Katedra materiálového inženýrství a chemie ZÁKLADNÍ FYZIKÁLNÍ VLASTNOSTI STAVEBNÍCH MATERIÁLŮ VE VAZBĚ NA IZOLAČNÍ VLASTNOSTI
|
|
- Eduard Urban
- před 9 lety
- Počet zobrazení:
Transkript
1 Katedra materiálového inženýrství a chemie ZÁKLADNÍ FYZIKÁLNÍ VLASTNOSTI STAVEBNÍCH MATERIÁLŮ VE VAZBĚ NA IZOLAČNÍ VLASTNOSTI
2 Izolační vlastnosti (schopnosti) stavebních materiálů o o o o vnitřní struktura materiálů (struktura tvar, velikost, složení částic,textura uspořádání částic, vrstvení atd.) látkové složení materiálů typ materiálu porézní materiály, hutné materiály, homogenní a nehomogenní materiály, isotropní materiály, anisotropní materiály (ortotropní materiály vláknové kompozity) vliv vnějších podmínek na vlastnosti materiálů (teplota, vlhkost, relativní vlhkost, tlak) 2
3 Objemová hmotnost a hustota: o hustota a objemová hmotnost jsou jako fyzikální veličina definována poměrem elementární hmotnosti ku elementárnímu objemu dm ρ = [kg/m dv 3 ] pro homogenní materiál pak můžeme psát m ρ = = ρ v V kde ρ b je objemová hmotnost materiálu, definovaná poměrem celkové hmotnosti vzorku ku celkovému objemu vzorku včetně pórů a mezer (hustota matrice objem bez mezer) 3
4 o o o o o Stavební materiály však většinou za homogenní považovat nemůžeme. Jednak se u nich vyskytuje pórovitost, jednak bývají často tvořeny směsí několika komponent. Zpravidla se však u všech materiálů pro dostatečně velké objemy může uvažovat určitá objemová stejnorodost. Proto se v technické praxi pro charakteristiku daného materiálu zavádí veličina zvaná objemová hmotnost. Objemová hmotnost látek je závislá na hustotě základních složek daného materiálu, ale velmi silně i na jeho pórovitosti. U sypkých látek (stěrk, písek) či stlačitelných látek (minerální vlna, skelná vlna atd.) i na stlačitelnosti zhutnění (sypná hmotnost zahrnuje celkový objem zrnité soustavy včetně objemu mezi zrny) nutno zohlednit při návrhu a provádění konstrukcí 4
5 Např. u pórovitého kameniva můžeme tedy rozlišit celkem čtyři různé veličiny: o sypná hmotnost ve stavu volně sypaném (např. 400 kg/m 3 ) o sypná hmotnost ve stavu setřeseném (např. 600 kg/m 3 ) o o objemová hmotnost zrn (např. 850 kg/m 3 ) nezapočítá se objem mezer mezi zrny hustota zrn (např kg/m 3, dle typu kameniva) 5
6 Objemová hmotnost se bude také měnit s vlhkostí materiálu, neboť póry se budou plnit vodou a celková hmotnost, tedy i objemová hmotnost, bude narůstat. Objemová hmotnost je veličina důležitá pro charakteristiku stavebních materiálů nejenom z hlediska tíhových, ale i v souvislosti s řadou tepelně-fyzikálních veličin (tepelná vodivost, měrná tepelná kapacita) a akustických veličin. 6
7 7
8 8
9 Pórovitost: Pórovitost materiálu je definována jako poměr objemu dutin k celkovému objemu materiálu. V ψ = o [-], [%] V Otevřená pórovitost část celkové pórovitosti zahrnující tzv. otevřené póry, tj. póry spojené s povrchem látky či materiálu -otevřené póry mohou vznikat např. únikem plynů během výroby (lehčené materiály), postupným odpařováním (vysušováním) vody z materiálů (beton, omítky, keramika, cementové kompozity), záměrným provzdušněním (lehké betony) a napěněním materiálů (perlit) 9
10 Otevřené póry díky spojení s vnějším prostředím, ve které se materiál nachází, přímo ovlivňují: o navlhavost a vysychavost materiálů o schopnost difúze kapalin a plynů materiály o zvukově izolační vlastnosti (schopnost pohlcovat zvuk) o tepelně izolační vlastnosti (schopnost vést a akumulovat teplo) Uzavřená pórovitost část celkové pórovitosti zahrnující tzv. uzavřené póry (nespojené s povrchem neúčastní se transportních procesů) -uzavřené póry vznikají např. slinutím keramického střepu či hydratací cementového tmele (gelové póry) a neumožňují přijímat do objemu materiálu vzdušnou vlhkost 10
11 Pórovitost vybraných stavebních materiálů Materiál Pórovitost [% obj.] Cihly pálené Malta cementová 31 Malta vápenná 41 Sádra Písek 39 Drobný štěrk 42 Mramor 2-3 Pískovec 1-31 Vápenec 31 Břidlice 1,5 2,5 11
12 Snímky porézní struktury mšenského pískovce pořízené SEM 12
13 Z hlediska transportních procesů jsou porézní látky klasifikovány podle velikosti pórů distribuční křivky pórů. Velikost pórů ovlivňuje zaplňování pórů vodou či jinými látkami vlivem působení absorpčních a kapilárních sil. Rozdělení pórů podle velikosti submikroskopické (ultrakapilární) póry poloměr < 10-9 m, rozměry těchto pórů jsou porovnatelné s rozměry molekul, mohou se zde vytvářet řetězce vody a voda se nemůže těmito pór pohybovat 13
14 kapilární póry rozměr m, voda a plyny se zde chovají jako v soustavě kapilár, pohyb vody je vyvoláván povrchovým napětím (kapilárními silami) rozdělení kapilárních pórů: kapilární mikropóry: m kapilární přechodové póry: m kapilární makropóry: m makropóry a vzdušné póry již se neuplatňují kapilární síly neboť dutiny (póry) jsou příliš rozsáhlé a převládá vliv gravitace 14
15 VPore / cm 3 g dv/dř / c m nm g Ř / nm Příklad distribuční křivky pórů pro vzorek betonu převládají kapilární mikropóry 12
16 Mezerovitost (M): -vlastnost definující chování sypkých materiálů - vyjadřuje poměr objemu mezer mezi zrny k celkovému objemu určitého množství sypké látky M V V V m h p h p = = = 1 = 1 V V h objem vlastního materiálu bez všech dutin, pórů a mezer V p objem pórů V V ρ v objemová hmotnost ρ s sypná hmotnost V V V ρs ρ v 9
17 Zrnitost a měrný povrch: - jedna ze základních vlastností sypkých látek -poměrná skladba zrn jednotlivých velikostí Zrnitost ovlivňuje následující parametry: mezerovitost sypnou hmotnost propustnost stlačitelnost a další mechanické parametry tepelné a akustické vlastnosti vlastnosti výsledných kompozitních látek Měrný (specifický) povrch vyjadřuje celkovou povrchovou plochu všech zrn jednotkového množství látky. Rozměr je 14 udáván v [m 2 /kg].
