Definice tolerování. Technická dokumentace Ing. Lukáš Procházka
|
|
- Romana Sedláčková
- před 9 lety
- Počet zobrazení:
Transkript
1 Technická dokumentace Ing. Lukáš Procházka Téma: geometrické tolerance 1) Definice geometrických tolerancí 2) Všeobecné geometrické tolerance 3) Základny geometrických tolerancí 4) Druhy geometrických tolerancí Definice tolerování - rozměrové tolerance určují vyhovující rozměry, avšak neřeší zdali je dodržen tvar - geometrické tolerance definují geometrické odchylky tvarů a poloh vůči skutečným - vyhovující geometrické odchylky taktéž zajišťují správnou funkci součástí i zapisují se pouze když je podstatné dodržení tvarů a poloh pro funkci součásti
2 Všeobecné tolerance - obdobně jako u rozměrových tolerancí existují i všeobecné rozměrové tolerance - všeobecné tolerance udává norma ISO : rozměrové tolerance ISO geometrické tolerance ISO z hlediska přesnosti se dělí na 3 třídy přesnosti (rozměrové tolerance mají 4): přesná střední hrubá H K L - všeobecné (nepředepsané) geometrické tolerance: tolerance přímosti a rovinnosti tolerance kolmosti tolerance souměrnosti tolerance kruhového házení - třída všeobecných tolerancí použitá na výkrese se předepisuje do popisového pole - druhé písmeno v pořadí (VELKÉ PÍSMENO) označuje přesnost geometrických tolerancí - uvádí se v kolonce PŘESNOST ISO 2768 třída všeobecných tolerancí
3 Základny - základnami geometrických tolerancí jsou geometricky přesné prvky (osy, plochy, ) - k základnám geometrických tolerancí se vztahují geometrické tolerance prvků - základnou může být: přímka rovinná plocha válcová plocha osa - základny se označují rovnostranným trojúhelníkem (prázdný i plný) - součástí značky je čtvercový rámeček obsahující písmenné označení základny rozměry značky: základnou je rovinná plocha (přímka) základnou je válcová plocha (povrchová přímka) základnou je osa válcové plochy
4 Soustavy základen 1 základna 2 základny 3 základny? Jakými písmeny se označují třídy všeobecných geometrických tolerancí?
5 Přímost - tolerance je vyhovující když skutečná přímka leží mezi 2 rovnoběžnými přímkami - vzdálenost rovnoběžných přímek od sebe je hodnota tolerance Rovinnost - tolerance je vyhovující když skutečná plocha leží mezi 2 rovnoběžnými plochami - vzdálenost rovnoběžných ploch od sebe je hodnota tolerance
6 Kruhovitost - tolerance je vyhovující když skutečný profil leží mezi 2 soustřednými kružnicemi - rozdíl průměrů soustředných kružnic (šířka mezikruží) je hodnota tolerance Válcovitost - tolerance je vyhovující když skutečná válcová plocha leží mezi 2 soustřednými válci - rozdíl průměrů soustředných válců (šířka stěny dutého válce) je hodnota tolerance
7 Rovnoběžnost - tolerance je vyhovující když skutečná plocha leží mezi 2 rovnoběžnými rovinami - vzdálenost rovnoběžných rovin od sebe je hodnota tolerance Kolmost - tolerance je vyhovující když skutečná plocha leží mezi 2 rovinami kolmými na rovinu - vzdálenost rovnoběžných rovin kolmých na základní rovinu je hodnota tolerance
8 Sklon - tolerance je vyhovující když skutečná plocha leží mezi 2 rovinami nakloněnými na rovinu - vzdálenost rovnoběž. rovin nakloněných o úhel α k základní rovinu je hodnota tolerance Poloha prvku - tolerance je vyhovující když osa prvku (díry) v teoreticky přesné poloze leží uvnitř válce - průměr válce je hodnota tolerance
9 Soustřednost a souosost - tolerance je vyhovující když skutečná osa tolerovaného prvku leží uvnitř válce - průměr válce je hodnota tolerance Souměrnost - tolerance je vyhovující když skuteč. rovina souměrnosti leží mezi 2 souměrnými rovinami - vzdálenost souměrných rovin od sebe je hodnota tolerance
