VALNÉ SHROMÁŽDĚNĺ UČENÉ SPOLEČNOSTI
|
|
- Marian Beránek
- před 9 lety
- Počet zobrazení:
Transkript
1 VALÉ SHROMÁŽDĚĺ UČEÉ SPOLEČOSTI 19. května 2008 Umělé molekulární přístroje a jiné novinky z chemie hmoty neživé Josef Michl University of Colorado, Boulder, CO 80309, U. S. A. a Akademie Věd České Republiky, Praha, Česká Republika
2 PŘEHLED výzkum vzdálenĕ cílený: molekulární rotor točí se, k ničemu není, ale třeba jednou bude? náhodný objev: bublina v molekulární kleci (nejspíš) kuriosita, avšak možná důležitá pro vysvĕtlení narkosy náhodný objev: velmi rozvĕtvený polymer bude k nĕčemu dobrý? výzkum témĕř užitý: štĕpení singletové excitace až mu lépe porozumíme, zlepšíme sluneční články? trochu zamyšlení nad vědou zda a jak ji řídit? všeho s mírou
3 Molekulární rotory na povrchu azimutální altitudinální rotátor osa držák
4 Samoskladný altitudinální molekulární rotor Br Br TMS Cu/Pd ; TBAF 3. dppp-pti 2, CuI, Et 2 H 4. AgO 3 Ph Ph Ph Ph P Pt P Pt OO 2 P Ph P Ph Ph OO 2 Ph Pt + + Pt + Pt + Pt + Pt Pt - 6 O 3 +
5 Derivative Mode STM Images rotory držáky
6 Differential Barrier Height Measurement na dipolárním rotoru + V sample < 0 - V sample >0 F F di = dz βφ 12 / i di = dz + βφ 12 / + i Differential Barrier Height: di di i dz = + dz β ( φ 12 / φ 12 / ) +
7 Differential Barrier Height Measurement na dipolárním a na nepolárním rotoru ormal STM Barrier Height Difference Dipolar Rotor on-polar Rotor 10 nm
8 Spočtená dynamika na povrchu zlata elektrické pole: 90 GHz / 6 GV/m
9 Spočtená dynamika na povrchu zlata elektrické pole: 90 GHz / 4.4 GV/m
10
11 Loop.
12 PŘEHLED výzkum vzdálenĕ cílený: molekulární rotor točí se, k ničemu není, ale třeba jednou bude? náhodný objev: bublina v molekulární kleci (nejspíš) kuriosita, avšak možná důležitá pro vysvĕtlení narkosy náhodný objev: velmi rozvĕtvený polymer bude k nĕčemu dobrý? výzkum témĕř užitý: štĕpení singletové excitace až mu lépe porozumíme, zlepšíme sluneční články? trochu zamyšlení nad vědou zda a jak ji řídit? všeho s mírou
13 1a 1a PMe 3 Me 3P Pt OTf OTf 2 3a 3a OTf = (PMe 3 ) 2 Pt MOLEKULÁRĺ KLECE spojky 1a 1d + 2 klece 3a 3d (12+, triflates) UFF molekulární mechanika 1b 1b 2 3b 12 - OTf 3c (asi ne) 3b 12+ 1c Co 1c 2 Co Co 3c (nejspíš) 3c 12 - OTf 1d Co 1d 2 3d Co 3c Co OTf 3d 3d
14 3d 3c 3b EYRIGŮV GRAF PRO RYCHLOSTĺ KOSTATU VÝMĚY HRA PYRIDIU V DODEKAKATIOTECH 3a 3d/12 TfO - V CD 3 O 2 ROZTOKU 3a ΔH (kcal/mol) ΔS (cal/mol.k) 11 to to -18
15
16 PŘEHLED výzkum vzdálenĕ cílený: molekulární rotor točí se, k ničemu není, ale třeba jednou bude? náhodný objev: bublina v molekulární kleci (nejspíš) kuriosita, avšak možná důležitá pro vysvĕtlení narkosy náhodný objev: velmi rozvĕtvený polymer bude k nĕčemu dobrý? výzkum témĕř užitý: štĕpení singletové excitace až mu lépe porozumíme, zlepšíme sluneční články? trochu zamyšlení nad vědou zda a jak ji řídit? všeho s mírou
17 Li + catalyza adice metylového radikálu na etylen byla předpovězena ab inicio výpočty v roce 1986 Timothy Clark (Univ. Erlangen, Germany): aktivační energie v plynné fázi je snížena z 14.4 na 6.0 kcal/mol, když je etylen komplexován s Li + (Clark, T. J. Chem. Soc., Chem. Commun. 1986, 1774). áhodné pozorování první polymerizace neaktivovaného alkenu, katalyzované kationty Li + : Dr. Steffi Körbe si všimla, že lithná sůl C- alkenylovaného undekametylovaného carborátového aniontu na vzduchu samovolně oligomerizuje z důvodů, které se zdály záhadné. Dr. Kamesh Vyakaranam zjistil, že reakce je radikálová (J. Am. Chem. Soc. 2006, 128, 5680). Další krok: polymerizovaly by jednoduché alkeny?