18 Katedra materiálového inženýrství a chemie VLHKOSTNÍ VLASTNOSTI STAVEBNÍCH MATERIÁLŮ VE VAZBĚ NA IZOLAČNÍ VLASTNOSTI
19 Vlhkostní vlastnosti stavebních materiálů: - vlhkost pórovitých materiálů, nasákavost, vzlínavost, sorpční izotermy, retenční křivky vlhkosti, navlhavost, vysychavost, součinitel difúze, faktor difúzního odporu, ekvivalentní difúzní tloušťka materiálu, propustnost velmi důležité parametry, které mohou být při nesprávném použití materiálů v konstrukcích zdrojem poruch (vliv na hygienické parametry obytných prostor, na náklady na vytápění a na životnost a trvanlivost konstrukce) vlhkostní vlastnosti přímo ovlivňují další materiálové vlastnosti jako je objemová hmotnost, mrazuvzdornost, tepelná vodivost, měrná tepelná kapacita, pevnost, deformace atd. 19
20 přímá vazba k porézní struktuře materiálů (velikost a objem pórů), významné zejména pro následující typy materiálů: tepelně-izolační materiály keramické materiály betony, pórobetony omítky (sanační, tepelně-izolační) nátěry 20
21 Vlhkost pórovitých materiálů - pórovité stavební materiály se prakticky v suchém stavu nevyskytují i v případě, že jsou trvale zabudovány v konstrukcích Formy vlhkosti v materiálech volná voda (vyplňuje velké póry a dutiny) fyzikálně vázaná (van der Waalsovy síly) kapilární voda (tvoří výplň malých pórů a kapilár) adsorbovaná voda (vyplňuje nejmenší póry a pokrývá stěny porézního prostoru) chemicky vázaná voda (tvoří součást základní mřížky materiálů, např. jako voda krystalová, sádra vysoušení, anhydrit) 21
22 Rozdělení vlhkosti v materiálu podle zdroje vlhkosti vlhkost výrobní (technologická, počáteční), dána mokrými procesy při výrobě materiálu vlhkost zemní transportována do materiálu na principu kapilárního vzlínání (významná v objektech bez horizontální izolace nebo s nefunkční hydroizolací) sorpční vlhkost přijímána materiály z okolního vlhkého vzduchu zkondenzovaná voda, která se sráží jak na povrchu tak uvnitř materiálu (konstrukcí) vodní páry z exteriérového vzduchu, vodní páry prostupující konstrukcemi obvodových plášťů, vodní páry z interiéru vstupující do konstrukce provozní vlhkost závislá na typu využití prostorů, vytápění a větrání (chladící haly, toalety, mokré průmyslové provozy, atd.) 22
23 Vlhkost z pohledu jejího časového vývoje -vlhkost se mění nejen během výroby, ale i po celou dobu životnosti materiálu či konstrukce výrobní vlhkost po krátkém čase (v případě mokrých výrobních procesů) významně klesá skladovací vlhkost ovlivňuje způsob následného zpracování materiálu trvalá vlhkost trvalá vlhkost je charakteristická pro materiály zabudované do konstrukce kritická vlhkost maximální přípustná vlhkost materiálu zabudovaného do konstrukce, po překročení této hodnoty materiál podstatně mění své vlastnosti (pevnost, objem, tepelnou vodivost, chemické vlastnosti apod.) do té míry, že jeho další použití je nevhodné a nebezpečné 23
24 24
25 Vlhkost veličiny, základní vztahy Hmotnostní vlhkost w h = m w m d m d mk 100% = 100% m d m w hmotnost vlhkého materiálu [kg, g] m d hmotnost suchého materiálu [kg, g] m k hmotnost kapaliny [kg, g] w h hmotnostní vlhkost [%hm.] 25
26 Objemová vlhkost V w objem volné vody [m 3 ] V d objem suchého materiálu [m 3 ] ρ v hustota vody [kgm -3 ] ρ d objemová hmotnost suchého materiálu [kgm -3 ] w v Vw ( mw md) wv = 100% obj. = 100% obj. = V ρ V d w d whρ d = 100% obj. ρ w objemová vlhkost [% obj.] 26
27 Transport vlhkosti o sorpcí vodní páry o difúzí vodní páry o kapilárním vedením vlhkostní vodivostí Sorpce vlhkosti -přijímání vlhkosti pohlcováním vodní páry ze vzduchu adsorpce způsobena mezimolekulárními van der Waalsovými silami, kterými se navzájem přitahují molekuly pevných látek a vodní páry, adsorpce vede ke vzniku molekulárních vrstev vodní páry na stěnách pórů absorpce kapalná nebo plynná fáze se vstřebává difúzí a vedením vlhkosti dovnitř tuhé fáze chemisorpce uplatnění chemických vazeb vody a tuhé 27 fáze materiálu
28 - rovnovážná sorpční vlhkost materiál nevykazuje v čase přírůstek ani úbytek vlhkosti -hygroskopická vlhkost vzniká v materiálu v případě, že okolní vzduch je plně nasycen vodními parami (maximální rovnovážná sorpční vlhkost) Stanovení sorpční izotermy parametr akumulace plynné vlhkosti -vyjadřuje závislost mezi obsahem vlhkosti v materiálu a relativní vlhkostí -sorpční proces má dvě fáze: 1. povrchová adsorpce při nižších hodnotách relativní vlhkosti 2. kapilární kondenzace relativní vlhkost více než 40%, u pórů o rozměru 2 50nm (Thomson-Lord Kelvin) 28
29 u vac III Vakuová nasákavost u cap II Kapilární nasákavost I 95% Hygroskopická vlhkost u 2 u 1 Monomolekulární adsorpce Multimolekulární adsorpce Kapilární kondenzace 29
30 Schéma měření sorpčních izoterem 30
31 Solný roztok Teplota/Relativní vlhkost 20 C 23 C 25 C Počet referencí Silica gel LiCl 0.113± ± ± ,3, MgCl 2.6H 2 O ± ± ± ,2,3,4 K 2 CO NaNO ,3 NaCl ± ± ± ,2, NH 4 Cl ± ± ± KCl ± ± ± , KNO K 2 Cr 2 O K 2 SO Příklady roztoků solí pro simulaci specifických hodnot relativní vlhkosti 31
32 0,1 0,08 BRI AACI CML u[kg kg -1 ] 0,06 0,04 0, ,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 f[-] Sorpční izoterma pálené cihly, pórobetonu a opuky 32
33 Navlhavost a vysýchavost - přímo souvisí se sorpční schopností materiálů - navlhavost představuje v podstatě sorpční vlhkost, kterou materiál přijímají z vlhkého vzduchu - proces pohlcování vodní páry probíhá až do rovnovážného stavu vlhkosti materiálu, přičemž rovnovážná sorpční vlhkost je závislá teplotě a relativní vlhkosti vzduchu a na barometrickém tlaku -v případě, že dochází k poklesu vlhkosti okolního prostředí materiálu a parciální tlak vodní páry v materiálu je vyšší, nastává desorpce (vysychavost) -obě tyto veličiny je možné vyjádřit hmotnostně nebo objemově a výpočet lze provést dle stejných vztahů jako pro výpočet hmotnostní a objemové vlhkosti - tyto vlastnosti opět závisí na pórovitosti materiálu a na velikosti a tvaru pórů 33
34 Retenční křivka vlhkosti - akumulační parametr kapalné vlhkosti - slouží k popisu akumulace vlhkosti v nadhygroskopické oblasti (transport kapalné vlhkosti je dominantní složka při transportu vlhkosti - definuje závislost mezi obsahem vlhkosti v materiálu a kapilárním tlakem Mikro póry Makro póry Průměr pórů [m] Kapilární tlak [bar] Sorpční izoterma Relativní vlhkost [-] Distribuce pórů Retenční křivka 34
