IGBT Insulated Gate Bipolar Transistor speciální polovodičová struktura IGBT se používá jako spínací tranzistor nejdůležitější součástka výkonové
|
|
- Vojtěch Bílek
- před 9 lety
- Počet zobrazení:
Transkript
1 IGBT Insulated Gate Bipolar Transistor speciální polovodičová struktura IGBT se používá jako spínací tranzistor nejdůležitější součástka výkonové elektroniky chová se jako bipolární tranzistor řízený unipolárním tranzistorem, tedy napětím po sepnutí pracuje výstupní výkonový obvod v saturaci hlavní výhody: velké závěrné napětí, malý úbytek napětí (a ztráty) ve vodivém stavu mezní parametry: jednotky ka, jednotky kv, spínací f desítky khz v jedné struktuře (vlevo značka) se skrývá unipolární tranzistor s indukovaným kanálem N, bipolární tranzistor PNP a (bohužel) také parazitní tranzistor NPN (červeně) a nežádoucí odpor R S (modře)
2 bipolární tranzistor PNP se spíná záporným proudem báze B, tedy vlastně tekoucím z B tento proud teče z B do E po otevření unipolárního tranzistoru kladným napětím na G na obrázku je označen proud elektronů (hnědé šipky) a proud děr (černé) přechodový odpor R S (kontakt) mezi S a C musí být co nejmenší jinak by sepnul parazitní tranzistor NPN a IGBT by nešel vypnout kolektor C tranzistoru PNP je vlastně emitorem E IGBT a emitor E PNP kolektorem C proto se někdy C IGBT označuje jako A (anoda) a E jako K (katoda)
3 Zapojení IGBT typický je modul v trojfázovém můstkovém spojení každý IGBT je opatřen zpětnou diodou, která se otevírá vždy, když je z různých důvodů třeba, aby proud opačným směrem používá se např. v elektrických pohonech jako aktivní usměrňovač nebo střídač Výstupní charakteristiky podobají se bipolárním tranzistorům společným rysem se posunutí počátku o 0,7 V (offset) úbytek napětí v sepnutém stavu (při saturaci) závisí na I C i U GS a bývá několik V
4 Tyristor - čtyřvrstvá spínací součástka; je několik druhů. Zpětně závěrný tyristor (klasický) struktura: obvykle PNPN, 3 přechody J1, J2, J3 vývody A (anoda), K (katoda), G (gate) tři pracovní režimy blokovací: U AK = U T > 0, přechod J2 uzavřen, I A = I T 0 závěrný: U AK = U R < 0, přechody J1, J3 uzavřeny, I R 0 propustný: U AK > 0, U GK > 0, I G > 0 přivedením kladného napětí na G proti K se otevře přechod J3 a vznikne proud I G elektrony proudí z K do G a zaplaví i přechod J2 tam na ně působí také kladnější napětí od A elektrony překonají J2 a postupují přes otevřený J1 k A tento proud elektronů vyvolá proud děr v opačném směru v důsledku toho se dále zesílí proud elektronů vznikne tak kladná zpětná vazba a teče proud I A = I T I T teče i po odebrání řídicího proudu I G I T je omezen prakticky jen odporem vnějšího obvodu úbytek napětí v propustném směru je 1,5 2,5 V
5 voltampérové charakteristiky blokovací a závěrná část je podobná, připomíná diodu zapnutí - z blokovací na propustnou část se přejde po přivedení I G dostatečné velikosti postačuje jen impuls I G, tyristor pak zůstává sepnutý, pokud vznikne v anodovém obvodu proud alespoň I L přídržný (latching) pracovní bod se dostane na propustnou větev do bodu, který odpovídá parametrům obvodu vypnutí - při poklesu I A pod I H - vratný (holding) přejde tyristor do blokovacího režimu I H je nepatrně menší než I L, často se v katalozích uvádí jediný údaj ostatní hodnoty (I TM, U RM, U RSM...) mají stejný význam jako u diod
