Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019
|
|
- Ivana Tomanová
- před 5 lety
- Počet zobrazení:
Transkript
1 Grafy 16. dubna 2019
2 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý a odebráním libovolné hrany přestane být souvislý.
3 Podgrafy. Je dán graf G = (V, E, ε). Podgraf grafu G je trojice G = (V, E, ε ), kde V V, E E a ε je restrikce ε na množině E, taková, že trojice G = (V, E, ε ) je také graf.
4 Podgrafy. Je dán graf G = (V, E, ε). Podgraf grafu G je trojice G = (V, E, ε ), kde V V, E E a ε je restrikce ε na množině E, taková, že trojice G = (V, E, ε ) je také graf. Podgraf G = (V, E, ε ) je faktor grafu G, jestliže V = V.
5 Podgrafy. Je dán graf G = (V, E, ε). Podgraf grafu G je trojice G = (V, E, ε ), kde V V, E E a ε je restrikce ε na množině E, taková, že trojice G = (V, E, ε ) je také graf. Podgraf G = (V, E, ε ) je faktor grafu G, jestliže V = V. Podgraf G = (A, E, ε ) je podgraf indukovaný množinou A (též úplný podgraf na množině A), A V, jestliže každá hrana grafu G, která má oba krajní vrcholy v množině A, leží v E.
6 Komponenty souvislosti. Dán (orientovaný nebo neorientovaný) graf G. Komponenta souvislosti (též komponenta slabé souvislosti) je maximální množina vrcholů A taková, že indukovaný podgraf určený A je souvislý.
7 Komponenty souvislosti. Dán (orientovaný nebo neorientovaný) graf G. Komponenta souvislosti (též komponenta slabé souvislosti) je maximální množina vrcholů A taková, že indukovaný podgraf určený A je souvislý. Ohodnocený graf. Ohodnocený graf (orientovaný nebo neorientovaný) je graf G spolu se zobrazením c : E Z.
8 Kostra. Je dán graf G. Faktor grafu G, který je strom, se nazývá kostra grafu G.
9 Kostra. Je dán graf G. Faktor grafu G, který je strom, se nazývá kostra grafu G. Tvrzení. Graf G má kostru právě tehdy, když je souvislý.
10 grafu G = (V, E) je taková kostra grafu K = (V, L), že c(e) e L je nejmenší (mezi všemi kostrami grafu G).
11 grafu G = (V, E) je taková kostra grafu K = (V, L), že c(e) e L je nejmenší (mezi všemi kostrami grafu G). Tvrzení. V každém souvislém ohodnoceném grafu existuje minimální kostra. Nemusí však být jediná.
12 Obecný postup pro hledání minimální kostry. Je dán prostý souvislý graf G = (V, E) a ohodnocení hran c. 1 Na začátku L :=. S = {{v}; v V }. 2 Dokud S 1, vybereme hranu e podle těchto pravidel: 1 e spojuje dvě různé množiny z S 2 a pro S nebo S je nejlevnější hranou, která z ní vede ven. Hranu e přidáme do L a množiny S a S v S nahradíme jejich sjednocením. 3 Vrátíme L.
13 Kruskalův algoritmus. 1 Setřídíme hrany podle ceny do neklesající posloupnosti, tj. c(e 1 ) c(e 2 )... c(e m ) Položíme L =, S = {{v}; v V }.
14 Kruskalův algoritmus. 1 Setřídíme hrany podle ceny do neklesající posloupnosti, tj. c(e 1 ) c(e 2 )... c(e m ) Položíme L =, S = {{v}; v V }. 2 Probíráme hrany v daném pořadí. Hranu e i přidáme do L, jestliže má oba krajní vrcholy v různých množinách S, S S. V S množiny S a S nahradíme jejich sjednocením. V opačném případě hranu přeskočíme.
15 Kruskalův algoritmus. 1 Setřídíme hrany podle ceny do neklesající posloupnosti, tj. c(e 1 ) c(e 2 )... c(e m ) Položíme L =, S = {{v}; v V }. 2 Probíráme hrany v daném pořadí. Hranu e i přidáme do L, jestliže má oba krajní vrcholy v různých množinách S, S S. V S množiny S a S nahradíme jejich sjednocením. V opačném případě hranu přeskočíme. 3 Algoritmus končí, jestliže jsme přidali n 1 hran (tj. S se skládá z jediné množiny).