35 Hygroskopická vlhkost Nadhygroskopická vlhkost ϕ [-] p [Pa] 2.95E E E E E E+03 35
36 3 Moisture content [kg kg -1 ] , Suction [bar] Retenční křivka materiálu na bázi kalcium silikátu 36
37 Difúze vlhkosti (kapalné, plynné) -schopnost pronikání molekul plynů, páry a kapalin do porézního prostoru materiálů -k difúzi vodní páry dochází tehdy, pokud materiál odděluje dvě prostředí mezi nimiž je rozdíl částečných tlaků vodní páry -difúze probíhá z místa s vyšším tlakem do místa nižšího parciálního tlaku vodní páry - k difúzi dochází v kapilárách, které mají průměr větší než 10-7 m, protože v těchto kapilárách nedochází ke kapilární kondenzaci 37
38 Veličiny používané k hodnocení difúzních vlastností stavebních materiálů: součinitel difúze faktor difúzního odporu ekvivalentní součinitel difúze (nehomogenní materiály) ekvivalentní faktor difúzního odporu (nehomogenní materiály) ekvivalentní difúzní tloušťka materiálu schopnost materiálu propouštět vodní páru difúzí v závislosti na jeho tloušťce 38
39 Materiály u kterých je nutné znát jejich difúzní vlastnosti materiály bránící (či limitující) pronikání vodní páry např. do základových a střešních konstrukcí (parozábrany, hydroizolační materiály) materiály současně bránící pronikání vodní páry a plynů z podloží do vnitřního prostoru staveb (protiradonové fólie) materiály pro sanace vlhkého zdiva (např. sanační omítky, které umožňují odvod vlhkosti z konstrukcí systémem pórů materiály povrchových úprav konstrukcí (nátěrové systémy) 39
40 Součinitel difúze δ součinitel difúzní vodivosti, součinitel propustnosti pro vodní páru [s], [kgm -1 s -1 Pa -1 ] -vyjadřuje schopnost materiálu propouštět vodní páru difúzí - je závislý na teplotě (se vzrůstem teploty stoupá) - závislý na rozdílu relativních vlhkostí - vlhkosti (se vzrůstající vlhkostí se zmenšuje) - množství, velikosti, otevřenosti či uzavřenosti pórů a na jejich vzájemné propojenosti -určení pomocí miskové metody dle ČSN , , (Měření difúze vodních par stavebních materiálů a konstrukcí při teplotním spádu platnost 01/ /2006 zrušena bez náhrady) δ = S Δm d τ Δ p p δ je součinitel propustnosti pro vodní páru [s] Δm je množství vodní páry prodifundované vzorkem [kg] d je tloušťka vzorku [m] S je plocha vzorku [m2] τ časový interval korespondující s Δm [s] Δp p rozdíl parciálních tlaků vodní páry změřený ve vzduchu nad a pod povrchem vzorku [Pa] 40
41 Miska s umístěným vzorkem Realizace experimentu v klimatické komoře 41
42 Faktor difúzního odporu μ [-] -vyjadřuje schopnost materiálů propouštět vodní páru - udává, kolikrát větší difúzní odpor klade určitá látka v porovnání se stejně tlustou vrstvou vzduchu o stejné teplotě - prakticky není ovlivněn druhem difundujícího plynu vázán pouze na kapilárně pórovitou strukturu materiálu a jeho aktuálním stavem 1 μ = N δ δ součinitel propustnosti pro vodní páru [s] μ faktor difúzního odporu [-] N přibližná hodnota difúzního odporu vzduchu [s -1 ] závisející na teplotě 42
43 Ekvivalentní difúzní tloušťka materiálu r d [m] - závislá na geometrii (tloušťce) materiálu -používá se hlavně k vyjádření difúzních vlastností povrchový úprav sanačních omítek, nátěrových systémů apod. - fyzikálně představuje vrstvu vzduchu, která by kladla difundujícímu plynu stejný odpor, jako deska daného materiálu r = μ d d d tloušťka materiálu [m] μfaktor difúzního odporu [-] Difúzní odpor materiálu R d [ms -1 ] - v tepelně-technických výpočtech ovlivní množství zkondenzované vodní páry (bilance zkondenzované vlhkosti) R d = μ d N = r d N 43
44 ČSN EN ( ) Stavební materiály a výrobky - Tepelně vlhkostní vlastnosti - Tabulkové návrhové hodnoty Uvádí obecné tabulkové hodnoty základních tepelně vlhkostních vlastností materiálů používaných ve stavebnictví. Rozlišuje se mezi deklarovanou hodnotou (odvozenou z naměřených údajů za referenčních tepelných a vlhkostních podmínek, podle daného způsobu statistického zpracování) a hodnotou návrhovou, která se použije ve výpočtech při zabudování materiálu do stavební konstrukce za běžných podmínek. Hodnoty jsou odvozeny v souladu s ČSN EN ISO Tab 1 Běžné stavební materiály - základní tepelné veličiny Tab 2 Typická vlhkost materiálů při referenčních podmínkách a odpovídající převodní součinitele, kterými se převádí hodnoty získané za jednoho souboru okrajových podmínek na jiný soubor okrajových podmínek. Tab 3 Hodnoty ekvivalentní difúzní tloušťky pro foliové materiály a nátěry 43
45 45
46 46
47 48
48 Transport kapalné vlhkosti - difúze, kapilární vedení, vlhkostní vodivost - nejjednodušší možností jak popsat transport kapalné vody porézní strukturou materiálu je stanovení absorpčního koeficientu pro vodu A [kg m -2 s -1/2 ] ze vztahu I=A t 1/2 - kde I je sorptivita a udává celkové množství vody na jednotku plochy [kg m -2 ], která je v přímém kontaktu s vodu, t je čas po který je studovaný vzorek v kontaktu s vodou [s]. 48
49 w cap.h second stage inflow (kg/m²) A (kg/m²s 1/2 ) first stage square root of time (s 1/2 ) 49
50 Absorpční koeficient pro vodu nám však podává informace pouze o vlhkostním toku, ale neříká nám nic o distribuci vlhkosti v materiálu - z tohoto důvodu transport kapalné vlhkosti popíšeme následovně: vlhkostní tok: κ je součinitel vlhkostní vodivosti [m 2 s -1 ] - j vlhkostní tok [kg m -2 s -1 ] ρ s hustota matrice -w h hmotnostní vlhkost s w h Přímou aplikací rovnice pro výpočet vlhkostního toku dostaneme vztah pro průměrnou hodnotu součinitele vlhkostní vodivosti (Kumaran, 1994) - kde w sat je nasycený obsah vlhkosti (kapilární) r j = ρ κ κ A w sat 2 50
51 Inflow [kg m -2 ] MU DUs DUh Square root of time [s 1/2 ] Křivka nasákavosti minerální vlny typu MU a Dus, Duh (Rockwool a.s.) 51
52 40 30 Inflow [kg m -2 ] CSI CSII CSIII CSIV Square root of time [s 1/2 ] Křivka nasákavosti materiálu na bázi kalcium silikátu 52
53 Vzorek m 0 S w sat Α κ [kg] [m 2 ] [kg m -3 ] [kg m -2 s -1/2 ] [m 2 s -1 ] E E E E E E E E E-08 x E-08 Stanovení součinitele absorpce pro vodu a součinitele vlhkostní vodivosti minerální vlny typu MU 53