18 POLYISOBUTYLE (PIB) Isobutylen je zejména nevhodný pro radikálovou polymerizaci, neboť vytváří allylové radikály abstrakcí vodíkových atomů v allylových polohách C H 3 C C C CH 3 H 3 C CH + CH 3 Odian, G. Principles of Polymerization. John Wiley & Sons, Inc.: ew York, 4th Edition, 2004, Ch. 3, p. 201.
19 Isobutylen + radikálov lový iniciátor + LiCB 11 Me 12 v dosti inertním rozpouštědle poskytují nový izomer PIB a a 1 H-MR l-pib b b n l-pib b-pib 1.5 δ / ppm 1.0
20 b-pib V 1 V 2 '(ipr)h 3 C CH 3 (ipr)' (ipr)h 3 C CH 3 (ipr) CH(b)' CH(b) '(Lb)H 2 C CH 3 (Lb) (Lb)H 2 C (Lb)Cq (Lb)Cq CH 3 (Lb) (*L)H 2 C CH 3 (Lb) CH 3 (L*) CH 3 (L*) (*L)Cq (*L)Cq CH 3 (L*) (*L)H CH 3 (L*) 2 C CH 3 (L*) (*L)H 2 C CH 3 (L*) (*L)Cq (*L)Cq (*L)H 2 C CH 3 (Lb) (6)H CH 3 (L*) 2 C (L CH 3 (L*) CH 1 )H 2 C (L 1 )Cq 3 (7) CH CH 3 (8) (L 1 )Cq 3 (L 1 ) R CH 3 (7) CH 3 (L 1 ) Cq C (v) C H(5) H2 (9) C H(1) n C H(4) Me(3) (2)Cq Me(3) Me(3) Cq(Lb) CH(1) Cq(L*) Cq(L1) CH(5) 13 C MR CDCl 3 CHb and CHb CH 2 of branches Cqv CH 3 (ip r) CH 3 (b ra n ch ) CH 3 (ip r) CH(5) vinylidene 9 8 O = lo w M W im p u ritie s d, ppm L* CH 3 region CH 3 (ip r) and (ip r) 1 H MR 8 9 CH(4) CH(1) CH 2 (L b ) CH 2 re g io n L* Lb L1 6 o L1 Lb 7 o o CH(b) CH(b) CH(5) d, ppm
21 b-pib : 30 větví (M W ~ 8600)
22 Jak dochází k současn asné tvorbě b-pib a l-pib?
23 PŘEHLED výzkum vzdálenĕ cílený: molekulární rotor točí se, k ničemu není, ale třeba jednou bude? náhodný objev: bublina v molekulární kleci (nejspíš) kuriosita, avšak možná důležitá pro vysvĕtlení narkosy náhodný objev: velmi rozvĕtvený polymer bude k nĕčemu dobrý? výzkum témĕř užitý: štĕpení singletové excitace až mu lépe porozumíme, zlepšíme sluneční články? trochu zamyšlení nad vědou zda a jak ji řídit? - všeho s mírou
24 Fotovoltaický článek: cena a účinost min BOS cost Ultimate Thermodynamic limit at 1 sun Shockley- Queisser limit pro $0.02/kWh potřebujeme celkovou cenu $0.40/W p
25 GRÄTZELŮV SOLÁRĺ ČLÁEK M. Grätzel, ature, 414, 338(2001) Band Diagram Dye-Sensitized anocrystalline TiO 2 Photochemical Solar Cell Redox potentials: TiO 2 CB = -0.5 V; D + /D = V; R/R - = 0.5 V
26 SCHEMA SOLÁRĺHO ČLÁKU VYUŽĺVAJĺCĺHO SIGLETOVÉHO ŠTĚPEĺ (SIGLET FISSIO, SF)
27 SIGLETOVÉ ŠTĔPEĺ OČEKÁVAÝ VLIV A ÚČIOST SOLÁRÍCH ČLÁKŮ AM1.5G Efficiency (%) Top Cell = SF Bottom Cell = Single Gap Dye Cell Assumptions: - detailed balance -1 Sun illumination - full absorption of incident solar light above 1.1 ev - optimal charge collection efficiency S 0 -T 1 Bandgap (ev) M. Hanna, A. J. ozik, J. Appl. Phys. 2006, 100,
28 PPP excitační energie O O O O O H H H H H H 4 S ΔE (ev) 3 2 T 2 T S 0
29 1,3-DIFEYLISOBEZOFURA MOOMER A DIMERY V PEVÉ FÁZI ~ 50% tripletu mechanismem SF (singlet fission) MOOMER V ROZTOKU 0% tripletu SLABĚ SPŘAŽEÉ DIMERY V EPOLÁRÍM ROZTOKU: 0% tripletu V POLÁRÍM ROZTOKU: ~10% tripletu mechanismem radikál kation radikál anion (nikoliv SF) SILĚ SPŘAŽEÝ DIMER V ROZTOKU ~3% tripletu mechanismem SF (energetický práh)
30 PŘEHLED výzkum vzdálenĕ cílený: molekulární rotor točí se, k ničemu není, ale třeba jednou bude? náhodný objev: bublina v molekulární kleci (nejspíš) kuriosita, avšak možná důležitá pro vysvĕtlení narkosy náhodný objev: velmi rozvĕtvený polymer bude k nĕčemu dobrý? výzkum témĕř užitý: štĕpení singletové excitace až mu lépe porozumíme, zlepšíme sluneční články? trochu zamyšlení nad vědou zdaa jakjiřídit? - všeho s mírou