6 poznámky k činnosti zapínání překročením blokovacího napětí U B0 je teoreticky možné, ale nežádoucí snížení anodového proudu I A pod hodnotu I H při vypínání tyristoru (prakticky k nule) ve střídavém obvodu ho zajistí síť- síťová komutace ve stejnosměrném obvodu se musí vyvolat protiproud - vlastní komutace fázové řízení je to řízení střední hodnoty napětí na zátěži U dav ve střídavém obvodu změnou řídicího úhlu α větší α pozdější sepnutí menší U dav průběhy napětí a proudu při odporové zátěži U dav plochy pod U dav a pod u d se rovnají
7 vlastní komutace vypínání ve stejnosměrném obvodu musí zajistit vlastní komutační obvody obvykle se vyvolá protiproud vybíjením kondenzátoru na schématu je příklad komutačního obvodu KO pro vypínání tyristoru V1, kdy se nabitý kondenzátor C vybíjí proudem I p po sepnutí tyristoru V2 na obr. vpravo je průběh napětí na zátěži 1 zapnutí V1, 2 vypnutí V1 prostřednictvím zapnutí V2 komutační obvody jsou složité, často rozměrné je výhodnější používat jiné spínací prvky (GTO, IGCT tyristory, IGBT tranzistory)
8 Další druhy tyristorů vypínací tyristor GTO (gate turn off) principiálně podobný, ale má jiné rozměry zapíná se stejně impulsem na G lze ho vypnout záporným impulsem na G přitom se z přechodu J3 odsají nosiče nábojů, ty pak nemohou překročit J2 tím se obnoví blokovací schopnost tyristor IGCT (integrated gate commutated thyristor) je podobný GTO má extrémně rychlé vypínací a zapínací časy používá se ve výkonové elektronice, kde konkuruje IGBT Použití tyristorů řízené usměrňovače, stejnosměrné pulsní měniče Obrázek vpravo: diskrétní součástka s vývody tyristor v kotoučovém, tzv. pastilkovém pouzdře
9 Triak - vícevrstvá spínací součástka; lze ho chápat jako obousměrný tyristor. Triac Triode Alternating Current Switch základní strukturu tvoří dva antiparalelně zapojené tyristory (na obr. Ty1 a Ty2) se společnou řídicí elektrodou elektrody se označují A1, A2 a G při obou polaritách U A1A2 je vždy jeden z dílčích tyristorů v blokovacím a druhý v propustném režimu struktura triaku umožňuje zapínání kladným i záporným impulsem na G proti A1 při obou polaritách napětí U A1A2 voltampérové charakteristiky jsou v 1. a 3. kvadrantu symetrické
10 Voltampérové charakteristiky podobají se tyristoru, mají blokovací a propustnou část jsou v 1. a 3. kvadrantu symetrické
11 Fázové řízení provádí se podobně jako u tyristoru, avšak při obou polaritách napětí zdroje triak se užívá pouze ve střídavých obvodech, komutace je tedy síťová s rostoucím řídicím úhlem α se zmenšuje efektivní hodnota střídavého napětí pozor střední hodnota napětí je nulová na obr. jsou průběhy napětí a proudu při fázovém řízení a odporové zátěži u napětí střídavého zdroje u d napětí na zátěži u A1A2 napětí na triaku i A proud triaku Použití triaků řízení efektivní hodnoty napětí ve střídavých obvodech, ale pouze pro menší výkony triakové regulátory jsou velmi rozšířené (regulace tepelných spotřebičů, komutátorových střídavých motorů apod.)
Otázka č.4. Silnoproudé spínací polovodičové součástky tyristor, IGBT, GTO, triak struktury, vlastnosti, aplikace.
