Ochutnávka strojového učení
|
|
- Zbyněk Bednář
- před 5 lety
- Počet zobrazení:
Transkript
1 Ochutnávka strojového učení Úvod do problematiky Barbora Hladká Univerzita Karlova Matematiko-fyzikální fakulta Ústav formální a aplikované lingvistiky TechMeetUp Ostrava 21/3/18 Hladká 1/29
2 Ochutnávka strojového učení Cílem přednášky je ilustrovat základní myšlenku strojového učení pomocí několika reálných příkladů. Řešení jednoho z nich bude tématem praktické části, kdy projdeme hlavní kroky učení jednoho vybraného algoritmu v systému R. Obě dvě části jsou úvodní, proto nevyžadují žádné speciální znalosti a dovednosti posluchačů. Jak název napovídá, v první části přičichneme k nalité sklence a ve druhé části sklenkou zatočíme a její obsah poválíme lehce na jazyku. TechMeetUp Ostrava 21/3/18 Hladká 2/29
3 Páteční večer ilustrační příklad vybrat filmy na víkend ručně (téměř) nemožné automaticky Pro uživatele ohodnoťte, jak moc se mu bude film líbit. Použijte známky 1-5 (1-znechucení, 5-nadšení). Např: Určete pro Jarmilu známku filmu Někdo to rád horké Co nás zajímá které filmy už Jarmila viděla a jak se jí líbily kteří uživatelé mají podobný vkus které filmy jsou podobné TechMeetUp Ostrava 21/3/18 Hladká 3/29
4 Co je strojové učení Připravme příklady a naučme počítač učit se z příkladů. To je strojové učení! TechMeetUp Ostrava 21/3/18 Hladká 4/29
5 Strojové učení potřebuje příklady Příběh Hvězdné Někdo to hraček války rád horké (1995) (1977) (1959) Vilém 5 4 Hynek 2 5 Jarmila 2 4 TechMeetUp Ostrava 21/3/18 Hladká 5/29
6 Jak dostat Jarmilu do počítače? Popíšeme ji příznaky (atributy). Tím vznikne vektor příznaků: jméno věk pohlaví profese PSČ Jarmila 50 F zdravotní sestra Popíšeme i filmy. název animovaný hodnocení IMDb režisér Někdo to rád horké ne 8.3 Billy Wilder Příběh hraček ano 8.3 John Lasseter TechMeetUp Ostrava 21/3/18 Hladká 6/29
7 Příklady pro strojové učení příklad = vektor příznaků + výstupní hodnota (pokud je známa) <Jarmila,50,F,zdravotní sestra,60657,příběh hraček,ano,8.3,john Lasseter> + 4 TechMeetUp Ostrava 21/3/18 Hladká 7/29
8 Proces strojového učení TechMeetUp Ostrava 21/3/18 Hladká 8/29
9 Proces strojového učení TechMeetUp Ostrava 21/3/18 Hladká 9/29
10 Proces strojového učení Formulace úlohy 1 Ohodnoťte film pro uživatele. Výstupní hodnoty: 1,2,3,4,5 2 Odhadněte prodeje produktů v následujícím měsíci. Výstupní hodnoty: celá čísla 3 Rozpoznejte na obrázku psa, nebo kočku. Výstupní hodnoty: pes, kočka 4 Určete význam slova line v anglické větě. Př. I ve got Inspector Jackson on the line for you. Výstupní hodnoty: cord, phone, division, formation, product, text TechMeetUp Ostrava 21/3/18 Hladká 10/29
11 Proces strojového učení Získání příkladů, extrakce příznaků 1 Zorganizujte sběr hodnocení. 2 Zorganizujte sběr informací. Příznaky: informace o prodejci, o zboží, prodeje v minulosti,... 3 Shromážděte obrázky psů a koček a ručně je oštítkujte. Příznaky: informace opixelech 4 Vyberte věty s line a ručně přiřaďte významy. Příznaky: předcházející/následující slovo, typické slovo,... Rozdělte příklady na trénovací a testovací. TechMeetUp Ostrava 21/3/18 Hladká 11/29
12 Proces strojového učení Učení z trénovacích příkladů TechMeetUp Ostrava 21/3/18 Hladká 12/29
13 Proces strojového učení Hodnocení úspěšnosti testovací data jsou pro vývojáře během učení skryta test prediktoru na testovacích datech Jde o co nejlepší generalizaci! Zabránit přetrénování! TechMeetUp Ostrava 21/3/18 Hladká 13/29
14 Strojové učení a umělá inteligence TechMeetUp Ostrava 21/3/18 Hladká 14/29
15 Strojové učení a umělá inteligence Marvin Minsky, 1967 Umělá inteligence je věda o vytváření strojů nebo systémů, které budou při řešení určitého úkolu užívat takového postupu, který kdyby ho dělal člověk bychom považovali za projev jeho inteligence. TechMeetUp Ostrava 21/3/18 Hladká 15/29