31 SOUHR: CO JSME PROBRALI výzkum vzdálenĕ cílený: molekulární rotor točí se, k ničemu není, ale třeba jednou bude? náhodný objev: bublina v molekulární kleci (nejspíš) kuriosita, avšak možná důležitá pro vysvĕtlení narkosy náhodný objev: velmi rozvĕtvený polymer bude k nĕčemu dobrý? výzkum témĕř užitý: štĕpení singletové excitace až mu lépe porozumíme, zlepšíme sluneční články? trochu zamyšlení nad vědou zdaa jakjiřídit? všeho s mírou
32 KDO PRACOVAL T. Magnera D. Caskey M.-B. Mulcahy D. Horinek J. Vacek S. Koerbe K. Vyakaranam A. ozik V. Volkis R. Shoemaker J. Johnson I. Paci X. Chen A. Akdag G. Kottas
Umělá fotosyntéza. Michael Hagelberg. Tomáš Polívka, Ústav fyzikální biologie
Umělá fotosyntéza Michael Hagelberg Tomáš Polívka, Ústav fyzikální biologie Energetické požadavky společnosti Energetický rozdíl 14 TW, 2050 33 TW, 2100 Alternativy Fosilní paliva Jaderné štěpení Obnovitelné
Nanosystémy v katalýze
Nanosystémy v katalýze Nanosystémy Fullerenes C 60 22 cm 12,756 Km 0.7 nm 1.27 10 7 m 0.22 m 0.7 10-9 m 10 7 krát menší 10 9 krát menší 1 Stručná historie nanotechnologie ~ 0 Řekové a Římané používají
Ch - Stavba atomu, chemická vazba
Ch - Stavba atomu, chemická vazba Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl
ALKENY NENASYCENÉ UHLOVODÍKY
ALKENY NENASYCENÉ ULOVODÍKY 1 ALKENY - mají ve svých molekulách alespoň jednu dvojnou vazbu- C=C homologický vzorec : C n 2n názvy od alkanů zakončeny koncovkou en CYKLOALKENY - homologický vzorec : C
3. HYDROLOGICKÉ POMĚRY
Tunel Umiray Macua, Filipíny hydrogeologický monitoring Jitka Novotná1, Pavel Blaha2, Roman Duras3 1 GEOtest, a.s., Brno, Šmahova 112 novotna@geotest.cz 2 GEOtest, a.s., Brno, Šmahova 112 blaha@geotest.cz
MAKROMOLEKULÁRNÍ LÁTKY
MAKROMOLEKULÁRNÍ LÁTKY 1. Základní pojmy - makromolekulární látky = molekulové systémy složené z velkého počtu atomů, které jsou vázány chemickou vazbou do dlouhých řetězců - řetězce jsou tvořeny stavebními
Válec pístní tyče Normované válce ISO 15552, série TRB. Katalogová brožurka
ISO 15552, série TRB Katalogová brožurka 2 ISO 15552, série TRB Válec zakotvení Přípoje: G 1/8 - G 1/2 Dvojčinný S magnetickým pístem Tlumení: pneumaticky, nastavitelný Pístní tyč: Vnější závit Volitelně
Ing. Petr Porteš, Ph.D.
Teorie vozidel Akcelerační vlastnosti Ing. Petr Porteš, Ph.D. Akcelerační vlastnosti Výkon motoru Omezení přilnavostí pneumatik TEORIE VOZIDEL Akcelerační vlastnosti 2 Průběh točivého momentu je funkcí
Mechanika zemin I 3 Voda v zemině
Mechanika zemin I 3 Voda v zemině 1. Vliv vody na zeminy; kapilarita, bobtnání... 2. Proudění vody 3. Měření hydraulické vodivosti 4. Efektivní napětí MZ1_3 November 9, 2012 1 Vliv vody na zeminy DRUHY
JAK POMÁHÁ KVANTOVÁ CHEMIE SINGLETOVÉMU ŠTĚPENÍ ZVÝŠIT ÚČINNOST SLUNEČNÍCH ČLÁNKŮ
JAK POMÁHÁ KVANTOVÁ CHEMIE SINGLETOVÉMU ŠTĚPENÍ ZVÝŠIT ÚČINNOST SLUNEČNÍCH ČLÁNKŮ Tento článek je věnován k 65. narozeninám mému vzácnému příteli, Dr. Zdeňku Havlasovi, s kterým jsem měl to potěšení spolupracovat
LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm
LEKCE 7 Interpretace 13 C MR spekter Využití 2D experimentů ppm 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm Zpracování, výpočet a databáze MR spekter
Vyučující po spuštění prezentace může provádět výklad a zároveň vytvářet zápis. Výklad je doprovázen cvičeními k osvojení probírané tématiky.