54 - podrobněji lze transport kapalné vlhkosti popsat pomocí nelineární difúzní rovnice w t = div ( κ ( w) grad w) -součinitel vlhkostní vodivosti je zaveden jako funkce obsahu vlhkosti -určíme na základě inverzní analýzy vlhkostních profilů, které stanovíme v rámci jednorozměrných experimentů (Lykov, 1958) - obsah vlhkosti metody přímé, nepřímé (TDR, NMR, odporové senzory, kapacitní senzory) 54
55 0.8 hmotnostní vlhkost [kg/kg] s 16500s 20100s s 30900s 34500s vzdálenost [m] Profily vlhkosti pro vzorek pórobetonu 55
56 1.00E-06 vlhkostní vodivost [m 2 s -1 ] 1.00E E-08 Matanov a metoda Metoda dv ojné integrace Diferenční metoda Gradientov á metoda 1.00E hmotnostní vlhkost [kg/kg] Součinitel vlhkostní vodivosti pórobetonu 56
57 Nasákavost maximální nasákavost - maximální množství vlhkosti, které v materiálu může být obsaženo - udává se buď její hmotnostní nebo objemová hodnota - je definována buď po jisté době ponoření vzorku do vody (kapaliny) např. po 1 hod., 24 hod., atd. nebo svou maximální hodnotou, kdy všechny otevřené póry materiálu jsou již vyplněny vodou (závisí na principu měření kapilární nasákavost, vakuová nasákavost, atd.) - nasákavost objemová se může pohybovat v rozsahu 0-100% - nasákavost hmotnostní může u materiálů lehčích než voda hodnotu 100% značně překročit 57
58 Materiál Hmotnostní nasákavost % Objemová nasákavost % Dřevo Ocel Cihly plné, pálené Beton hutný Pórobeton Pěnový polystyren < 7 Nasákavost vybraných stavebních materiálů. 58
59 Vzlínavost (kapilarita), kapilární vedení vlhkosti - vlastnost pórovitých materiálů, která se projevuje při jejich částečném ponoření do kapaliny - charakteristická pro vodou smáčivé materiály, což je naprostá většina stavebních látek -při kontaktu otevřených pórů s vodou dochází k nasákávání vody vlivem kapilárních a sorpčních sil - materiály s většími póry nasákávají rychleji, ale výška vzlinutí je nízká - jemně pórovité materiály sají vodu pomaleji, avšak vystupuje podstatně výše - vzlínající vlhkost je nejčastější způsob vlhnutí konstrukcí vystavených působení zemní vlhkosti 59
60 -vzlínaní vody lze zjednodušeně popsat pomocí mechanismu kapilární elevace charakterizována rozdílem výšky hladiny kapaliny v kapiláře proti úrovni hladiny v okolí - vyvoláno kapilárními silami mezi molekulami kapaliny a povrchem pevné látky (povrchové napětí kapaliny způsobuje pohyb sloupce kapaliny ve směru výslednice sil) - pro maximální výšku vzlínání vlhkosti platí: σ povrchové napětí kapaliny [N/m] θ úhel smáčení mezi kapalinou a stěnou kapiláry [ ] r poloměr kapiláry [m] ρ objemová hmotnost kapaliny [kg/m 3 ] g gravitační zrychlení [m/s 2 ] h 2 σ cosθ = r ρ g 60
61 - pro smáčivé kapaliny se cosθ blíží 1, přičemž voda má povrchové napětí cca N/m - vztah pro výpočet maximální výšky vzlínání pro vodu můžeme tedy zjednodušit na formu h = [cm] r Závislost povrchového napětí vody na teplotě -střední průměr rozměru pórů v běžném cihelném zdivu se pohybuje kolem hodnoty 10-5 m odpovídá výška vzlínání vlhkosti cca 1.49 m (tuto hodnotu potvrzuje i praxe, neboť velká část starších objektů je zavlhčena do výšky 1,5 m) 61
62 - jsou-li stěny kapilár pokryty látkami, které ztěžují nebo zabraňují smáčení, změní se odpovídajícím způsobem i úhel smáčení - je-li úhel smáčení θ > 90 dostaneme zápornou výšku vzlínání vzniká tzv. kapilární deprese (hydrofobita materiálu) 62
63 - vzlínání je dynamický jev, u něhož není rozhodující pouze kapilární výška, ale také rychlost s jakou se voda odpařuje a čas potřebný k dosažení kapilární výšky h -rychlost vzlínání: η viskozita kapaliny v = r σ cosθ 4 η h -čas k dosažení výšky h: t 2 2 η h = r σ cosθ Transport vlhkosti vzlínáním se projevuje u stavebních materiálů s poloměrem pórů od 10-7 do 10-4 m (největší transport pro poloměr pórů 10-5 m) 63
64 - voda stoupá kapilárou, ale nepronikne pře póry velkého průměru, neboť kapilární zdvih je menší než výška kapiláry transport vlhkosti se však nezastaví voda se na konci kapiláry odpaří a difunduje k protější stěně, kde pára opět kondenzuje a v tekutém stavu vzlíná kapilárami k dalšímu póru - mimo volné vody vzlíná po stěnách kapilár také vrstva pevně vázané vody v tloušťce několika molekul na povrchu pórů tvoří film, který má zcela odlišné vlastnosti než volná voda (nemrzne při 0 C, nelze ji zcela odpařit) 64
Katedra materiálového inženýrství a chemie MATERIÁLŮ VE VAZBĚ NA IZOLAČNÍ VLASTNOSTI
Katedra materiálového inženýrství a chemie ZÁKLADNÍ FYZIKÁLNÍ VLASTNOSTI STAVEBNÍCH MATERIÁLŮ VE VAZBĚ NA IZOLAČNÍ VLASTNOSTI Izolační vlastnosti (schopnosti) stavebních materiálů o vnitřní struktura materiálů
Tepelně vlhkostní mikroklima. Vlhkost v budovách
Tepelně vlhkostní mikroklima Vlhkost v budovách Zdroje vodní páry stavební vlhkost - vodní pára vázaná v materiálech v důsledku mokrých technologických procesů (chemicky nebo fyzikálně vázaná) zemní vlhkost
Metodika stanovující technické požadavky pro přípravu novostaveb k provizornímu ukrytí
Metodika stanovující technické požadavky pro přípravu novostaveb k provizornímu ukrytí Název projektu: Improvizované ukrytí, varování a informování obyvatelstva v prostorech staveb pro shromažďování většího
OBSAH ŠKOLENÍ. Internet DEK netdekwifi
OBSAH ŠKOLENÍ 1) základy stavební tepelné techniky pro správné posuzování skladeb 2) samotné školení práce v aplikaci TEPELNÁ TECHNIKA 1D Internet DEK netdekwifi 1 Základy TEPELNÉ OCHRANY BUDOV 2 Legislativa
Mendelova zemědělská a lesnická univerzita v Brně
Mendelova zemědělská a lesnická univerzita v Brně Bobtnání dřeva Fyzikální vlastnosti dřeva Protokol č.3 Vypracoval: Pavel Lauko Datum cvičení: 24.9.2002 Obor: DI Datum vyprac.: 10.12.02 Ročník: 2. Skupina:
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport kapalné vody
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport kapalné vody Transport vody porézním prostředím: Souč. tepelné vodivosti vzduchu: = 0,024-0,031 W/mK Souč. tepelné vodivosti izolantů: = cca
VLASTNOSTI STAVEBNÍCH HMOT VE VZTAHU K JEJICH STRUKTUŘE II
VLASTNOSTI STAVEBNÍCH HMOT VE VZTAHU K JEJICH STRUKTUŘE II K123 MAIN Materiálové inženýrství, pavlikz@fsv.cvut.cz K123 MAIN Materiálové inženýrství Navlhavost a vysýchavost -přímo souvisí se sorpční schopností