16 Primův algoritmus. 1 Vybereme libovolný vrchol v. Položíme L =, S = {v}.
17 Primův algoritmus. 1 Vybereme libovolný vrchol v. Položíme L =, S = {v}. 2 Vybereme nejlevnější hranu e, která spojuje některý vrchol x z množiny S s vrcholem y, který v S neleží. Vrchol y přidáme do množiny S a hranu e přidáme do L.
18 Primův algoritmus. 1 Vybereme libovolný vrchol v. Položíme L =, S = {v}. 2 Vybereme nejlevnější hranu e, která spojuje některý vrchol x z množiny S s vrcholem y, který v S neleží. Vrchol y přidáme do množiny S a hranu e přidáme do L. 3 Opakujeme krok 2 dokud nejsou všechny vrcholy v množině S.
19 Tvrzení. Obecný postup skončí po konečně mnoha krocích a výsledkem je některá minimální kostra. Speciálně, Kruskalův i Primův algoritmus vrátí minimální kostru.
20 Příklad. V ohodnoceném grafu daném následující maticí cen najděte minimální kostru (pokud existuje)
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
VíceH {{u, v} : u,v U u v }
Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo
Více5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
Více4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
VíceTeorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014
Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová
Více07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
VíceMetody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
VíceDrsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
Více10 Přednáška ze
10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
VíceÚvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Více8 Přednáška z
8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)
VíceGrafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
VíceGrafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
VíceTEORIE GRAFŮ TEORIE GRAFŮ 1
TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý
VíceMinimální kostry. Teorie. Štěpán Šimsa
Minimální kostry Štěpán Šimsa Abstrakt. Cílem příspěvku je seznámit s tématem minimálních koster, konkrétně s teoretickými základy, algoritmy a jejich analýzou. Problém.(Minimální kostra) Je zadaný graf
VíceSTROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy
STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou
VíceAlgoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
VíceMatematika III 10. přednáška Stromy a kostry
Matematika III 10. přednáška Stromy a kostry Michal Bulant Masarykova univerzita Fakulta informatiky 20. 11. 2007 Obsah přednášky 1 Izomorfismy stromů 2 Kostra grafu 3 Minimální kostra Doporučené zdroje
VíceZdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceModely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
VíceTeorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66
Teorie grafů Petr Hanuš (Píta) BR Solutions - Orličky 2010 23.2. 27.2.2010 Píta (Orličky 2010) Teorie grafů 23.2. 27.2.2010 1 / 66 Pojem grafu Graf je abstraktní pojem matematiky a informatiky užitečný
VíceZáklady informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
VíceZákladní pojmy teorie grafů [Graph theory]
Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme
VícePřijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
Více1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,
DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry
VíceGrafy. 1. Základní pojmy. 1. Definice grafu. Grafy.nb 1
Grafy.nb 1 1. Základní pojmy Grafy 1. Definice grafu 1.1. Orientovaný graf. Orientovaný graf je trojice G =HV, E, L tvořená konečnou množinou V, konečnou množinou E disjunktní s V a zobrazením : E Ø V
VíceZáklady informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
VíceTGH08 - Optimální kostry
TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení
VíceTGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
VíceTeorie grafů. Teoretická informatika Tomáš Foltýnek
Teorie grafů Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Opakování z minulé přednášky Co je to složitostní třída? Jaké složitostní třídy známe? Kde leží hranice mezi problémy řešitelnými
VíceTGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
VíceTeorie grafů Jirka Fink
Teorie grafů Jirka Fink Nejprve malý množinový úvod Definice. Množinu {Y; Y X} všech podmnožin množiny X nazýváme potenční množinoumnožiny Xaznačíme2 X. Definice. Množinu {Y; Y X, Y =n}všech n-prvkovýchpodmnožinmnožiny
VíceKonvexní obal a množina
Definice M Množina se nazývá konvení, jestliže úsečka spojující libovolné dva její bod je částí této množin, tj. ab, M, t 0, : ta+ ( tb ) M konvení množina a b a b nekonvení množina Definice Konvení obal
VíceUčební texty k státní bakalářské zkoušce Matematika Teorie grafů. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Teorie grafů študenti MFF 15. augusta 2008 1 17 Teorie grafů Požiadavky Základní pojmy teorie grafů, reprezentace grafu. Stromy a jejich základní vlastnosti,
VíceÚvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceUkážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout
Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,
Více4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceOperační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
VíceDrsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa Jan Slovák Masarykova univerzita Fakulta informatiky 14. 11. 21 Obsah přednášky 1 Literatura
VíceHledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
VíceObsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
VíceVLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5
VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší
VíceDefinice 5.1 Graf G = (V, E) je tvořen množinou vrcholů V a množinou hran, kde
Kapitola 5 Grafy 5.1 Definice Definice 5.1 Graf G = (V, E) je tvořen množinou vrcholů V a množinou hran E ( V 2), kde ( ) V = {{x, y} : x, y V a x y} 2 je množina všech neuspořádaných dvojic prvků množiny
VíceDefinice 1 eulerovský Definice 2 poloeulerovský
Dále budeme předpokládat, že každý graf je obyčejný a má aspoň tři uzly. Definice 1 Graf G se nazývá eulerovský, existuje-li v něm uzavřený tah, který obsahuje každou hranu v G. Definice 2 Graf G se nazývá
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceGrafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Vícea jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu...
Písemný test MA010 Grafy: 17.1. 2007, var A... 1). Vašim úkolem je sestrojit všechny neisomorfní jednoduché souvislé grafy na 6 vrcholech mající posloupnost stupňů 1,2,2,2,2,3. Zároveň zdůvodněte, proč
VíceVrcholová barevnost grafu
Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové
VíceTeorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit
Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo
VíceJan Březina. 7. března 2017
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
VíceRovinné grafy Kostra grafu Minimální kostra Toky v sítích Problém maximálního toku v síti. Stromy a kostry. Michal Bulant
Matematika III 10. přednáška Stromy a kostry Michal Bulant Masarykova univerzita Fakulta informatiky 1. 12. 20 Obsah přednášky 1 Rovinné grafy Platónská tělesa Barvení map 2 Kostra grafu 3 Minimální kostra
VícePLANARITA A TOKY V SÍTÍCH
PLANARITA A TOKY V SÍTÍCH Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 9 Evropský sociální fond Praha & EU: Investujeme
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Vícezejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.
Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít
Vícea jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu...
Písemný test MA010 Grafy: 11.1. 2007, var A... 1). Dány jsou následující tři grafy na 8 vrcholech každý. 1 A B C Vašim úkolem je mezi nimi najít všechny isomorfní dvojice. Pro každou isomorfní dvojici
VíceSTROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka
Více2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
VíceGeometrické vyhledávání
mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či
VíceJarníkův algoritmus. Obsah. Popis
1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného
VíceKolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
VíceVLASTNOSTI GRAFŮ. Vlastnosti grafů - kap. 3 TI 5 / 1
VLASTNOSTI GRAFŮ Vlastnosti grafů - kap. 3 TI 5 / 1 Pokrytí a vzdálenost Každý graf je sjednocením svých hran (jak je to přesně?).?lze nalézt složitější struktury stejného typu, ze kterých lze nějaký graf
VíceStromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,
Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé
VíceKonstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
VíceHEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO
HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi
VíceAlgoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
VíceTOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TOKY V SÍTÍCH II Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 10 Evropský sociální fond Praha & EU: Investujeme do vaší
Více1 Teorie grafů. Základní informace
Teorie grafů Základní informace V této výukové jednotce se student seznámí s matematickým pojetím grafů a na konkrétních příkladech si vyzkouší vybrané algoritmy pro hledání v grafech. Výstupy z výukové
VíceVYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ
VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ Markéta Brázdová 1 Anotace: Metody operačního výzkumu mají při řešení praktických problémů široké využití. Článek se zabývá problematikou
VícePROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu?