Otázka č.4 Silnoproudé spínací polovodičové součástky tyristor, IGBT, GTO, triak struktury, vlastnosti, aplikace. 1) Tyristor Schematická značka Struktura Tyristor má 3 PN přechody a 4 vrstvy. Jde o spínací
Řízené polovodičové součástky. Výkonová elektronika
Řízené polovodičové součástky Výkonová elektronika Polovodičové součástky s řízeným zapnutím řídící signál přivede spínač z blokovacího do propustného stavu do závěrného stavu jen vnější komutací (přerušením)
VLASTNOSTI POLOVODIČOVÝCH SOUČÁSTEK PRO VÝKONOVOU ELEKTRONIKU
VLASTNOSTI POLOVODIČOVÝCH SOUČÁSTEK PRO VÝKONOVOU ELEKTRONIKU Úvod: Čas ke studiu: Polovodičové součástky pro výkonovou elektroniku využívají stejné principy jako běžně používané polovodičové součástky
Bezkontaktní spínací přístroje
Bezkontaktní spínací přístroje Důvody použití bezkontaktních spínačů Pozitiva Potřeba častého a přesně časově synchronizovaného spínání, které není klasickými kontaktními přístroji dosažitelné Potlačení
TRANZISTORY TRANZISTORY. Bipolární tranzistory. Ing. M. Bešta
TRANZISTORY Tranzistor je aktivní, nelineární polovodičová součástka schopná zesilovat napětí, nebo proud. Tranzistor je asi nejdůležitější polovodičová součástka její schopnost zesilovat znamená, že malé
Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, polovodiče
Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, polovodiče Pracovní list - test vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: listopad 2013 Klíčová slova: dioda, tranzistor,
VY_32_INOVACE_06_III./2._Vodivost polovodičů
VY_32_INOVACE_06_III./2._Vodivost polovodičů Vodivost polovodičů pojem polovodiče čistý polovodič, vlastní vodivost příměsová vodivost polovodičová dioda tranzistor Polovodiče Polovodiče jsou látky, jejichž
Inovace výuky předmětu Robotika v lékařství
Přednáška 7 Inovace výuky předmětu Robotika v lékařství Senzory a aktuátory používané v robotických systémech. Regulace otáček stejnosměrných motorů (aktuátorů) Pro pohon jednotlivých os robota jsou často
Základy elektrotechniky
Základy elektrotechniky Přednáška Tyristory 1 Tyristor polovodičová součástka - čtyřvrstvá struktura PNPN - tři přechody při polarizaci na A, - na K je uzavřen přechod 2, při polarizaci - na A, na K jsou
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE Analýza využití výkonových polovodičových měničů v praxi vedoucí práce: Prof. Ing.
způsobují ji volné elektrony, tzv. vodivostní valenční elektrony jsou vázány, nemohou být nosiči proudu
Vodivost v pevných látkách způsobují ji volné elektrony, tzv. vodivostní valenční elektrony jsou vázány, nemohou být nosiči proudu Pásový model atomu znázorňuje energetické stavy elektronů elektrony mohou
Součástky s více PN přechody
Součástky s více PN přechody spínací polovodičové součástky tyristor, diak, triak Součástky s více PN přechody první realizace - 1952 třívrstvé tranzistor diak čtyřvrstvé tyristor pětivrstvé triak diak
SpÄnacÄ polovodičovç několikavrstvovç součñstky
SpÄnacÄ polovodičovç několikavrstvovç součñstky Diak Tyristor Triak Transil GTO Tyristor Diak Diak je třåvrstvovç spånacå součçstka, jejåž sepnutå je řåzeno vnějšåm napětåm ("napěťovç spénač"). PoužÅvÇ
Polovodiče Polovodičové měniče
Polovodiče Polovodičové měniče Ing. Tomáš Mlčák, Ph.D. Fakulta elektrotechniky a informatiky VŠB TUO Katedra elektrotechniky www.fei.vsb.cz/kat452 PEZ I ELEKTRONIKA Podoblast elektrotechniky která využívá
Mìnièe výkonové elektroniky a jejich použití v technických aplikacích
1. Úvod Mìnièe výkonové elektroniky a jejich použití v technických aplikacích prof. Ing. Jiøí Pavelka, DrSc., ÈVUT Praha, Fakulta elektrotechnická, katedra elektrických pohonù a trakce Mìnièe výkonové
Tyristor. Tyristor. Tyristor. 1956: Bell Labs Silicon Controlled Rectifier (SCR) 1958: General Electric Thyristor. Výkonové polovodičové součástky
(kv) Výkonové polovodičové součástky 1 1 3 1 1 1 VELÝ VÝ SDÉ ŘÍZEÍ VYSOÁ FREVEE 1 1 Thyristor TO BJT MOS 198 1 1 1 1 1 1 1 f (khz) (kv) 1 1 3 1 1 1 1 1 Thyristor BJT TO (kv) IBT MOS 1 5 1 1 3 1 1 1 1 1
Spínače s tranzistory řízenými elektrickým polem. Používají součástky typu FET, IGBT resp. IGCT
Spínače s tranzistory řízenými elektrickým polem Používají součástky typu FET, IGBT resp. IGCT Základní vlastnosti spínačů s tranzistory FET, IGBT resp. IGCT plně řízený spínač nízkovýkonové řízení malý
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Katedra elektromechaniky a výkonové elektroniky. Regulace jednofázového napěťového střídače
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE Regulace jednofázového napěťového střídače vedoucí práce: Ing. Vojtěch Blahník,
TYRISTORY. Spínací součástky pro oblast největších napětí a nejvyšších proudů Nejčastěji triodový tyristor