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry TRANSPORT VODNÍ PÁRY PORÉZNÍM PROSTŘEDÍM: Ve vzduchu obsažená vodní pára samovolně difunduje do míst s nižším parciálním tlakem až
LEPENÉ SPOJE. 1, Podstata lepícího procesu
LEPENÉ SPOJE Nárůst požadavků na technickou úroveň konstrukcí se projevuje v poslední době intenzivně i v oblasti spojování materiálů, kde lepení je často jedinou spojovací metodou, která nenarušuje vlastnosti
Stavební fyzika. Železobeton/železobeton. Stavební fyzika. stavební fyzika. TI Schöck Isokorb /CZ/2015.1/duben
Stavební fyzika Základní údaje k prvkům Schöck Isokorb Železobeton/železobeton Stavební fyzika 149 Stavební fyzika Tepelné mosty Teplota rosného bodu Teplota rosného bodu θ τ představuje takovou teplotu,
Materiály charakteristiky potř ebné pro navrhování
2 Materiály charakteristiky potřebné pro navrhování 2.1 Úvod Zdivo je vzhledem k velkému množství druhů a tvarů zdicích prvků (cihel, tvárnic) velmi různorodý stavební materiál s rozdílnými užitnými vlastnostmi,
3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice
3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice I Základní vztahy a definice iltrace je jedna z metod dělení heterogenních směsí pevná fáze tekutina. Směs prochází pórovitým materiálem
Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci
TRANSPORTNÍ MECHANISMY Transport látek z vnějšího prostředí do buňky a naopak se může uskutečňovat dvěma cestami - aktivním a pasivním transportem. Pasivním transportem rozumíme přenos látek ve směru energetického
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
Základní vlastnosti stavebních materiálů
Základní vlastnosti stavebních materiálů Základní vlastnosti stavebních materiálů chemické závisejí na chemickém složení materiálu zjišťuje se působení na jiné hmoty zkoumá se vliv na životní prostředí
Mechanika zemin I 3 Voda v zemině
Mechanika zemin I 3 Voda v zemině 1. Vliv vody na zeminy; kapilarita, bobtnání... 2. Proudění vody 3. Měření hydraulické vodivosti 4. Efektivní napětí MZ1_3 November 9, 2012 1 Vliv vody na zeminy DRUHY
Malta je podobný materiál jako beton, liší se však velikostí horní frakce plniva (zpravidla max. 4 mm).
Malta je podobný materiál jako beton, liší se však velikostí horní frakce plniva (zpravidla max. 4 mm). Malta je tvořena plnivem, pojivem a vodou a přísadami. Malta tvrdne hydraulicky, teplem, vysycháním
Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry
MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický
STAVEBNÍ LÁTKY. Definice ČSN EN 206 1. Beton I. Ing. Lubomír Vítek. Ústav stavebního zkušebnictví Středisko radiační defektoskopie
Ústav stavebního zkušebnictví Středisko radiační defektoskopie STVEBNÍ LÁTKY Beton I. Ing. Lubomír Vítek Definice ČSN EN 206 1 Beton je materiál ze směsi cementu, hrubého a drobného kameniva a vody, s
STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) BETON
JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) BETON umělé stavivo vytvořené ze směsi drobného a hrubého kameniva a vhodného pojiva s možným obsahem různých přísad a příměsí
Základní vlastnosti. cementotřískových desek CETRIS 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8. Základní vlastnosti
Základní vlastnosti 3 Základní vlastnosti Lineární roztažnost Zátěžové tabulky Tepelně technické vlastnosti Zvukově izolační vlastnosti Parapropustnost Požární vlastnosti Odolnost desky vůči blokovému
MATERIÁLY PRO ZDĚNÍ Extrudovaný polystyrén, expandovaný perlit
MATERIÁLY PRO ZDĚNÍ Extrudovaný polystyrén, expandovaný perlit extrudovaný polystyrén XPS Při dosavadním způsobu montáže okenních rámů, nebo zárubní do zdiva, vzniká u tohoto detailu tepelný most. Pro
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE VLASTNOSTI REÁLNÝCH STAVEBNÍCH HMOT
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE VLASTNOSTI REÁLNÝCH STAVEBNÍCH HMOT Vlastnosti stavebních hmot úvod, shrnutí základní stavební jednotkou látek jsou atomy hmotné částice o hmotnosti 10-22 10-24
Pevnostní třídy Pevnostní třídy udávají nejnižší pevnost daných cihel v tlaku
1 Pevnost v tlaku Pevnost v tlaku je zatížení na mezi pevnosti vztažené na celou ložnou plochu (tlačená plocha průřezu včetně děrování). Zkoušky a zařazení cihel do pevnostních tříd se uskutečňují na základě
FORARCH 2015 Stavba svépomocí 19.9.2015
Cihly plněné vatou Co se stane když do cihly naprší? FORARCH 2015 Stavba svépomocí 19.9.2015 Ing. Robert Blecha, technický poradce 724 030 468, robert.blecha@wienerberger.com Obsah: Cihla T Profi Vlastnosti
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry Transport vodní páry porézním prostředím: Tepelná vodivost vzduchu: = 0,0262 W m -1 K -1 Tepelná vodivost izolantů: = cca 0,04 W
5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu
Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství
Jihočeská univerzita v Českých Budějovicích. Měření tepelně technických vlastností stavebních materiálů a konstrukcí
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta - Katedra fyziky Měření tepelně technických vlastností stavebních materiálů a konstrukcí Diplomová práce Vedoucí práce: doc. PaedDr. Petr
Řešení pro cihelné zdivo. Navrhujeme nízkoenergetický a pasivní dům
Řešení pro cihelné zdivo Navrhujeme nízkoenergetický a pasivní dům Řešení pro cihelné zdivo Úvod Nízkoenergetický a pasivní cihlový dům Porotherm Moderní dům s ověřenými vlastnostmi Při navrhování i realizaci
F- 4 TEPELNÁ TECHNIKA
F- 4 TEPELNÁ TECHNIKA Obsah: 1. Úvod 2. Popis objektu 3. Normové požadavky na tepelně technické vlastnosti obvodových konstrukcí 3.1. Součinitel prostupu tepla 3.2. Nejnižší vnitřní povrchová teplota 3.3.
Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA
Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA o Anotace a cíl předmětu: návrh stavebních konstrukcí - kromě statické funkce důležité zohlednit nároky na vnitřní pohodu uživatelů
Akumulace tepla do vody. Havlíčkův Brod
Akumulace tepla do vody Havlíčkův Brod Proč a kdy potřebujeme akumulovat energii? Období přebytku /možnosti výroby/ energie Přenos v čase Období nedostatku /potřeby/ energie Akumulace napomáhá srovnat
1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou.