16 Workspace Zkáza Titaniku v rozhodovacích stromech Úloha: Předpovězte, zda-li cestující na Titaniku jeho zkázu přežije Výstupní hodnoty: 0 (ne), 1 (ano) Zdroj: Algoritmus rozhodovacích stromů v kostce Cvičení v R, viz data a kód na Co si myslí zákazníci Facebook Data for Sentiment Analysis Vyzkoušejte přípravu dat TechMeetUp Ostrava 21/3/18 Hladká 16/29
17 Rozhodovací strom pro určování významu slova line TechMeetUp Ostrava 21/3/18 Hladká 17/29
18 Klasifikace pomocí stromu Příklad Určete význam slova line ve větě Draw a line between the points P and Q. (Narýsujte čáru mezi body P a Q.) Zaprvé, extrahujte hodnoty dvaceti příznaků A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A A 12 A 13 A 14 A 15 A 16 A 17 A 18 A 19 A 20 a draw X between DT IN DT line dobj TechMeetUp Ostrava 21/3/18 Hladká 18/29
19 Klasifikace pomocí stromu Zadruhé, klasifikujte příklad. TechMeetUp Ostrava 21/3/18 Hladká 19/29
20 Popis stromové struktury Uzly Kořen Vnitřní uzly Listy s VÝSTUPNÍMI HODNOTAMI Rozhodnutí Binární otázky na hodnoty jednoho příznaku, tj. každý vnitřní uzel má dvě děti TechMeetUp Ostrava 21/3/18 Hladká 20/29
21 Konstrukce rozhodovacího stromu z trénovacích příkladů Krok 1 Vytvoř kořen Krok 2 Vyber rozhodnutí d a přidej dvě děti k existujícímu uzlu TechMeetUp Ostrava 21/3/18 Hladká 21/29
22 Konstrukce rozhodovacího stromu z trénovacích příkladů Jak vybrat rozhodnutí d? Spoj kořen s trénovací množinou t. Příklad 1. Uvažuj rozhodnutí if A 4 = TRUE. 2. Rozděl trénovací množinu t podle tohoto rozhodnutí na dvě podmnožiny "růžová" a "modrá" t VÝZNAM... A4... FORMATION TRUE FORMATION FALSE PHONE TRUE CORD TRUE DIVISION FALSE TechMeetUp Ostrava 21/3/18 Hladká 22/29
23 Konstrukce rozhodovacího stromu z trénovacích příkladů 3. Ke kořeni přidej dvě děti, "růžové" a "modré". Spoj každé z nich s odpovídající podmnožinou t L, t R, resp. t L VÝZNAM... A4... FORMATION TRUE CORD TRUE PHONE TRUE t R VÝZNAM... A4... FORMATION FALSE DIVISION FALSE TechMeetUp Ostrava 21/3/18 Hladká 23/29
24 Konstrukce rozhodovacího stromu z trénovacích příkladů Jak vybrat rozhodnutí d? Pracovat s více příznaky, formulovat více rozhodnutí. Které rozhodnutí je nejlepší? Zaměřit se na distribuci výstupních hodnot v příslušných množinách trénovacích příkladů. TechMeetUp Ostrava 21/3/18 Hladká 24/29
25 Konstrukce rozhodovacího stromu z trénovacích příkladů Příklad pro úlohu s významem slov Uvažujme 120 trénovacích příkladů. Rozhodnutím je rozdělíme na dvě podmnožiny (1) a (2) s následující distribucí výstupních hodnot: CORD DIVISION FORMATION PHONE PRODUCT TEXT (1) "čístá" (2) "nečistá" "čistá" podmnožina obsahuje většinu příkladů z jedné výstupní třídy TechMeetUp Ostrava 21/3/18 Hladká 25/29
26 Konstrukce rozhodovacího stromu z trénovacích příkladů Které rozhodnutí je nejlepší? Rozhodnutí, které dělí trénovací příklady do "čistých"podmnožin. TechMeetUp Ostrava 21/3/18 Hladká 26/29
27 Konstrukce rozhodovacího stromu z trénovacích příkladů Algoritmus rozhodovacích stromů základní formulace Krok 1 Vytvoř kořen Krok 2 Vyber rozhodnutí d a přidej dvě děti k existujícímu uzlu Krok 3 Rozděl trénovací příklady spojené s rodičovským uzlem t podle rozhodnutí d do podmnožin t L a t R. Krok 4 Rekurzivně opakuj kroky (2) a (3) pro oba dětské uzly a s nimi spojené trénovací příklady. Krok 5 Zastav, jakmile je uzel spojený s trénovacími příklady z jedné výstupní třídy. Vyvoř list s touto výstupní hodnotou. TechMeetUp Ostrava 21/3/18 Hladká 27/29
28 Křížová validace TechMeetUp Ostrava 21/3/18 Hladká 28/29
29 Přetrénování TechMeetUp Ostrava 21/3/18 Hladká 29/29
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 9 1/16 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
DATA MINING KLASIFIKACE DMINA LS 2009/2010