TYRSTORY Spínací součástky pro oblast největších napětí a nejvyšších proudů Nejčastěji triodový tyristor Závěrný směr (- na A) stav s vysokou impedancí, U R, R parametr U RRM Přímý směr (+ na A) dva stavy
Unipolární Tranzistory
Počítačové aplikace 000 Unipolární Tranzistor aktivní součástka polovodičový zesilující prvek znám od r. 960 proud vedou majoritní nositelé náboje náznak teorie čtřpólů JFET MOS u i i Y Čtřpól - admitanční
Stopař pro začátečníky
Stopař pro začátečníky Miroslav Sámel Před nějakou dobou se na http://letsmakerobots.com/node/8396 objevilo zajímavé a jednoduché zapojení elektroniky sledovače čáry. Zejména začínající robotáři mají problémy
1. Obecná struktura pohonu s napěťovým střídačem
1. Obecná struktura pohonu s napěťovým střídačem Topologicky můžeme pohonný systém s asynchronním motorem, který je napájen z napěťového střídače, rozdělit podle funkce a účelu do následujících částí:
ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: T3.2.1 MĚŘENÍ NA UNIPOLÁRNÍCH TRANZISTORECH A IO Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Bc. Josef Mahdal Střední průmyslová škola Uherský Brod,
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE Použitá literatura: Kesl, J.: Elektronika I - analogová technika, nakladatelství BEN - technická
Projekt Pospolu. Polovodičové součástky tranzistory, tyristory, traiky. Pro obor M/01 Informační technologie
Projekt Pospolu Polovodičové součástky tranzistory, tyristory, traiky Pro obor 18-22-M/01 Informační technologie Autorem materiálu a všech jeho částí je Ing. Petr Voborník, Ph.D. Bipolární tranzistor Bipolární
Polovodiče, polovodičové měniče
Polovodiče, polovodičové měniče Zpracoval: Václav Kolář, Václav Vrána, Jan Ddek ELEKTONIKA Podoblast elektrotechniky která vyžívá vedení elektrického prod v polovodičích. (V minlosti též ve vak či plynech
Obsah. Obsah. Profil společnosti 2
Aplikace Obsah Profil společnosti 2 Profil společnosti 2 Aplikace 3 Výkonové polovodičové jednotky PSU 3 Zákaznické PSU 4 Schémata zapojení PSU 5 Řídicí jednotka tyristorů GU 3391 6 Řídicí jednotka tyristorů
Osnova: 1. Speciální diody 2. Tranzistory 3. Operační zesilovače 4. Řízené usměrňovače
K621ZENT Základy elektroniky Přednáška ř č. 3 Osnova: 1. Speciální diody 2. Tranzistory 3. Operační zesilovače 4. Řízené usměrňovače LED Přiložením napětí v propustném směru dochází k injekci nosičů přes
Neřízené polovodičové prvky
Neřízené polovodičové prvky Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Neřízené polovodičové spínače neobsahují
Fyzika vedení proudu ve vakuu a v pevné fázi, pásový diagram, polovodiče
Fyzika vedení proudu ve vakuu a v pevné fázi, pásový diagram, polovodiče Vakuum neobsahuje nabité částice; elektrický proud vakuuem neprochází.průchod elektrického proudu vakuem je umožněn vznikem nositelů
ZÁKLADY POLOVODIČOVÉ TECHNIKY
ZÁKLDY POLOVODIČOVÉ TECHNIKY Obsah 1. Úvod 2. Polovodičové prvky 2.1. Polovodičové diody 2.2. Tyristory 2.3. Triaky 2.4. Tranzistory Určeno pro bakalářské stdijní programy na FBI 3. Polovodičové měniče
Tranzistory bipolární
Tranzistory bipolární V jednom kusu polovodičového materiálu lze vhodnou technologií vytvořit tři střídající se oblasti s nevlastní vodivostí N-P-N nebo P-N-P. Vývody těchto tří oblastí se nazývají emitor,
Elektronické součástky - laboratorní cvičení 1
Elektronické součástky - laboratorní cvičení 1 Charakteristiky tyristoru Úkol: 1. Změřte vstupní charakteristiku tyristoru I G = f (U GK ) 2. Změřte spínací charakteristiku U B0 = f (I G ) 1.1 Pokyny pro
VÝKONOVÉ POLOVODIČOVÉ PRVKY
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií Katedra elektrotechniky a elektromechanických systémů VÝKONOVÉ POLOVODIČOVÉ PRVKY Učební text Doc. Ing. Eva Konečná,
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola
MĚŘENÍ Laboratorní cvičení z měření Měření parametrů tyristoru část 3-5-1 Teoretický rozbor
MĚŘENÍ Laboratorní cvičení z měření část 3-5-1 Teoretický rozbor Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 1 Číslo materiálu:
Výkonová elektronika. Příklad. U o. sin
Výkonové spínací prvky ožadavky a parametry Výkonový MOSFET IBT Tyristor rincipy činnosti, struktury, charakteristiky, modely a typické aplikace. Výkonová elektronika Řízení přenosu a přeměny energie při
UNIPOLÁRNÍ TRANZISTOR
UNIPOLÁRNÍ TRANZISTOR Unipolární tranzistor neboli polem řízený tranzistor, FET (Field Effect Transistor), se stejně jako tranzistor bipolární používá pro zesilování, spínání signálů a realizaci logických
Ing. Milan Nechanický. Cvičení. SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Elektrotechnika - Mechatronika. Monitorovací indikátor 06.43.