1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. Z hlediska použitelnosti kovů v technické praxi je obvyklé dělení
11. Omítání, lepení obkladů a spárování
11. Omítání, lepení obkladů a spárování Omítání, lepení obkladů a spárování 11.1 Omítání ve vnitřním prostředí Pro tyto omítky platí EN 998-1 Specifikace malt pro zdivo Část 1: Malty pro vnitřní a vnější
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN - Základní materiálové parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN - Základní materiálové parametry Hustota vs. objemová hmotnost - V případě neporézních materiálů (kovy, ) je hustota rovná objemové hmotnosti - V případě
TECHNICKÉ INFORMACE SCHÖCK NOVOMUR / NOVOMUR LIGHT
TECHNICKÉ INFORMACE SCHÖCK NOVOMUR / NOVOMUR LIGHT ZÁŘÍ 2009 SCHÖCK NOVOMUR Obsah SCHÖCK NOVOMUR Strana Zastoupení a poradenský servis............................................................ 2 Stavební
Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA
YCHS, XCHS I. Úvod: plán přednášek a cvičení, podmínky udělení zápočtu a zkoušky. Základní pojmy: jednotky a veličiny, základy chemie. Stavba atomu a chemická vazba. Skupenství látek, chemické reakce,
Základy pedologie a ochrana půdy
Základy pedologie a ochrana půdy 5. přednáška VODA V PŮDĚ Půdní voda = veškerá voda vyskytující se trvale nebo dočasně v půdním profilu (kapalná, pevná, plynná fáze) vztah k půdotvorným procesům a k vegetaci
COBRAPEX TRUBKA S KYSLÍKOVOU BARIÉROU
COBRAPEX TRUBKA S KYSLÍKOVOU BARIÉROU COBRAPEX TRUBKA S KYSLÍK. BARIÉROU 2.1. COBRATEX TRUBKA COBRAPEX trubka s EVOH (ethylen vinyl alkohol) kyslíkovou bariérou z vysokohustotního polyethylenu síťovaného
PŘEVISLÉ A USTUPUJÍCÍ KONSTRUKCE
PŘEVISLÉ A USTUPUJÍCÍ KONSTRUKCE Vodorovné nosné konstrukce Rozdělení z funkčního hlediska na konstrukce: A/ Stropní rozdělují budovu po výšce, B/ Převislé - římsy, balkony, arkýře, apsidy, pavlače apod.,
Základní vlastnosti stavebních materiálů
Základní vlastnosti stavebních materiálů Měrná hmotnost (hustota) hmotnost objemové jednotky látky bez dutin a pórů m V h g / cm 3 kg/m 3 V h objem tuhé fáze Objemová hmotnost hmotnost objemové jednotky
Bezkontaktní fasády (klasické lepené) Rozdíl mezi odvětranou a neodvětranou fasádou
Bezkontaktní fasády (klasické lepené) Bezkontaktní fasády (zavěšené provětrávané)-provětrávané fasády jsou jednou z možností vnějšího zateplení budov. Jsou vhodné pro dodatečné zateplení malých rodinných
České vysoké učení technické v Praze Fakulta stavební - zkušební laboratoř Thákurova 7, 166 29 Praha 6 Pracoviště zkušební laboratoře:
Pracoviště zkušební laboratoře: 1. OL 123 Odborná laboratoř stavebních materiálů Thákurova 7, 166 29 Praha 6 2. OL 124 Odborná laboratoř konstrukcí pozemních staveb Thákurova 7, 166 29 Praha 6 3. OL 132
STAVEBNÍ KÁMEN A KAMENIVO STAVEBNÍ KÁMEN A KAMENIVO 22.2.2012. TAJEMSTVÍ ČESKÉHO KAMENE od Svazu kameníků a kamenosochařů ČR STAVEBNÍ KÁMEN
AI01 STAVEBNÍ LÁTKY A GEOLOGIE Kámen a kamenivo pro stavební účely Ing. Věra Heřmánková, Ph.D. Video: A TAJEMSTVÍ ČESKÉHO KAMENE od Svazu kameníků a kamenosochařů ČR A Přírodní kámen se již v dávných dobách
STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) POJIVA
JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) POJIVA pojiva jsou takové organické nebo anorganické látky, které mají schopnost spojovat jiné sypké nebo kusové materiály
BH 52 Pozemní stavitelství I
BH 52 Pozemní stavitelství I Svislé nosné konstrukce - stěny Zděné nosné stěny Cihelné zdivo Tvárnicové zdivo Ing. Lukáš Daněk, Ph.D. Svislé nosné konstrukce - stěny Základní požadavky a) mechanická odolnost
Druha kameniva podle objemové hmotnosti:
Kamenivo - je přírodní nebo umělý zrnitý materiál, anorganického původu určený pro stavební účely, jehož zrna projdou kontrolním sítem sčtvercovými otvory o velikosti 25 mm Kamenivo Druhy kameniva podle
ETAG 004 VNĚJŠÍ KONTAKTNÍ TEPELNĚ IZOLAČNÍ SYSTÉMY S OMÍTKOU ŘÍDÍCÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ EOTA. Vydání z března 2000
Evropská organizace pro technické schvalování Vydání z března 2000 ŘÍDÍCÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ VNĚJŠÍ KONTAKTNÍ TEPELNĚ IZOLAČNÍ SYSTÉMY S OMÍTKOU EOTA Kunstlaan 40 Avenue des Arts B
Anorganická pojiva, cementy, malty
Anorganická pojiva, cementy, malty Ing. Alexander Trinner Technický a zkušební ústav stavební Praha, s.p. pobočka Plzeň Zahradní 15, 326 00 Plzeň trinner@tzus.cz; www.tzus.cz 1 Anorganická pojiva Definice:
Stanovení texturních vlastností fyzisorpcí dusíku
Stanovení texturních vlastností fyzisorpcí dusíku Michal Dudák Pod texturními vlastnostmi porézních látek se skrývá popis složité porézní struktury. Fyzisorpce dusíku je jedna z nejrozšířenějších metod
Vnitřní stěny CZ leden 2010 Vnitřní stěny
Vnitřní stěny Vnitřní stěny CZ leden 2010 Úvod Obsah Vnitřní stěny Úvod 2 Možnosti aplikace izolace Knauf Insulation 3 Zvuko-izolační vlastnosti 4 Požární odolnost 5 Tepelně-izolační vlastnosti 5 vnitřní
Cvičení č. 2 TEPELNÉ ZTRÁTY ČSN EN 12 831
Cvičení č. 2 ZÁKLADY VYTÁPĚNÍ Ing. Jindřich Boháč Jindrich.Bohac@fs.cvut.cz http://jindrab.webnode.cz/skola/ +420-22435-2488 Místnost B1-807 1 Tepelné soustavy v budovách - Výpočet tepelného výkonu AKTUÁLNĚ
2 MECHANICKÉ VLASTNOSTI SKLA
2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost
Nûkolik aktuálních otázek a odpovûdí k sanaci zateplovacího systému
povrchové úpravy 1/2012 Nûkolik aktuálních otázek a odpovûdí k sanaci zateplovacího systému Ing. Tomá Po ta Co se starým, poškozeným zateplovacím systémem a jak jej odstranit nebo na něj nalepit nový?