Projekt: Příjemce: Tvořivá škola, registrační číslo projektu CZ.1.07/1.4.00/21.3505 Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Šablona: Sada:
Od vodn ní vymezení technických podmínek podle 156 odst. 1 písm. c) zákona. 137/2006 Sb., o ve ejných zakázkách
Název veejné zakázky: Dodávka systému pro mení a vyhodnocování vibraních mení Odvodnní vymezení technických podmínek podle 156 odst. 1 písm. c) zákona. 137/2006 Sb., o veejných zakázkách Technická podmínka:
PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011
Kód uchazeče:... Datum:... PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011 30 otázek maximum: 60 bodů čas: 60 minut 1. Napište názvy anorganických sloučenin: (4
( nositelné. Milan Švanda, Milan Polívka. X17NKA Návrh a konstrukce antén
Návrh a konstrukce antén Antény ny pro RFID a wearable ( nositelné é ) ) antény ny Milan Švanda, Milan Polívka Katedra elektromagnetického pole www.svandm1.elmag.org svandm1@fel.cvut.cz 624 / B2 Obsah
Pražská plošina Středolabská tabule. Benešovská pahorkatina. Hornosázavská pahorkatina
Pražská plošina Středolabská tabule Benešovská pahorkatina Hornosázavská pahorkatina Typ krajiny podle reliéfu Geologická mapa Povodí Jalového potoka Výškopis Geodetický bod Vrstevnice zdůrazněná Vrstevnice
Modul 02 - Přírodovědné předměty
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 - Přírodovědné předměty Hana Gajdušková Výskyt
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
MIKROVLNNÁ SPEKTROSKOPIE RADIKÁLU FCO 2. Lucie Kolesniková
MIKROVLÁ SPEKTROSKOPIE RADIKÁLU FCO 2 Lucie Kolesniková Ústav analytické chemie, Fakulta chemicko-inženýrská, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6 E-mail: lucie.kolesnikova@vscht.cz
Kvalitativní analýza - prvková. - organické
METODY - chemické MATERIÁLY - anorganické - organické CHEMICKÁ ANALÝZA ANORGANICKÉHO - iontové reakce ve vodných roztocích rychlý, jednoznačný a často kvantitativní průběh kationty, anionty CHEMICKÁ ANALÝZA
Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti
Registrační číslo projektu: CZ.1.07/1.4.00/21.2939 Název projektu: Investice do vzdělání - příslib do budoucnosti Číslo přílohy: VY_číslo šablony_inovace_číslo přílohy Autor Datum vytvoření vzdělávacího
Ústav organické chemie a technologie. Zajímavosti z našich laboratoří
Ústav organické chemie a technologie Fakulta chemicko-technologická Univerzita Pardubice 2013 Zajímavosti z našich laboratoří Miloš Sedlák Příběh první: Biomimetická mineralizace ěkteré přírodní biominerály
Princip magnetického záznamuznamu
Princip magnetického záznamuznamu Obrázky: IBM, Hitachi 1 Magnetické materiály (1) n I H = l B = μ H B l μ μ = μ μ 0 0 μ = 4π 10 r 7 2 [ N A ] n I Diamagnetické materiály: µ r < 1 (Au, Cu) Paramagnetické
PŘEVODOVKY PRO PASOVOU DOPRAVU...
OBSAH 1 PŘEVODOVKY PRO PASOVOU DOPRAVU... 3 1.1 OBECNÝ POPIS... 3 1.2 OZNAČOVÁNÍ PŘEVODOVEK... 4 1.3 VÝBĚR VELIKOSTI PŘEVODOVKY... 5 1.3.1 Základní metodika... 5 1.3.2 Hodnoty součinitele provozu SF...
Ě Ě Í Ř Í Í é ž Ť Ř Í ť Í é š Ž é Ď é Ž é ž ť Ž Ě é Ú Ž Í Ž é Ú Ý Ú ý ú Éó š š Ú ý ú ť Ž Í Ě Ú é é šť š š Ž Ž š š š šť š é é é é š š Ď é ž ž ď é Ř Á é ď é Í ž Í Á Á ž Íď é Ř ď ď é ž ďž ď ďž Ý é é š Í É
Organická chemie - úvod
rganická chemie - úvod Trocha historie Původní dělení hmoty: Neživá anorganická Živá organická Rozdělení chemie na organickou a anorganickou objevy a isolace látek z přírodních materiálů.w.scheele(1742-1786):
Klasifikace struktur
Klasifikace struktur typ vazby iontové, kovové, kovalentní, molekulové homodesmické x heterodesmické stechiometrie prvky, binární: X, X, m X n, ternární: m B k X n,... Title page symetrie prostorové grupy
Barva produkovaná vibracemi a rotacemi
Barva produkovaná vibracemi a rotacemi Hana Čechlovská Fakulta chemická Obor fyzikální a spotřební chemie Purkyňova 118 612 00 Brno Barva, která je produkována samotnými vibracemi je relativně mimořádná.