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Ing. Milan Nechanický Měření a diagnostika Cvičení SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Elektrotechnika
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola
Bipolární tranzistor. Bipolární tranzistor - struktura. Princip práce tranzistoru. Princip práce tranzistoru. Zapojení SC.
ipolární tranzistor Tranzistor (angl. transistor) transfer resistor bipolární na přenosu proudu se podílejí jak elektrony, tak díry je tvořen dvěma přechody na jednom základním monoktystalu Emitorový přechod
MĚŘENÍ Laboratorní cvičení z měření Měření parametrů tyristoru část Test
MĚŘENÍ Laboratorní cvičení z měření část 3-5-2 Test Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 07_3_Elektrický proud v polovodičích
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_3_Elektrický proud v polovodičích Ing. Jakub Ulmann 3 Polovodiče Př. 1: Co je to? Př. 2: Co je to? Mikroprocesor
ROZD LENÍ ZESILOVA Hlavní hledisko : Další hlediska : A) Podle kmito zesilovaných signál B) Podle rozsahu zpracovávaného kmito tového pásma
ROZDĚLENÍ ZESILOVAČŮ Hlavní hledisko : A) Zesilovače malého signálu B) Zesilovače velkého signálu Další hlediska : A) Podle kmitočtů zesilovaných signálů -nízkofrekvenční -vysokofrekvenční B) Podle rozsahu
Elektřina a magnetizmus polovodiče
DUM Základy přírodních věd DUM III/2-T3-11 Téma: polovodiče Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus polovodiče Obsah POLOVODIČ...
Inteligentní Polovodičový Analyzér Provozní manuál
Inteligentní Polovodičový Analyzér Provozní manuál Před uvedením přístroje do provozu si velmi pečlivě přečtěte tento provozní manuál. Obsahuje důležité bezpečnostní informace. 3 Obsah.. Strana Úvod...
Zesilovač. Elektronický obvod zvyšující hodnotu napětí nebo proudu při zachování tvaru jeho průběhu. Princip zesilovače. Realizace zesilovačů
Zesilovač Elektronický obvod zvyšující hodnotu napětí nebo proudu při zachování tvaru jeho průběhu Princip zesilovače Zesilovač je dvojbran který může současně zesilovat napětí i proud nebo pouze napětí
Obrázek 1: Schematická značka polovodičové diody. Obrázek 2: Vlevo dioda zapojená v propustném směru, vpravo dioda zapojená v závěrném směru
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_2S2_D16_Z_ELMAG_Polovodicove_soucastky_PL Člověk a příroda Fyzika Elektřina a magnetismus
MĚŘENÍ TRANZISTOROVÉHO ZESILOVAČE
Úloha č. 3 MĚŘÍ TRAZISTOROVÉHO ZSILOVAČ ÚOL MĚŘÍ:. Změřte a) charakteristiku I = f (I ) při U = konst. tranzistoru se společným emitorem a nakreslete její graf; b) zesilovací činitel β tranzistoru se společným
ELEKTRONICKÉ PRVKY 7 Výkonové a spínací aplikace tranzistorů 7.1 Ztrátový výkon a chlazení součástky... 7-1 7.2 První a druhý průraz bipolárního
Bohumil BRTNÍK, David MATOUŠEK ELEKTRONICKÉ PRVKY Praha 2011 Tato monografie byla vypracována a publikována s podporou Rozvojového projektu VŠPJ na rok 2011. Bohumil Brtník, David Matoušek Elektronické
Integrovaná střední škola, Sokolnice 496
Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Kód výstupu:
Interakce ve výuce základů elektrotechniky
Střední odborné učiliště, Domažlice, Prokopa Velikého 640, Místo poskytovaného vzdělávaní Stod, Plzeňská 245 CZ.1.07/1.5.00/34.0639 Interakce ve výuce základů elektrotechniky TYRISTORY Číslo projektu CZ.1.07/1.5.00/34.0639
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE Analýza využití výkonových polovodičových měničů v praxi vedoucí práce: Prof. Ing.
VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl
Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
Bipolární tranzistory
Bipolární tranzistory Historie V prosinci 1947 výzkumní pracovníci z Bellových laboratořích v New Jersey zjistili, že polovodičová destička z germania se zlatými hroty zesiluje slabý signál. Vědci byli
MĚŘENÍ POLOVODIČOVÉHO USMĚRŇOVAČE STABILIZACE NAPĚTÍ
Úloha č. MĚŘENÍ POLOVODIČOVÉHO SMĚRŇOVČE STBILIZCE NPĚTÍ ÚKOL MĚŘENÍ:. Změřte charakteristiku křemíkové diody v propustném směru. Měřenou závislost zpracujte graficky formou I d = f ( ). d. Změřte závěrnou
Kap. 3 Vodiče a spojovací součásti. Odd. 1 - Spojení. Odd. 2 Spojení, svorky (vývody) a odbočení. Odd. 3 - Spojovací součásti
Kap. 3 Vodiče a spojovací součásti Číslo Značka Název Odd. 1 - Spojení 03-01-01 03-01-02 03-01-03 03-01-04 03-01-05 03-01-06 03-01-07 110 V 3N 50 Hz 400 V 3 x 120 mm 2 + 1 x 50 mm 2 3 2 x 120 mm 2 Al spoj
Kroužek elektroniky 2010-2011
Dům dětí a mládeže Bílina Havířská 529/10 418 01 Bílina tel. 417 821 527 http://www.ddmbilina.cz e-mail: ddmbilina@seznam.cz Kroužek elektroniky 2010-2011 Dům dětí a mládeže Bílina 2010-2011 1 (pouze pro
3. Diody, tranzistory, tyristory, triaky, diaky. Použitá literatura: Jan Kesl: Elektronika I. a II. Internet
3. Diody, tranzistory, tyristory, triaky, diaky Použitá literatura: Jan Kesl: Elektronika I. a II. Internet Diody - polovodiče s 1 přechodem PN Princip: zapojíme-li monokrystal PN dle obr. elektrony(-)
ELEKTRICKÝ PROUD V KAPALINÁCH, PLYNECH A POLOVODIČÍCH
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D14_Z_OPAK_E_Elektricky_proud_v_kapalinach _plynech_a_polovodicich_t Člověk a příroda
Jednofázové a třífázové polovodičové spínací přístroje
Jednofázové a třífázové polovodičové spínací přístroje Použité spínací elementy tyristory triaky GTO tyristory Zapínání dle potřeby aplikace Vypínání buď v přirozené nule proudu nebo s nucenou komutací
Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky.