ROBLÉM ČTYŘ BAREV Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV L KH ROBLÉM ČTYŘ BAREV Vytvoříme graf Kraje = vrcholy
Více(zkráceně jen formule), jestliže vznikla podle následujících pravidel:
1 Kapitola 1 Výroková logika 1.1 Výroky 1.1.1 Výroky. Máme danou neprázdnou množinu A tzv. elementárních výroků (též jim říkáme logické nebo výrokové proměnné). Konečnou posloupnost prvků z množiny A,
VíceTGH12 - Problém za milion dolarů
TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu
VíceInformatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle
Více4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.
4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a
Více1. část: Základy teorie grafů. Ing. Michal Dorda, Ph.D.
1. část: Základy teorie grafů 1 Co je to teorie grafů? 2 Co je to teorie grafů? 3 Co je to teorie grafů? 4 K čemu jsou nám optimalizační metody? centrální sklad zákazníci 5 K čemu jsou nám optimalizační
VíceDiskrétní matematika. DiM /01, zimní semestr 2015/2016
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2015/2016 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Více5 Minimální kostry, Hladový algoritmus
5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho
VícePříklady z Kombinatoriky a grafů I - LS 2015/2016
Příklady z Kombinatoriky a grafů I - LS 2015/2016 zadáno 1.-4. 3. 2016, odevzdat do 8.-11. 3. 2016 1. Zjistěte, které z následujících funkcí definovaných pro n N jsou v relaci Θ(), a vzniklé třídy co nejlépe
VíceVybíravost grafů, Nullstellensatz, jádra
Vybíravost grafů, Nullstellensatz, jádra Zdeněk Dvořák 10. prosince 2018 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení je dobré obarvení
VíceOZD. Organizace a zpracování dat. učební text
OZD Organizace a zpracování dat učební tet Datové typy Datové typy Dělení elementární strukturované = datové struktury základní (statické) základní struktury programovacího jazyka vyšší (dynamické) Datové
VíceProblém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.
Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,
Více10 Podgrafy, isomorfismus grafů
Typické příklady pro zápočtové písemky DiM 470-2301 (Kovář, Kovářová, Kubesa) (verze: November 25, 2018) 1 10 Podgrafy, isomorfismus grafů 10.1. Určete v grafu G na obrázku Obrázek 10.1: Graf G. (a) největší
Více1. Toky, řezy a Fordův-Fulkersonův algoritmus
1. Toky, řezy a Fordův-Fulkersonův algoritmus V této kapitole nadefinujeme toky v sítích, odvodíme základní věty o nich a také Fordův-Fulkersonův algoritmus pro hledání maximálního toku. Také ukážeme,
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
VíceVzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
Více= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
VíceDiskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
VíceDiskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
VíceSTROMY A KOSTRY. Stromy a kostry TI 6.1
STROMY A KOSTRY Stromy a kostry TI 6.1 Stromy a kostry Seznámíme se s následujícími pojmy: kostra rafu, cyklomatické číslo rafu, hodnost rafu (kořenový strom, hloubka stromu, kořenová kostra orientovaného
VíceGraf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
Vícef(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0
KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že
VícePoužití dalších heuristik
Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),
VíceJan Pavĺık. FSI VUT v Brně 14.5.2010
Princip výškovnice Jan Pavĺık FSI VUT v Brně 14.5.2010 Osnova přednášky 1 Motivace 2 Obecný princip 3 Příklady Světové rekordy Turnajové uspořádání Skupinové hodnocení Rozhledny 4 Geografická výškovnice
VíceTeoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa
Tomáš Foltýnek foltynek@pef.mendelu.cz Barvení grafů Platónská tělesa strana 2 Opakování z minulé přednášky Co je to prohledávání grafu? Jaké způsoby prohledávání grafu známe? Jak nalézt východ z bludiště?
Vícekteré je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole.
Kapitola 7 Stromy Stromy jsou jednou z nejdůležitějších tříd grafů. O tom svědčí i množství vět, které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole. Představíme také dvě
Více