10 Tvar profilu - tolerance je vyhovující když skutečný tvar profilu leží mezi 2 ekvidistantními čarami - vzdálenost ekvidistantních čar od sebe je hodnota tolerance Tvar plochy - tolerance je vyhovující když skutečná plocha leží mezi 2 ekvidistantními plochami - vzdálenost ekvidistantních ploch od sebe je hodnota tolerance
11 Kruhové házení obvodové a čelní - tolerance je vyhovující když každý bod kružnice při rotaci leží mezi 2 soustř. kružnicemi - vzdálenost soustředných kružnic se středem v ose rotace je hodnota tolerance Celkové házení - tolerance je vyhovující když každý bod kružnice při rotaci leží mezi 2 rovnoběž. rovinami - vzdálenost rovnoběžných rovin od sebe je hodnota tolerance
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ PŘEDEPISOVÁNÍ PŘESNOSTI ROZMĚRŮ,
Kótování na strojnických výkresech 1.část
Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických
TVAROVÉ A ROZMĚROVÉ PARAMETRY V OBRAZOVÉ DOKUMENTACI. Druhy kót Části kót Hlavní zásady kótování Odkazová čára Soustavy kót
TVAROVÉ A ROZMĚROVÉ PARAMETRY V OBRAZOVÉ DOKUMENTACI Druhy kót Části kót Hlavní zásady kótování Odkazová čára Soustavy kót KÓTOVÁNÍ Kótování jednoznačné určení rozměrů a umístění všech tvarových podrobností
- 1 - Vzdělávací oblast : matematika a její aplikace Vyučovací předmět : : matematika Ročník: 3.
- 1 - Vzdělávací oblast : matematika a její aplikace Vyučovací předmět : : matematika Ročník: 3. ČÍSLO A POČETNÍ OPERACE Výstup Učivo Průřezová témata Mezipředmětové vztahy Zápis čísel. Čtení a zápisy
Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů.
Mezní kalibry Mezními kalibry zjistíme, zda je rozměr součástky v povolených mezích, tj. v toleranci. Mají dobrou a zmetkovou stranu. Zmetková strana je označená červenou barvou. Délka zmetkové části je
Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý
ČASOVÉ OBDOBÍ Září Říjen KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA Umí zapsat a přečíst čísla do 1 000 000 Porovnává čísla do 1 000 000 Zaokrouhluje čísla na tisíce, desetitisíce, statisíce Umí
TECHNICKÉ KRESLENÍ A CAD
Přednáška č. 7 V ELEKTROTECHNICE Kótování Zjednodušené kótování základních geometrických prvků Někdy stačí k zobrazení pouze jeden pohled Tenké součásti kvádr Kótování Kvádr (základna čtverec) jehlan Kvalitativní
ORIENTACE V TECHNICKÉ DOKUMENTACI
ORIENTACE V TECHNICKÉ DOKUMENTACI Ve strojírenství je technická dokumentace základním dorozumívacím prostředkem všech lidí, kteří vstupují jak do návrhu ( konstrukce ) výrobku nebo jeho součásti, tak do
3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?
3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.
Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika.
Matematika Matematika pro žáky 6. až 9. ročníku napomáhá k rozvoji paměti, logického myšlení, kritickému usuzování a srozumitelné a věcné argumentaci prostřednictvím matematických problémů. Žáci si prostřednictvím
DUM 09 téma: P edepisování struktury povrchu
DUM 09 téma: P edepisování struktury povrchu ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika
Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.
7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,
TÉMATICKÝ PLÁN OSV. čte, zapisuje a porovnává přirozená čísla do 20, užívá a zapisuje vztah rovnosti a nerovnosti
TÉMATICKÝ PLÁN MA 1.ročník Očekávaný výstup /dle RVP/ Žák: Konkretizace výstupu, učivo, návrh realizace výstupu PT Číslo a početní operace používá přirozená čísla k modelování reálných situací, počítá
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět: Období ročník: Učební texty: Matematika 2. období 4. ročník R. Blažková: Matematika pro 3. ročník ZŠ (3. díl) (Alter) R. Blažková: Matematika pro 4. ročník ZŠ (1. díl) (Alter) J. Jurtová:
1.9.5 Středově souměrné útvary
1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.