Polovodičové prvky V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku
Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách)
Úvod do moderní fyziky lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) krystalické pevné látky pevné látky, jejichž atomy jsou uspořádány do pravidelné 3D struktury zvané mřížka, každý
Jednofázové a třífázové polovodičové spínací přístroje
Jednofázové a třífázové polovodičové spínací přístroje Použité spínací elementy tyristory triaky GTO tyristory Zapínání dle potřeby aplikace Vypínání buď v přirozené nule proudu nebo s nucenou komutací
FEKT VUT v Brně ESO / P5 / J.Boušek 3 FEKT VUT v Brně ESO / P5 / J.Boušek 4
Využití vlastností polovodičových přechodů Oblast prostorového náboje elektrické pole na přechodu Propustný směr difůze majoritních nosičů Závěrný směr extrakce minoritních nosičů Rekombinace na přechodu
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.05 Integrovaná střední škola technická Mělník, K učilišti 2566,
Výkonová elektronika KE
Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Výkonová elektronika KE Učební texty pro kombinované a distanční studium Tomáš Pavelek Václav Sládeček Ostrava 2005
Unipolární tranzistory
Unipolární tranzistory MOSFET, JFET, MeSFET, NMOS, PMOS, CMOS Unipolární tranzistory aktivní součástka řízení pohybu nosičů náboje elektrickým polem většinové nosiče menšinové nosiče parazitní charakter
ELEKTRONICKÉ SOUČÁSTKY
ELEKTRONICKÉ SOUČÁSTKY VZORY OTÁZEK A PŘÍKLADŮ K TUTORIÁLU 1 1. a) Co jsou polovodiče nevlastní. b) Proč je používáme. 2. Co jsou polovodiče vlastní. 3. a) Co jsou polovodiče nevlastní. b) Jakým způsobem
Sada 1 - Elektrotechnika
S třední škola stavební Jihlava Sada 1 - Elektrotechnika 9. Polovodiče usměrňovače, stabilizátory Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284
ZÁKLADY POLOVODIČOVÉ TECHNIKY. Doc.Ing.Václav Vrána,CSc. 03/2008
ZÁKLADY POLOVODIČOVÉ TECHNIKY Doc.Ing.Václav Vrána,CSc. 3/28 Obsah 1. Úvod 2. Polovodičové prvky 2.1. Polovodičové diody 2.2. Tyristory 2.3. Triaky 2.4. Tranzistory 3. Polovodičové měniče 3.1. Usměrňovače
VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory
Číslo projektu Číslo materiálu CZ..07/.5.00/34.058 VY_3_INOVACE_ENI_.MA_04_Zesilovače a Oscilátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
1.1 Usměrňovací dioda
1.1 Usměrňovací dioda 1.1.1 Úkol: 1. Změřte VA charakteristiku usměrňovací diody a) pomocí osciloskopu b) pomocí soustavy RC 2000 2. Ověřte vlastnosti jednocestného usměrňovače a) bez filtračního kondenzátoru
3. Zesilovače. 3.0.1 Elektrický signál
3. Zesilovače V elektronice se velmi často setkáváme s nutností zesílit slabé elektrické signály tak, aby se zvětšila jejich amplituda-rozkmit a časový průběh se nezměnil. Zesilovače se používají ve všech
MĚŘENÍ Laboratorní cvičení z měření Měření VA-charakteristik bipolárního tranzistoru, část 3-10-1
MĚŘENÍ Laboratorní cvičení z měření Měření VA-carakteristik bipolárnío tranzistoru, část 3-10-1 Výukový materiál Číslo projektu: Z.1.07/1.5.00/34.0093 Šablona: /2 novace a zkvalitnění výuky prostřednictvím
ELEKTRONICKÉ SOUČÁSTKY
TEMATICKÉ OKRUHY ELEKTRONICKÉ SOUČÁSTKY 1. Základní pojmy fyziky polovodičů. Pásová struktura její souvislost s elektronovým obalem atomu, vliv na elektrickou vodivost materiálů. Polovodiče vlastní a nevlastní.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Integrovaná střední škola, Kumburská 846, Nová Paka Elektronika - Zdroje SPÍNANÉ ZDROJE
SPÍNANÉ ZDROJE Problematika spínaných zdrojů Popularita spínaných zdrojů v poslední době velmi roste a stávají se převažující skupinou zdrojů na trhu. Umožňují vytvářet kompaktní přístroje s malou hmotností
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola
4. Vysvětlete mechanismus fotovodivosti. Jak závisí fotovodivost na dopadajícím světelném záření?
Dioda VA 1. Dvě křemíkové diody se liší pouze plochou PN přechodu. Dioda D1 má plochu přechodu dvakrát větší, než dioda D2. V jakém poměru budou jejich diferenciální odpory, jestliže na obou diodách bude
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE Implementace řízení tyristorového usměrňovače do TMS320F28335 Antonín Glac 2014/2015
1. Energetická pásová struktura pevných látek; izolanty, polovodiče, kovy; typy vodivostí, drift a difúze.
1. Energetická pásová struktura pevných látek; izolanty, polovodiče, kovy; typy vodivostí, drift a difúze. 2. Druhy polovodičů (vlastní a nevlastní polovodiče); generace a rekombinace páru elektron díra.