Server Internetu prostøednictvím slu eb (web, e-mail, pøenos souborù) poskytuje data. Na na í pracovní stanici Internet
Server Internetu prostøednictvím slu eb (web, e-mail, pøenos souborù) poskytuje data. Na na í pracovní stanici Internet
Financování SCLLD v jednotlivých letech podle specifických cílů OP
2017 osa oblast Plán financování - (v tis. Kč) toho podpora toho vlastní Ne PO 2 IP 2.3 SC 1 263,16 200,00 50,00 13,16 0,00 0,00 PO1 IP 7c SC 1.2 1052,63 800,00 200,00 52,63 0,00 0,00 PO2 IP 10 SC 2.4
1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton
varianta A řešení (správné odpovědi jsou podtrženy) 1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton 2. Sodný kation Na + vznikne, jestliže atom
Radiobiologický účinek záření. Helena Uhrová
Radiobiologický účinek záření Helena Uhrová Fáze účinku fyzikální fyzikálně chemická chemická biologická Fyzikální fáze Přenos energie na e Excitace molekul, ionizace Doba trvání 10-16 - 10-13 s Fyzikálně-chemická
Otázka: Atomy, molekuly, látky. Předmět: Chemie. Přidal(a): Jirka. Základní chemické pojmy. Hmota
Otázka: Atomy, molekuly, látky Předmět: Chemie Přidal(a): Jirka Základní chemické pojmy Hmota dualistický charakter (vlnový a částicový) všechny objekty a jevy, které existují kolem nás a působí přímo
Potenciometrie. Obr.1 Schema základního uspořádání elektrochemické cely pro potenciometrická měření
Potenciometrie 1.Definice Rovnovážná potenciometrie je analytickou metodou, při níž se analyt stanovuje ze změřeného napětí elektrochemického článku, tvořeného indikační elektrodou ponořenou do analyzovaného
Chloridová iontově selektivní elektroda
Chloridová iontově selektivní elektroda Produktové číslo: FU-ENCHL-A018A Chloridy jsou sloučeniny chloru s jiným prvkem, chlor v nich zaujímá podobu iontu Cl-. Jejich nejznámějším zástupcem je chlorid
ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA
Ústřední komise Chemické olympiády 49. ročník 2012/2013 ŠKOLNÍ KOLO kategorie B ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA KONTROLNÍ TEST ŠKOLNÍHO KOLA (60 BODŮ) ANORGANICKÁ CHEMIE 30 BODŮ Úloha 1 Titrační
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Alklany a cykloalkany Homologická řada alkanů Nerozvětvené alkany tvoří homologickou řadu obecného vzorce C n H 2n+2, kde n jsou malá celá čísla.
Výstupy - kompetence Téma - Učivo Průřezová témata,přesahy - pracuje bezpečně s vybranými dostupnými a běžně používanými Úvod do chemie
Vzdělávací oblast: Člověk a příroda Obor vzdělávací oblasti: Chemie Ročník: 8 Výstupy - kompetence Téma - Učivo Průřezová témata,přesahy - pracuje bezpečně s vybranými dostupnými a běžně používanými Úvod
Hardware 1. Které zařízení není umístěno na základní desce? A) Zpracovává obraz pro zobrazení na monitoru. C)
Hardware 1 okamžité ukončení práce činnosti celého je vždy součástí základní v PC Slouží k realizaci výpočtů. Zpracovává obraz pro zobrazení na monitoru. Slouží k ukládání údajů během práce Slouží k ukládání
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA ATMOSFÉRICKÉ A TOPOGRAFICKÉ KOREKCE DIGITÁLNÍHO OBRAZU ZE SYSTÉMU SPOT 5 V HORSKÝCH OBLASTECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA Hornicko-geologická fakulta Institut geoinformatiky ATMOSFÉRICKÉ A TOPOGRAFICKÉ KOREKCE DIGITÁLNÍHO OBRAZU ZE SYSTÉMU SPOT 5 V HORSKÝCH OBLASTECH příspěvek
Stanovení kreatininu v mase pomocí kapilární izotachoforézy
Stanovení kreatininu v mase pomocí kapilární izotachoforézy Úkol: Pomocí kapilární izotachoforézy určete, zda je v předloženém reálném vzorku (vařená šunka) obsažen kreatinin. 1. Teoretická část 1.1.Kreatinin
Molekulární dynamika vody a alkoholů
Molekulární dynamika vody a alkoholů Pavel Petrus Katedra fyziky, Univerzita J. E. Purkyně, Ústí nad Labem 10. týden 22.4.2010 Modely vody SPC SPC/E TIP4P TIP5P Modely alkoholů OPLS TraPPE Radiální distribuční
JÁDRO FILTRAÈNÍ MÉDIUM
Filtraèní patrony jsou konstruovány jak pro úpravu pitné vody, vody pro technologické úèely èi jiné kapaliny, tak pro nìkteré žíraviny užívané v laboratoøích a prùmyslu. Nejedná-li se o filtraci vody,
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica Richard Pastorek ph-metrické stanovení disociačních konstant komplexů v kyselé oblasti systému Cr 3+ ---
Program: Analýza kinematiky a dynamiky klikového mechanismu čtyřdobého spalovacího motoru
Program: Analýza kinematiky a dynamiky klikového mechanismu čtyřdobého spalovacího motoru Zadání: Pro předložený čtyřdobý jednoválcový zážehový motor proveďte výpočet silového zatížení klikového mechanismu
Oxidace a redukce. Objev kyslíku nový prvek, vyvrácení flogistonové teorie. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2
Oxidace a redukce Objev kyslíku nový prvek, vyvrácení flogistonové teorie Hoření = slučování s kyslíkem = oxidace 2 Mg + O 2 2 MgO S + O 2 SO 2 Lavoisier Redukce = odebrání kyslíku Fe 2 O 3 + 3 C 2 Fe
OBECNÁ CHEMIE František Zachoval CHEMICKÉ ROVNOVÁHY 1. Rovnovážný stav, rovnovážná konstanta a její odvození Dlouhou dobu se chemici domnívali, že jakákoliv chem.