DATA MINING KLASIFIKACE DMINA LS 2009/2010 Osnova co je to klasifikace typy klasifikátoru typy výstupu jednoduchý klasifikátor (1R) rozhodovací stromy Klasifikace (ohodnocení) zařazuje data do předdefinovaných
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Chytal tlouště na višni
Chytal tlouště na višni Barbora Hladká Ústav formální a aplikované lingvistiky Matematicko-fyzikální fakulta Univerzita Karlova v Praze http://ufal.mff.cuni.cz Jedna noc s informatikou a matematikou MFF
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
Pokročilé neparametrické metody. Klára Kubošová
Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. ledna 2017
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. ledna 2017 Rozhodovací pravidla Strom lze převést na seznam pravidel ve tvaru if podmínky then třída if teplota=horečka
Obsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
Pravděpodobně skoro správné. PAC učení 1
Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
Dolování asociačních pravidel
Dolování asociačních pravidel Miloš Trávníček UIFS FIT VUT v Brně Obsah přednášky 1. Proces získávání znalostí 2. Asociační pravidla 3. Dolování asociačních pravidel 4. Algoritmy pro dolování asociačních
CVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 27 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Karel povídá: Myslím si celé číslo. Je záporné. Nyní
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
Učící se klasifikátory obrazu v průmyslu
Učící se klasifikátory obrazu v průmyslu FCC průmyslové systémy s.r.o. FCC průmyslové systémy je technicko obchodní společností, působící v oblasti průmyslové automatizace. Tvoří ji dvě základní divize:
Základy vytěžování dat
Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Předzpracování dat. Lenka Vysloužilová
Předzpracování dat Lenka Vysloužilová 1 Metodika CRISP-DM (www.crisp-dm.org) Příprava dat Data Preparation příprava dat pro modelování selekce příznaků výběr relevantních příznaků čištění dat získávání
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
Implementace LL(1) překladů
Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Genetické programování
Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace
Co je to matematika?
Co je to matematika? Hello FIT 2018 Daniel Dombek, Tomáš Kalvoda, Karel Klouda KAM FIT ČVUT 27. září 2018 Přednášející Daniel Dombek Tomáš Kalvoda Úvod Úvod Úvod Blíží se akademický Nový rok! Již příští
Úvod do RapidMineru. Praha & EU: Investujeme do vaší budoucnosti. 1 / 23 Úvod do RapidMineru
Vytěžování dat, cvičení 2: Úvod do RapidMineru Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fakulta elektrotechnická, ČVUT 1 / 23 Úvod do RapidMineru Dnes vám ukážeme jeden z mnoha
NLP & strojové učení
NLP & strojové učení Miloslav Konopík 2. dubna 2013 1 Úvodní informace 2 Jak na to? Miloslav Konopík () NLP & strojové učení 2. dubna 2013 1 / 13 Co je to NLP? NLP = Natural Language Processing (zpracování
Název: Výskyt posloupností v přírodě
Název: Výskyt posloupností v přírodě Autor: Mgr. Lukáš Saulich Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika a její aplikace Ročník: 6. (4. ročník
Název materiálu: SKLADBA PODMĚT A PŘÍSUDEK základní skladební dvojice VY_32_INOVACE_S1_ČJ20_1
Název materiálu: SKLADBA PODMĚT A PŘÍSUDEK základní skladební dvojice VY_32_INOVACE_S1_ČJ20_1 Pracovní listy slouží k procvičení, upevnění či ověření znalosti učiva o Anotace skladbě. Žáci rozpoznávají
Lineární diskriminační funkce. Perceptronový algoritmus.
Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10
Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10
Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012
Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009. Filip Železný (ČVUT) Vytěžování dat 9.