Technologie, mechanické vlastnosti Základy navrhování a zatížení konstrukcí Dimenzování základních prvků konstrukcí
Betonové konstrukce Přednášky: Prof. Ing. Milan Holický, DrSc. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta stavební Ing. Jana Markova, Ph.D., Kloknerův ústav
OBSAH: 1.Vnìjší kontaktní zateplovací systémy EKO-STZ - jeho typy, úèel použití a vlastnosti. 2.Skladba zateplovacích systémù EKO-STZ
OBSAH: Tento technologický postup je obecnì závazný pro navrhování a aplikaci kontaktních zateplovacích systémù EKOSTZ a stanovuje rozsah projektové a stavební pøípravy, klade požadavky na zajištìní a
3. STRUKTURA EKOSYSTÉMU
3. STRUKTURA EKOSYSTÉMU 3.4 VODA 3.4.1. VLASTNOSTI VODY VODA Voda dva významy: - chemická sloučenina 2 O - přírodní roztok plynné kapalné pevné Skupenství Voda jako chemická sloučenina 1 δ+ Základní fyzikální
Hornicko-hutnická akademie Stanislawa Staszica v Krakově
Hornicko-hutnická akademie Stanislawa Staszica v Krakově Fakulta materiálového inženýrství a keramiky Ústav stavebních materiálů Kraków 30-053, Al. Mickiewicza 30/B6 tel.0048 12 617-29-24, 617-23-33 Vliv
BUBEN A JEHO VESTAVBY Vývoj funkce bubnu
BUBEN A JEHO VESTAVBY Vývoj funkce bubnu U kotlů vodotrubných ztrácí původní funkci výparné plochy Tvoří buben spojovací prvek pro varnice a spádové trubky Do bubnu se napájí Z bubnu se kotel odluhuje
ČSN 73 0821. ČESKÁ TECHNICKÁ NORMA ICS xxxxxxx; xxxxxxx Červenec 2005. Požární bezpečnost staveb Požární odolnost stavebních konstrukcí
ČESKÁ TECHNICKÁ NORMA ICS xxxxxxx; xxxxxxx Červenec 2005 Požární bezpečnost staveb Požární odolnost stavebních konstrukcí ČSN 73 0821 Fire protection of buildings Fire resistance of engineering struktures
Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz
Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubova@upol.cz Popis základních zákonitostí v mechanice
Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)
Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován
1. Základy plotové konstrukce
BETONOVÉ PLOTY V posledních letech si stále na větší oblibě získávají ploty z betonových štípaných tvarovek a nebo z dutinových betonových tvarovek s povrchem napodobujícím pískovec a nebo jiný kámen.
JEDNOVRSTVÉ A DVOUVRSTVÉ OMÍTKOVÉ SYSTÉMY
Cemix WALL system JEDNOVRSTVÉ A DVOUVRSTVÉ OMÍTKOVÉ SYSTÉMY Řešení pro omítání všech typů podkladů Jak zvolit vhodnou omítku pro interiér a exteriér JEDNOVRSTVÉ A DVOUVRSTVÉ OMÍTKOVÉ SYSTÉMY Omítky jsou
ETICS HET M ETICS HET P ETICS HET P PUR
ETICS HET M ETICS HET P ETICS HET P PUR Smyslem zateplování je výrazné zvýšení tepelně izolačních vlastností obvodových konstrukcí staveb snížení součinitele prostupu tepla, snížení finančních výdajů za
a) Jaká je hodnota polytropického exponentu? ( 1,5257 )
Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.
ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI
1. cvičení ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI Podmínky pro uznání části Konstrukce aktivní účast ve cvičeních, předložení výpočtu zadaných příkladů. Pomůcky pro práci ve cvičeních psací potřeby a kalkulačka.
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. III Název: Proudění viskózní kapaliny Pracoval: Matyáš Řehák stud.sk.: 16 dne: 20.3.2008
Charakteristika matematického modelování procesu spalování dřevní hmoty v aplikaci na model ohniště krbových kamen
Charakteristika matematického modelování procesu spalování dřevní hmoty v aplikaci na model ohniště krbových kamen Michal Branc, Marián Bojko Anotace Příspěvek se zabývá charakteristikou matematického
Kámen. Dřevo. Keramika
Kámen Dřevo Keramika Beton Kovy Živice Sklo Slama Polymery Dle funkce: Konstrukční Výplňové Izolační Dekorační Dle zpracovatelnosti: Sypké a tekuté směsi (kamenivo, zásypy, zálivky) Kusové (tvarovky, dílce)
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1201_základní_pojmy_1_pwp Název školy: Číslo a název projektu: Číslo a název šablony
Rigips. Rigitherm. Systém vnitřního zateplení stěn. Vnitřní zateplení Rigitherm
Vnitřní zateplení Rigitherm Rigips Rigitherm Systém vnitřního zateplení stěn 2 O firmě Rigips, s.r.o. je dceřinnou společností nadnárodního koncernu BPB - největšího světového výrobce sádrokartonu a sádrových
Trendy v akumulaci tepla pro obnovitelné zdroje energie. Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze
Trendy v akumulaci tepla pro obnovitelné zdroje energie Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze Akumulace tepla pro OZE solární tepelné soustavy nezbytný předpoklad pro využití
ENERGETICKÁ SANACE. Zateplení při zachování vzhledu
ENERGETICKÁ SANACE Zateplení při zachování vzhledu AKTIVNÍ ÚČAST NA OCHRANĚ OVZDUŠÍ Čeká nás ještě spousta práce Ochrana ovzduší se týká všech! Energie a ochrana ovzduší patří k nejožehavějším tématům
10.1 Úvod. 10.2 Návrhové hodnoty vlastností materiálu. 10 Dřevo a jeho chování při požáru. Petr Kuklík
10 10.1 Úvod Obecná představa o chování dřeva při požáru bývá často zkreslená. Dřevo lze zapálit, může vyživovat oheň a dále ho šířit pomocí prchavých plynů, vznikajících při vysoké teplotě. Proces zuhelnatění
Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých
Úloha 6 02PRA1 Fyzikální praktikum 1 Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých měření i ověří Gay-Lussacův zákon.
Venkovní využití stavebních desek. Důležité informace a technické postupy
Venkovní využití stavebních desek Důležité informace a technické postupy CZ Produkty a systémy wedi zaručují vysokou úroveň kvality, díky čemuž už získaly řadu certifikátů v různých zemích Evropy. 2 Obsah
Vlhkost. Voda - skupenství led voda vodní pára. ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára
Vlhkost Voda - skupenství led voda vodní pára ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára Vlhkost ve stavebních konstrukcích nežádoucí účinky... zdroje: srážková v. zemní v.