Motory nové generace. 0,04-18,5 kw. Katalog K 02.1-0008 CZ
Motory nové generace 0,04-18,5 kw Katalog K 02.1-0008 CZ Nová øada asynchronních elektromotorù 1LA7 Od roku 1996 zaèala inovace výrobkù firmy Siemens Elektromotory s.r.o., závodù Mohelnice a Frenštát pod
Měření odporu spouště v1.0. návod k obsluze
Měření odporu spouště v1.0 návod k obsluze OBSAH: 1. ÚVOD A HARDWAROVÉ POŽADAVKY...3 1.1 ÚČEL PROGRAMU...3 1.2 HARDWAROVÉ A SOFTWAROVÉ POŽADAVKY...3 1.3 INSTALACE PROGRAMU...3 1.4 ODINSTALOVÁNÍ PROGRAMU...3
10 CHEMIE. 10.1 Charakteristika vyučovacího předmětu. 10.2 Vzdělávací obsah
10 CHEMIE 10.1 Charakteristika vyučovacího předmětu Obsahové vymezení Vyučovací předmět Chemie zpracovává vzdělávací obsah oboru Chemie vzdělávací oblasti Člověk a příroda. Vzdělávání v předmětu chemie
Příklady k semináři z organické chemie OCH/SOCHA. Doc. RNDr. Jakub Stýskala, Ph.D.
Příklady k semináři z organické chemie /SA Doc. RNDr. Jakub Stýskala, Ph.D. Příklady k procvičení 1. Které monochlorované deriváty vzniknou při radikálové chloraci následující sloučeniny. Který z nich
Uhlovodíky s trojnými vazbami. Alkyny
Uhlovodíky s trojnými vazbami alkyny právě jedna trojná vazba, necyklické... Obecné vlastnosti trojné vazby Skládá se z jedné vazby σ a dvou vazeb π. Učební text, Hb 2010 Maximální elektronová hustota
Studentské projekty FÚUK 2013/2014
Studentské projekty FÚUK 2013/2014 Měření propustnosti tenké ITO desky a kalibrace osvětlení Konzultant: Mgr. Jakub Zázvorka (zazvorka.jakub@gmail.com) Tenké filmy polovodičového materiálu ITO ( oxid india
Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata
Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Chemie Třída: tercie Očekávané výstupy Uvede příklady chemického děje a čím se zabývá chemie Rozliší tělesa a látky Rozpozná na příkladech fyzikální
Principy korekce aberací OS.
Inovace a zvýšení atraktivity studia optiky reg. c.: CZ.1.07/..00/07.089 Přednášky - Metody Návrhu Zobrazovacích Soustav SLO/MNZS Principy korekce aberací OS. Miroslav Palatka Tento projekt je spolufinancován
Voltametrie (laboratorní úloha)
Voltametrie (laboratorní úloha) Teorie: Voltametrie (přesněji volt-ampérometrie) je nejčastěji používaná elektrochemická metoda, kdy se na pracovní elektrodu (rtuť, platina, zlato, uhlík, amalgamy,...)
Pracovní list: Opakování učiva 8. ročníku
Pracovní list: Opakování učiva 8. ročníku Komentář ke hře: 1. Třída se rozdělí do čtyř skupin. Vždy spolu soupeří dvě skupiny a vítězné skupiny se pak utkají ve finále. 2. Každé z čísel skrývá otázku.