Základní pojmy Při kontrole výrobků se zjišťuje, zda odpovídají požadavkům rozměry, tvary a jakost ploch při použití předepsaných měřicích postupů.
Měření hloubky Základní pojmy Při kontrole výrobků se zjišťuje, zda odpovídají požadavkům rozměry, tvary a jakost ploch při použití předepsaných měřicích postupů. Měřidla Hloubkoměry Jsou určeny pro měření
Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.
Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník
Měření momentu setrvačnosti z doby kmitu
Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných
DUM 07 téma: P edepisování tolerancí
DUM 07 téma: P edepisování tolerancí ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika 18-20-M/01
c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky
provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace
Vyučovací předmět / ročník: Matematika / 5. Učivo
Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel
PALETOVÉ REGÁLY SUPERBUILD NÁVOD NA MONTÁŽ
PALETOVÉ REGÁLY SUPERBUILD NÁVOD NA MONTÁŽ Charakteristika a použití Příhradový regál SUPERBUILD je určen pro zakládání všech druhů palet, přepravek a beden všech rozměrů a pro ukládání kusového, volně
PhDr. MILAN KLEMENT, Ph.D.
UNIVERZITA PALACKÉHO PEDAGOGICKÁ FAKULTA KATEDRA TECHNICKÉ A INFORMAČNÍ VÝCHOVY Sylabus přednášek do předmětu: Technická grafika PhDr. MILAN KLEMENT, Ph.D. OLOMOUC 2005 1. Technická normalizace Ve výrobě
Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M9101 provádí početní operace
TEORETICKÝ VÝKRES LODNÍHO TĚLESA
TEORETICKÝ VÝKRES LODNÍHO TĚLESA BOKORYS (neboli NÁRYS) je jeden ze základních pohledů, ze kterého poznáváme tvar kýlu, zádě, zakřivení paluby, atd. Zobrazuje v osové rovině obrys plavidla. Uvnitř obrysu
Přednáška č.4 Tolerování
Fakulta strojní VŠB-TUO Přednáška č.4 Tolerování Tolerování Pro sériovou a hromadnou výrobu je nutná zaměnitelnost a vyměnitelnost součástí strojů. Aby se mohla dodržet tato podmínka je nutné vyrobit součást
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové
Strojní součásti, konstrukční prvky a spoje
Strojní součásti, konstrukční prvky a spoje Šroubové spoje Šrouby jsou nejčastěji používané strojní součástí a neexistuje snad stroj, kde by se nevyskytovaly. Mimo šroubů jsou u některých šroubových spojů
Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ mechanismy. Přednáška 8
Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ mechanismy Přednáška 8 Převody s korigovanými ozubenými koly Obsah Převody s korigovanými ozubenými koly Výroba ozubení odvalováním
3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),
3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit
Výukový materiál zpracován v rámci projektu EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0767
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0767 Šablona: III/2 3. č. materiálu: VY_ 32_INOVACE_109 Jméno autora: Václav Hasman Třída/ročník:
Autodesk Inventor 8 vysunutí
Nyní je náčrt posazen rohem do počátku souřadného systému. Autodesk Inventor 8 vysunutí Následující text popisuje vznik 3D modelu pomocí příkazu Vysunout. Vyjdeme z náčrtu na obrázku 1. Obrázek 1: Náčrt
Výroba ozubených kol
Výroba ozubených kol obrábění tvarových (evolventních) ploch vícebřitým nástrojem patří k nejnáročnějším odvětvím strojírenské výroby speciální stroje, přesné nástroje Ozubená kola součásti pohybových
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 7. ročník J.Coufalová : Matematika pro 7.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro 7.ročník ZŠ (Prometheus)
Sekční průmyslová vrata, typy kování
Sekční průmyslová vrata, typy kování SID Typy kování vrat a jejich parametry S L S R LDB Pro zaměření montážního otvoru průmyslových vrat se měří následující parametry: Označení parametru Název parametru