OTOPNÁ TĚLESA Rozdělení otopných těles 1. Lokální tělesa 2. Konvekční tělesa Článková otopná tělesa
OTOPNÁ TĚLESA Rozdělení otopných těles Stejně jako celé soustavy vytápění, tak i otopná tělesa dělíme na lokální tělesa a tělesa ústředního vytápění. Lokální tělesa přeměňují energii v teplo a toto předávají
Informationen zu Promat 1000 C
Informationen zu Promat 1000 C 38 1 0 0 0 C Úspora energie snížením tepelného toku Kalciumsilikát, minerální vlákna a mikroporézní izolační desky firmy Promat zajistí výbornou tepelnou izolaci a úsporu
SYSTÉMY SANOVÁNÍ PLÍSNÍ. Katalog výrobků 2014
SYSTÉMY SANOVÁNÍ PLÍSNÍ Katalog výrobků 2014 1 Systémy sanování plísní 5-6 Příprava podkladu 6-10 Vnitřní zateplovací systémy 10-11 Lepící malty 11-12 Protiplísňové sanační desky 13 Finální úprava povrchu
Cvičení 4 Transport plynné a kapalné vody. Transport vodní páry porézním prostředím
Cvičení 4 Transport plynné a kapalné vody Transport vodní páry porézním prostředím Vzhledem k tepelné vodivosti vody a dalším nepříznivým vlastnostem a účinkům v porézních materiálech je s problémem tepelné
Trvanlivost a odolnost. Degradace. Vliv fyzikálních činitelů STAVEBNÍ LÁTKA I STAVEBNÍ KONSTRUKCE OD JEJICH POUŽITÍ IHNED ZAČÍNAJÍ DEGRADOVAT
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví Trvanlivost a odolnost stavebních materiálů Degradace STAVEBNÍ LÁTKA I STAVEBNÍ KONSTRUKCE OD JEJICH POUŽITÍ IHNED ZAČÍNAJÍ
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM - Základní materiálové parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM - Základní materiálové parametry Hustota vs. objemová hmotnost - V případě neporézních materiálů (kovy, ) je hustota rovná objemové hmotnosti - V případě
PROJEKTOVÁ DOKUMENTACE
Sanace kaple Navštívení Panny Marie, Hostišová okr. Zlín ZADAVATEL ZHOTOVITEL Obecní úřad Hostišová 100 763 01 Mysločovice ING. JOSEF KOLÁŘ PRINS Havlíčkova 1289/24, 750 02 Přerov I - Město EVIDENČNÍ ÚŘAD:
AUTOMATICKÉ ZAŘÍZENÍ KD 20 PRO ZKOUŠKY MRAZUVZDORNOSTI A POVRCHOVÉ ODOLNOSTI STAVEBNÍCH MATERIÁLŮ VŮČI MRAZU DLE ČSN A EN
EKOFROST S.R.O. Dolní novosadská 43, 779 00 Olomouc, www.ekofrost.cz AUTOMATICKÉ ZAŘÍZENÍ KD 20 PRO ZKOUŠKY MRAZUVZDORNOSTI A POVRCHOVÉ ODOLNOSTI STAVEBNÍCH MATERIÁLŮ VŮČI MRAZU DLE ČSN A EN - 2-1. Popis
P91.cz. P91.cz Protipožární omítky Knauf. Novinka. P91.cz Knauf VERMIPLASTER. P91.cz Knauf VERMIPLASTER. Omítkové a fasádní systémy 4/2014
P91.cz Omítkové a fasádní systémy 4/2014 P91.cz Protipožární omítky Knauf P91.cz Knauf Novinka P91.cz Knauf P91.cz Protipožární omítky Knauf Obsah Strana P91.cz Knauf Vermiplaster Protipožární sádrová
Mechanika hornin. Přednáška 2. Technické vlastnosti hornin a laboratorní zkoušky
Mechanika hornin Přednáška 2 Technické vlastnosti hornin a laboratorní zkoušky Mechanika hornin - přednáška 2 1 Dělení technických vlastností hornin 1. Základní popisné fyzikální vlastnosti 2. Hydrofyzikální
SYSTÉM PRO AKUMULACI SRÁŽKOVÝCH VOD AS-NIDAPLAST PROJEKČNÍ A INSTALAČNÍ PODKLADY
SYSTÉM PRO AKUMULACI SRÁŽKOVÝCH VOD AS-NIDAPLAST PROJEKČNÍ A INSTALAČNÍ PODKLADY 2 SYSTÉM PRO AKUMULACI SRÁŽKOVÝCH VOD AS-NIDAPLAST PROJEKČNÍ A INSTALAČNÍ PODKLADY Platnost od 7. 3. 2014 Tel.: 548 428
Otázky PT3 Stroje a zařízení chemického průmyslu
Otázky PT3 Stroje a zařízení chemického průmyslu 1. Doprava tuhých látek Skluzy, sypný úhel Mechanické dopravníky pásové (tvar pásů, vzduchový polštář, uzavřené, otevřené, trubkový), válečkové, článkové,
Odolnost teplotním šokům při vysokých teplotách
1600 C 64 1 6 0 0 C Odolnost teplotním šokům při vysokých teplotách Ohebné tepelně izolační a žárovzdorné výrobky firmy Promat disponují především nízkou akumulací tepla. Díky tomu lze výrazně zkrátit
MOLEKULOVÁ FYZIKA KAPALIN
MOLEKULOVÁ FYZIKA KAPALIN Struktura kapalin Povrchová vrstva kapaliny Povrchová energie, povrchová síla, povrchové napětí Kapilární tlak Kapilarita Prof. RNDr. Emanuel Svoboda, CSc. STRUKTURA KAPALIN Tvoří
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Ústav stavebního zkušebnictví Kámen a kamenivo Kámen Třída Pevnost v tlaku min. [MPa] Nasákavost max. [% hm.] I. 110 1,5 II. 80 3,0 III. 40 5,0 Vybrané druhy
Zavěšené podhledy z desek na různých nosných konstrukcích s požární odolností 30-180 minut. nehořlavé desky KL GB 01
Zavěšené podhledy z desek na různých nosných konstrukcích s požární odolností 30-180 minut nehořlavé desky KL GB 01 Velmi lehká a pevná nehořlavá deska vyrobena z vermikulitu a anorganického pojiva, -potažena
Stanovení vodní páry v odpadních plynech proudících potrubím
Vysoká škola chemicko-technologická v Praze Ústav plynárenství, koksochemie a ochrany ovzduší Technická 5, 166 28 Praha 6 Stanovení vodní páry v odpadních plynech proudících potrubím Semestrální projekt
POUŽITÍ OSB SUPERFINISH VE STAVEBNICTVÍ
POUŽITÍ OSB SUPERFINISH VE STAVEBNICTVÍ 6 6 A1/ KONSTRUKCE STŘEŠNÍHO PLÁŠTĚ A2/ KONSTRUKCE STŘEŠNÍHO PLÁŠTĚ 6 6 B1/ KONSTRUKCE STŘEŠNÍHO PLÁŠTĚ B2/ KONSTRUKCE STŘEŠNÍHO PLÁŠTĚ 6 6 C/ KONSTRUKCE OBVODOVÉ
Experimentální postupy. Půda Fyzikální vlastnosti půd Chemické vlastnosti půd
Experimentální postupy Půda Fyzikální vlastnosti půd Chemické vlastnosti půd Půda definice, složení Půda je heterogenní, vícefázový, polydisperzní, oživělý systém, vyznačující se určitými vlastnostmi fyzikálními,
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.15 Konstrukční materiály Kapitola 21 Desky
POŽADAVKY NA KONSTRUKCI, VÝROBU, VÝSTROJ, SCHVALOVÁNÍ TYPU, ZKOUŠENÍ A ZNA
KAPITOLA 6.9 POŽADAVKY NA KONSTRUKCI, VÝROBU, VÝSTROJ, SCHVALOVÁNÍ TYPU, ZKOUŠENÍ A ZNAČENÍ NESNÍMATELNÝCH CISTEREN (CISTERNOVÝCH VOZIDEL), SNÍMATELNÝCH CISTEREN, CISTERNOVÝCH KONTEJNERŮ A VÝMĚNNÝCH CISTERNOVÝCH
Zdroj: 1. název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN 978-80-8076-057-1 2.
Malty a beton Zdroj: 1. název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN 978-80-8076-057-1 2. www.unium.cz/materialy/cvut/fsv/predna sky- svoboda-m6153-p1.html