R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika
Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární
Tiziana Bruno, Gregor Adamczyk
Tiziana Bruno, Gregor Adamczyk Řeč těla Jak neverbálně působit na druhé a rozumět řeči těla p oradce ro praxi Ukázka knihy z internetového knihkupectví www.kosmas.cz Knihy edice Poradce pro praxi se věnují
20.2.2014 REKAPITULACE. Princip dálkoměrných měření GNSS
Princip dálkoměrných měření GNSS P r e z e n t a c e 2 GLOBÁLNÍ NAVIGAČNÍ A POLOHOVÉ SYSTÉMY David Vojtek Institut geoinformatiky Vysoká škola báňská Technická univerzita Ostrava Rekapitulace Kapitán a
ZS Purkynova Vyskov. Mgr. Jana Vašíèková / vasickova@zspurkynova.vyskov.cz Pøedmìt Chemie Roèník 9. Klíèová slova Uhlovodíky Oèekávaný výstup
Chemie Pøíspìvek pøidal Administrator Tuesday, 05 March 2013 Aktualizováno Tuesday, 25 June 2013 Názvosloví uhlovodíkù Významné anorganické kyseliny Významné oxidy Deriváty uhlovodíkù halogenderiváty Kyslíkaté
Kombinator(iál)ní chemie jako prostředek vývoje léčiv
Kombinator(iál)ní chemie jako prostředek vývoje léčiv doc. PharmDr. ldřich Farsa, PhD., 2012 Soudobý proces vývoje léčiv H X R1 H R2 H H R2 H Kombinatorní chemie Přírodní produkty R1 R3 R4 Cílové molekuly
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné
Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná
Od polarografie k elektrochemii na rozhraní dvou kapalin
Od polarografie k elektrochemii na rozhraní dvou kapalin Vladimír Mareček Ústav fyzikální chemie Jaroslava Heyrovského AV ČR 1. Počátky elektrochemie 2. Rtuťová kapková elektroda 3. Polarografie 4. Rozhraní
Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze
Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí a kvantitativní NMR NMR spektrum čisté látky je lineární kombinací spekter jejích jednotlivých
Polymerizace. Polytransformace
vznik makromolekuly Polymerizace Polytransformace Podmínky vzniku makromolekuly Podmínky vzniku makromolekuly 1) chemická podmínka Výchozí nízkomolekulární látka(y) musí být z pohledu polymerní reakce
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Periodická soustava prvků Chemické prvky V současné době známe 104 chemických prvků. Většina z nich se vyskytuje v přírodě. Jen malá část byla
12. Elektrochemie základní pojmy
Důležité veličiny Elektroda, článek Potenciometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Důležité veličiny proud I (ampér - A) náboj Q (coulomb - C) Q t 0 I dt napětí, potenciál
Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku.
Test pro 8. třídy A 1) Rozhodni, zda je správné tvrzení: Vzduch je homogenní směs. a) ano b) ne 2) Přiřaď k sobě: a) voda-olej A) suspenze b) křída ve vodě B) emulze c) vzduch C) aerosol 3) Vypočítej kolik
LABORATOŘE GEOLOGICKÝCH ÚSTAVŮ
LABORATOŘE GEOLOGICKÝCH ÚSTAVŮ UK PRAHA - PŘÍRODOVĚDECKÁ FAKULTA NABÍDKOVÝ LIST Externí- 2016 Obsah 1. BRUSÍRNA... 3 2. LABORATOŘ PLAZMOVÉ SPEKTROMETRIE (LAPS) - ICP MS, ICP MS LA, ICP OES... 4 2.1. ICP
2. Fotosensitizované reakce a jejich mechanismus. 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace
1. Úvod (proč jsou důled ležité) 2. Fotosensitizované reakce a jejich mechanismus 3. Fotodynamická terapie 4. Spontánní aggregace 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace Porfyriny
Struktura atomů a molekul
Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů
KOMPLEXOMETRIE C C H 2
Úloha č. 11 KOMPLEXOMETRIE Princip Při komplexotvorných reakcích vznikají komplexy sloučeniny, v nichž se k centrálnímu atomu nebo iontu vážou ligandy donor-akceptorovou (koordinační) vazbou. entrální
Elektrolýza Ch_022_Chemické reakce_elektrolýza Autor: Ing. Mariana Mrázková
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
ČŠ ž ž ň ž ž Ú Š ž ž ž Ú ň Š Ú ň ž Ů ť Š Šť Ů ž ž ž Š ž ž Ú Č Ú Ú Š Ú Ú ť Ú ž ž Čž Ú Ů Ú Ú Ů Ů ť Š ť ž Ů ž Č Š ž Č Č Š Ú ž Ú ž Ú ž ž Š Ů ť ž Ů ž ť ů ť ň Č Š Ť ť Š Ú Š Ú Š ť ž Č ů ů ů ť ů ů ů Š ť ť Á ň
Pracoviště: Kooperativa pojišťovna, a.s., Vienna Insurance Group, třída Míru 94, 530 02 Pardubice tel. 466 890 111, fax 466 890 302
/ & Kooperativa VIENNA INSURANCE GROUP ůinfouva byla schválenu Pmu městě Opočna roé»ta-qpa&a. ^ft. kr..7?,.,\^ 2?0>/'é>~ Pojistná smlouva č. 698 035 8123 pro pojištění odpovědnosti za újmu způsobenou provozem
Ch - Chemie - úvod VARIACE
Ch - Chemie - úvod Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen,
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Číslo projektu: Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo šablony: 26 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tematický celek: Anotace: CZ.1.07/1.5.00/3.010
Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan. Chemie obecná síla kyselin a zásad. Datum tvorby 11.12.2013
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Ročník Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie obecná síla kyselin a zásad 1. ročník Datum tvorby 11.12.2013
Autor: Rajsik www.nasprtej.cz Téma: Názvosloví anorganických sloučenin Ročník: 1. NÁZVOSLOVÍ Anorganických sloučenin
n - založena na oxidačních číslech Oxidační číslo NÁZVOSLOVÍ Anorganických sloučenin - římskými číslicemi, pravý horní index - nesloučené prvky a molekuly jednoho prvku mají oxidační číslo 0 (např. O 3,S
1. ročník Počet hodin
SOUSTAVY LÁTEK A JEJICH SLOŽENÍ rozdělení přírodních látek a vlastnosti chemických látek soustavy látek a jejich složení STAVBA ATOMU historie pohledu na atom složení a struktura atomu stavba atomu VELIČINY
(CD?,PMD?) InBand měření OSNR signálu DWDM. Jan Brouček, 8. 4. 2011. Praha, WDM Systems Summit 7.dubna 2011. InBand měření OSNR.