7. VÍCEVRSTVÉ SPÍNACÍ SOUČÁSTKY
7. VÍCEVRSTVÉ SPÍNACÍ SOUČÁSTKY V této kapitole se budeme zabývat spínacími prvky tyristorového typu. Slovo tyristor má anglickou obdobu thyristor a pochází z řečtiny, kde znamená dveře. Tyristor je obecné
Způsoby realizace paměťových prvků
Způsoby realizace paměťových prvků Interní paměti jsou zapojeny jako matice paměťových buněk. Každá buňka má kapacitu jeden bit. Takováto buňka tedy může uchovávat pouze hodnotu logická jedna nebo logická
17. Elektrický proud v polovodičích, užití polovodičových součástek
17. Elektrický proud v polovodičích, užití polovodičových součástek Polovodiče se od kovů liší především tím, že mají větší rezistivitu (10-2 Ω m až 10 9 Ω m), (kovy 10-8 Ω m až 10-6 Ω m). Tato rezistivita
Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty
Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty stejnosměrného napětí U dav Užití v pohonech: řízení stejnosměrných
4.2 Paměti PROM - 87 - NiCr. NiCr. Obr.140 Proudy v naprogramovaném stavu buňky. Obr.141 Princip PROM. ADRESOVÝ DEKODÉR n / 1 z 2 n
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
TRENDY V OBLASTI VÝKONOVÉ ELEKTRONIKY
TRENDY V OBLASTI VÝKONOVÉ ELEKTRONIKY Petr Chlebiš, Petr Šimoník, Lukáš Osmančík, Petr Moravčík VŠB TUO, Katedra elektroniky, 17. listopadu 15, 708 00 Ostrava, petr.chlebis@vsb.cz VŠB TUO, Katedra elektroniky,
9/10/2012. Výkonové polovodičové součástky. Výkonové polovodičové součástky obsah prezentace. Výkonové polovodičové součástky přehled
Výkonové polovodičové součástky Konstrukce polovodičových měničů Výkonové polovodičové součástky obsah prezentace Aplikační možnosti výkonových polovodičových součástek Dioda Tyristor IGBT a MOSFET Pouzdra
ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Bc. Josef Mahdal Střední průmyslová škola Uherský Brod, 2010
Číslicový multimetr AX-572. Návod k obsluze
Číslicový multimetr AX-572 Návod k obsluze 1. ÚVOD AX-572 je stabilní multimetr se zobrazovačem LCD 40 mm a bateriovým napájením. Umožňuje měření napětí DC a AC, proudu DC a AC, odporu, kapacity, teploty,
Výstaviště v Brně, Kongresové centrum, sál B, 14. září 2010
Jiří Roubal, Senior Specialist, Divize výrobků a systémů pro energetiku, ABB s.r.o. Zařízení výkonové v energetických sítích Energie pro budoucnost Efektivní distribuce a spotřeba elektřiny v průmyslu
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
Interakce ve výuce základů elektrotechniky
Střední odborné učiliště, Domažlice, Prokopa Velikého 640, Místo poskytovaného vzdělávaní Stod, Plzeňská 245 CZ.1.07/1.5.00/34.0639 Interakce ve výuce základů elektrotechniky TRANZISTORY Číslo projektu
Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek
Řídicí obvody (budiče) MOSFET a IGBT Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Řídicí obvody (budiče) MOSFET a IGBT Hlavní požadavky na ideální budič Galvanické
11-1. PN přechod. v přechodu MIS (Metal - Insolator - Semiconductor),
11-1. PN přechod Tzv. kontaktní jevy vznikají na přechodu látek s rozdílnou elektrickou vodivostí a jsou základem prakticky všech polovodičových součástek. v přechodu PN (který vzniká na rozhraní polovodiče
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTRONIKY A TELEKOMUNIKACÍ DIPLOMOVÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTRONIKY A TELEKOMUNIKACÍ DIPLOMOVÁ PRÁCE Realizace a ověření unikátní topologie analogového vedoucí práce: Ing. Michal Kubík, Ph.D. 2013
1 ÚVOD DO PŘEDMĚTU...11 1.1 1.2 1.3 2 ZÁKLADNÍ OBVODY...14
Obsah 1 ÚVOD DO PŘEDMĚTU...11 1.1 Cíl učebnice...11 1.2 Přehled a rozdělení elektroniky...11 1.3 Vstupní test...12 2 ZÁKLADNÍ OBVODY...14 2.1 Základní pojmy z elektroniky...14 2.1.1 Pracovní bod...16 2.2
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. XI Název: Charakteristiky diod Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17.10.2008 Odevzdal