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009 Filip Železný (ČVUT) Vytěžování dat 9. dubna 2009 1 / 22 Rozhodovací pravidla Strom lze převést
CVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 25 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V lidové výkupně barevných kovů vykoupili
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Hlavolamy a teorie grafů
Hlavolamy a teorie grafů Petr Kovář 1 petr.kovar@vsb.cz 1 Vysolá škola báňská Technická univerzita Ostrava, Škola matematického modelování, 2009 Přehled přednášky Úloha hanojských věží Část 1. Co není
Vytěžování znalostí z dat
Vytěžování znalostí z dat Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Přednáška 5: Hodnocení kvality modelu BI-VZD, 09/2011 MI-POA Evropský sociální
a4b33zui Základy umělé inteligence
LS 2011 Jméno: a4b33zui Základy umělé inteligence 10.6.2011 O1 O2 O3 O4 O5 Total (50) Instrukce: Na vypracování máte 90 min, můžete použít vlastní materiály nebo poznámky. Použití počítače nebo mobilního
Whale detection Brainstorming session. Jiří Dutkevič Lenka Kovářová Milan Le
Whale detection Brainstorming session Jiří Dutkevič Lenka Kovářová Milan Le Signal processing, Sampling theorem Spojitý signál může být nahrazen diskrétní posloupností vzorků, aniž by došlo ke ztrátě informace,
Dynamicky vázané metody. Pozdní vazba, virtuální metody
Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í
Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry TU v Liberci Jiří Hozman 1. dubna 2010 Cvičení 2 Příklad 1. Rozhodněte, zda lze vektor x vyjádřit jako lineární kombinaci vektorů u, v, w, v
Výpočetní teorie strojového učení a pravděpodobně skoro správné (PAC) učení. PAC učení 1
Výpočetní teorie strojového učení a pravděpodobně skoro správné (PAC) učení PAC učení 1 Cíl induktivního strojového učení Na základě omezeného vzorku příkladů E + a E -, charakterizovat (popsat) zamýšlenou
Kapacita k učení. Vaše kapacita k učení je běžná.
Kapacita k učení Vaše kapacita k učení je běžná. 0-20 Kapacita k učení je velmi nízká Vaše kapacita k učení je velmi nízká, což vám může způsobit značné problémy při dalším studiu. Studium vysoké školy
Úvod do teorie her
Úvod do teorie her. Formy her a rovnovážné řešení Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 208 ÚTIA AV ČR Program. Definujeme 2 základní formy pro studium různých her: rozvinutou, strategickou. 2.
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Automatické vyhledávání informace a znalosti v elektronických textových datech
Automatické vyhledávání informace a znalosti v elektronických textových datech Jan Žižka Ústav informatiky & SoNet RC PEF, Mendelova universita Brno (Text Mining) Data, informace, znalost Elektronická
6. Tahy / Kostry / Nejkratší cesty
6. Tahy / Kostry / Nejkratší cesty BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
Reálná čísla a výrazy. Početní operace s reálnými čísly. Složitější úlohy se závorkami. Slovní úlohy. Číselné výrazy. Výrazy a mnohočleny
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Cvičení z matematiky 3 Ročník: 9. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence k učení učí se vybírat a využívat vhodné
Diskrétní matematika. DiM /01, zimní semestr 2017/2018
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2017/2018 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
STRUKTURA RASTROVÝCH DAT
STRUKTURA RASTROVÝCH DAT dva typy rastrové vrstvy v GIS 1) Digitální obraz TV, počítač, mobil - obrazovka obraz z bodů mapa - mřížka s barevnými plochami 2) Rastrová data data pro analýzu a) binární -
Kurzy v počítačových aplikacích - MOODLE
Kurzy v počítačových aplikacích - MOODLE Lektor: Mgr. Martin Šín Základy práce s Moodlem 1 Základní informace První přihlášení jak se přihlásit do Moodlu, jak řešit problémy s přihlašováním. Založení nového
CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
Základy vytěžování dat
Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha
Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání
Select sort: krok 1: výběr klíče z n prvků vyžaduje 1 porovnání krok 2: výběr klíče z 1 prvků vyžaduje 2 porovnání krok 3: výběr klíče z 2 prvků vyžaduje 3 porovnání atd. celkem porovnání Zlepšení = použít
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
NPRG030 Programování I, 2018/19 1 / :03:07
NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Miroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL)
Datové typy a struktury
atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
Algoritmy výpočetní geometrie
Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
ŠVP Školní očekávané výstupy. - vytváří konkrétní soubory (peníze, milimetrový papír, apod.) s daným počtem prvků do 100
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 1. období 3. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M3101 používá přirozená
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Asociační i jiná. Pravidla. (Ch )
Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo
Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? Osnova Úvod Trénovací, Testovací a Validační datové soubory Práce s nebalancovanými daty; ladění parametrů Křížová validace
A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort.