In Band měření OSNR signálu DWDM (CD?,PMD?) Jan Brouček, Praha, WDM Systems Summit 7.dubna 2011 InBand měření OSNR signálu DWDM témata A InBand měření OSNR B Měření CD, PMD C Měření tvaru signálu, oka
Organická chemie - úvod
rganická chemie - úvod Trocha historie Původní dělení hmoty: Neživá anorganická Živá organická Rozdělení chemie na organickou a anorganickou objevy a isolace látek z přírodních materiálů.w.scheele(1742-1786):
1 Tepelné kapacity krystalů
Kvantová a statistická fyzika 2 Termodynamika a statistická fyzika) 1 Tepelné kapacity krystalů Statistická fyzika dokáže vysvětlit tepelné kapacity látek a jejich teplotní závislosti alespoň tehdy, pokud
Elektrické etπzové kladkostroje
ABUCompact Informace o v robcích Technické údaje Je ábové systémy Pohneme v ím. Elektrické etπzové kladkostroje Rozmπrové v kresy ABUCompact GMC, GM2 GM6 Rozev ete prosím stránku Rozmπrové v kresy etπzov
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Ť š č Ť Á č Ě č ť Ť Ž č Ť Ž š č š Í č Ť Ť š š Ť Ť ž č ž ž Ť š č č ť ž Ž š č Ť Ž Ž š Ť Ť š ž ž č ž ž ž Ť č ň č š č č č Ť ž č ž Ť č ť šť Ť ž ž Í š č č Ť Í Ť š š č Č ž ž Ť Č š č Ť č Ť Í č š č č č Ť č č č
14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1
14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 S Á ČK Y NA PS Í E XK RE ME N TY SÁ ČK Y e xk re m en t. p o ti sk P ES C Sá čk y P ES C č er né,/ p ot is k/ 12 m y, 20 x2 7 +3 c m 8.8 10 bl ok
[2 ] o b c i, [3 ] [4 ]
M O R A V S K Á N Á R O D N Í O B E C o b ƒ a n s k é s d r u ž e n í z a l o ž e n o r o k u 1 9 8 5 J e t e l o v á 4 9 8 / 1 3, 6 4 4 0 0 B-S r no ob ' š i c e in f o @ z a m o r a v u. e u w w w. z
Syntetické kaučuky vlastnosti podobné jako přírodní kaučuk; nejč. polymery z 1,3- dienových monomerů, elastomery
ytetické kaučuky vlastosti podobé jako přírodí kaučuk; ejč. polymery z 1,3- dieových moomerů, elastomery Polybutadie (butadieový kaučuk, B) Výroba: polymerace 1,3-butadieu za použití stereoregulačích katalyzátorů
ELEKTROCHEMIE A KOROZE Ing. Jiří Vondrák, DrSc. ÚACH AV ČR
ELEKTROCHEMIE A KOROZE Ing. Jiří Vondrák, DrSc. ÚACH AV ČR Elektrochemie: chemické reakce vyvolané elektrickým proudem a naopak vznik elektrického proudu z chemických reakcí Historie: L. Galvani - žabí
Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče
Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace
Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1.
4 4 = 8 8 8 = 5 + 19 1 = 4 = 11 : 1 k > 0 k 4k x 1 x x k + (1 x) 4k = k x + 4 4x = x = x 1 x = 1 = : 1. v h h s 75 v 50 h s v v 50 s h 75 180 v h 90 v 50 h 180 90 50 = 40 s 65 v 80 60 80 80 65 v 50 s 50
Podmínky vzniku makromolekuly
Podmínky vzniku makromolekuly Vznik makromolekuly Podmínky vzniku makromolekuly 1) chemická podmínka Výchozí nízkomolekulární látka(y) musí být z pohledu polymerní reakce nejméně dvoufunkční 2) termodynamická