceTémata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
VíceVzdělávací obsah vyučovacího předmětu MATEMATIKA pro 1. stupeň
Vzdělávací obsah vyučovacího předmětu MATEMATIKA pro 1. stupeň 1. ročník M-3-1-01 používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem
VíceZákladní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů
1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou
VíceOpakování ZŠ - Matematika - část geometrie - konstrukce
Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny
Více1. Základní poznatky z matematiky
. Základní poznatky z matematiky. Určete opačné číslo k číslu (3 5). a) 8 b) 8 c) 8 d) 8. Čísla,, 0, 3,, 8 9, seřaďte od největšího k nejmenšímu. a), 3,, 8 9,, 0, b), 3,, 8 9,, 0, c) 3,,, 8 9,, 0, d),,
VíceFebruary 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
VíceVyučovací předmět: Matematika Ročník: 6.
Vyučovací předmět: Matematika Ročník: 6. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo ZÁŘÍ užívá různé způsoby kvantitativního vyjádření vztahu celek část (zlomkem) PROSINEC využívá
Více2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
VíceMatematická olympiáda ročník (1999/2000) Úlohy domácího kola pro kategorie Z5 až Z9
1 of 8 20. 1. 2014 12:10 Matematická olympiáda - 49. ročník (1999/2000) Úlohy domácího kola pro kategorie Z5 až Z9 Z5 I 1 V příkladech nahraďte hvězdičky číslicemi tak, aby jeden výsledek byl o 15 764
Více1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Vzdělávací předmět: Matematika 4 Ročník:
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Vzdělávací předmět: Matematika 4 Ročník: 5. 5 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka
VíceKlíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
VícePříprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09
VíceKlíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
VíceCVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické
VíceVyučovací předmět / ročník: Matematika / 4. Učivo
Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel
Více6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1.
6.1 I.stupeň Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň Vzdělávací obsah je rozdělen na čtyři tematické okruhy : čísla
VíceOpakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
VíceKlíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
VíceMATEMATIKA 6. ROČNÍK. Sada pracovních listů CZ.1.07/1.1.16/
MATEMATIKA 6. ROČNÍK CZ.1.07/1.1.16/02.0079 Sada pracovních listů Resumé Sada pracovních listů zaměřená na opakování, procvičení a upevnění učiva 6. ročníku přirozená čísla a desetinná čísla. Může být
VíceObecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
VíceRočník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.
Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.
VíceVzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...
Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.
VíceTest z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
VíceJméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
VíceJak by mohl vypadat test z matematiky
Jak by mohl vypadat test z matematiky 1 Zapište zlomkem trojnásobek rozdílu, 2 Vypočtěte: 2.1 0,05: 0,001 0,7 0,3 = 2.2 : = 3 Vypočtěte a výsledek zapište zlomkem v základním tvaru: 36 3 3 16 + 1 6 = 4
VícePříprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)
VíceCVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VíceTrojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
VíceTrojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011
MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Více10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )
Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina
VícePříklady na 13. týden
Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby
VíceUČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika
UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím
VíceTento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené
VíceMatematika 1. ročník. Aritmetika
Matematika 1. ročník Aritmetika zapíše a čte čísla 0-20 pracuje s řadou čísel určí chybějící číslo v řadě porovná přirozená čísla užívá a zapíše < > = počítá prvky daného konkrétního souboru vytvoří konkrétní
Více1. Opakování a rozšíření učiva z 1. 5. ročníku
1. Opakování a rozšíření učiva z 1.. ročníku 1.1. Základní pojmy z množinové matematiky 1.1.1. Prvek, množina, základní množina 6. ročník -1. Opakování učiva Množina rodina abeceda hokejový tým třídní
VíceMatematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose
Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické
VíceTematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Marta Klimecká Týdenní dotace hodin: 5 hodin Ročník: třetí
ČASOVÉ OBDOBÍ Září KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA rozezná, pojmenuje, vymodeluje úsečku a lomenou čáru porovnává velikost útvarů, měří a odhaduje délku úsečky užívá a zapisuje vztah
VíceKonstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,
Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje
Více