A4B33ALG 2010/05 ALG 07 Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated Quicksort Stabilita řazení 1 Selection sort Neseřazeno Seřazeno Start T O U B J R M A K D Z E min
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
Rozdělování dat do trénovacích a testovacích množin
Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném
Testování modelů a jejich výsledků. tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? Osnova Úvod Trénovací, Testovací a Validační datové soubory Práce s nebalancovanými daty; ladění parametrů Křížová validace
VYUČOVACÍ PROCE S A JEHO FÁZE
VYUČOVACÍ PROCE S A JEHO FÁZE I. Klasické pojetí II. Konstruktivistické pojetí Motivace Expozice Fixace Evokace Uvědomění si významu Reflexe Diagnóza Aplikace MOTIVACE - prostředek zvyšování efektivity
2. Definice pravděpodobnosti
2. Definice pravděpodobnosti 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematických struktur a algoritmů procesy dvojího druhu. Jednodušší jsou deterministické procesy,
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Dobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich
Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013
Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové
Disambiguace významu slov
Disambiguace významu slov Závěrečná zpráva Petra Barančíková 2012/13 1 Popis úlohy Cílem projektu je automaticky přiřadit víceznačnému slovu jeho význam na základě věty, ve které bylo použito. Konkrétně
Standardní algoritmy vyhledávací.
Standardní algoritmy vyhledávací. Vyhledávací algoritmy v C++ nám umožňují vyhledávat prvky v datových kontejnerech podle různých kritérií. Také se podíváme na vyhledávání metodou půlením intervalu (binární
Chatboti Virtuální pomocníci pro váš byznys. Watson Solution Market. 14. září 2017 ParkHotel Praha
Chatboti Virtuální pomocníci pro váš byznys Watson Solution Market 14. září 2017 ParkHotel Praha Jan Macek Watson Prague R&D Lab Barbora Kopecká Watson ilab 1 Definice chatbota Počítačový program, který
B-IIa Studijní plány pro bakalářský SP Informatika se zaměřením na vzdělávání
B-IIa Studijní plány pro bakalářský SP Informatika se zaměřením na vzdělávání Označení studijního plánu Sdružené studium studijní plán maior - prezenční forma Povinné předměty obecná část Úvod do psychologie
09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika
Logika 1 Logika Slovo logika se v češtině běžně používá ve smyslu myšlenková cesta, která vedla k daným závěrům. Logika je formální věda, zkoumající právě onen způsob vyvozování závěrů. Za zakladatele
PARAMETRY EFEKTIVITY UČENÍ SE ŽÁKA V PROSTŘEDÍ E-LEARNINGU SE ZAMĚŘENÍM NA ADAPTIVNÍ VÝUKOVÉ MATERIÁLY
PARAMETRY EFEKTIVITY UČENÍ SE ŽÁKA V PROSTŘEDÍ E-LEARNINGU SE ZAMĚŘENÍM NA ADAPTIVNÍ VÝUKOVÉ MATERIÁLY Kateřina Kostolányová Ostravská univerzita v Ostravě 1 Podpořeno projektem ESF OP VK CZ.1.07/2.3.00/09.0019
ROVNICE A NEROVNICE. Lineární rovnice s absolutní hodnotou II. Mgr. Jakub Němec. VY_32_INOVACE_M1r0107
ROVNICE A NEROVNICE Lineární rovnice s absolutní hodnotou II. Mgr. Jakub Němec VY_32_INOVACE_M1r0107 LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU V této lekci rozšíříme naše znalosti o počítání lineárních rovnic,
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Znalosti budeme nejčastěji vyjadřovat v predikátové logice prvního řádu. Metody:
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Znalosti v učení Umíme se učit funkce vstup výstup. Jedinou dodatečnou znalost, kterou jsme využili, byl
Profilová část maturitní zkoušky
Profilová část maturitní zkoušky praktická zkouška z odborného výcviku školní rok 2017/2018 V termínu Obor - Optik Kód a název oboru vzdělání: 23 62 L / 01 Vypracovali : I. UOV Mgr. Věra Dostálová II.
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy
STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou
Dobývání a vizualizace znalostí. Olga Štěpánková et al.
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu Dobývání znalostí - popis a metodika procesu CRISP a objasnění základních pojmů Nástroje pro modelování klasifikovaných dat a jejich