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_181 Vzdělávací oblast: Matematika a její aplikace Vzdělávací
PODNIKOVÁ NORMA PN KP 4201. TVAROVANÉ / TRAPÉZOVÉ PLECHY z hliníku a slitin hliníku
PODNIKOVÁ NORMA PN KP 4201 TVAROVANÉ / TRAPÉZOVÉ PLECHY z hliníku a slitin hliníku Platnost od: 1. ledna 2016 Vydání č.: 1 Předmluva Citované normy ČSN EN ISO 6892-1 Kovové materiály Zkoušení tahem Část
Seznámení s možnostmi Autodesk Inventoru 2012
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.2.3. Valivá ložiska Ložiska slouží k otočnému nebo posuvnému uložení strojních součástí a k přenosu působících
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_17 Název materiálu: Kinetická teorie látek. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k výuce struktury a vlastnosti látek, složení pevných,
. Základní měrky reference přesnosti
ß Měřící a orýsovací nástroje, zkoušečky. Základní měrky reference přesnosti Paralelní základní měrky se dodávají podle DIN EN ISO 3650 v následujících kalibračních/tolerančních třídách: 1. Kalibrační
Mechanismy. Vazby členů v mechanismech (v rovině):
Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).
Geometrická optika 1
Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = přímka, podél níž se šíří světlo, jeho energie index lomu (základní
1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací.
1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací. Skříň rozvodovky spojena s rámem zmenšení neodpružené hmoty. Přenos točivého momentu
Název: Osová souměrnost
Název: Osová souměrnost Autor: Mgr. Lukáš Saulich Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika a její aplikace Ročník: 3. (1. ročník vyššího gymnázia)
ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ
ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)
Ozubené řemeny XLH. Ozubené řemeny s palcovou roztečí. Provedení XL, L, H, XH, XXH. Konstrukční charakteristiky. Rozměrové charakteristiky
XLH Provedení XL, L, H, XH, XXH Ozubené řemeny s palcovou roztečí Konstrukční charakteristiky Rozvodové řemeny se zuby na vnitřní straně jsou složeny z následujících částí a prvků viz obrázek: A) Tažné
Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích
Změny 1 vyhláška č. 294/2015 Sb. Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích a která s účinností od 1. ledna 2016 nahradí vyhlášku č. 30/2001 Sb. Umístění svislých
Cvičení 3 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ
Cvičení 3 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ Cílem cvičení je procvičení předchozích zkušeností tvorby modelu rotační součásti a využití rotačního pole naskicovaných prvků. Jak bylo slíbeno v
EMOTIVE bezobložková zárubeň pro otočné dveře
EMOTIVE bezobložková zárubeň pro otočné dveře Součástí dodávky zárubně jsou tyto komponenty : 1. Zazdívací rám : složený skládá se z 1 ks nadpraží, 2 ks bočnic 2. Rozpěrky : 2 ks na standardní průchozí
Průniky rotačních ploch
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem
Měření kruhovitosti/válcovitosti ROUNDTEST RA-2200
Přístroje na měření tvaru Měření kruhovitosti/válcovitosti ROUNDTEST RA-2200 PRC 161 Měřicí systém kruhovitosti/válcovitosti, který nabízí nejvyšší přesnost ve své třídě, výjimečně snadné používání a multifunkční
MECHANIKA TUHÉ TĚLESO
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzělávání je spolufinancován Evropským sociálním fonem a státním rozpočtem České republiky. Implementace ŠVP MECHANIKA TUHÉ TĚLESO Učivo - Tuhé těleso
5.2.1 Matematika povinný předmět
5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v
Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数
A absolutní člen 常 量 成 员 absolutní hodnota čísla 绝 对 值 algebraický výraz 代 数 表 达 式 ar 公 亩 aritmetický průměr 算 术 均 数 aritmetika 算 术, 算 法 B boční hrana 侧 棱 boční hrany jehlanu 角 锥 的 侧 棱 boční stěny jehlanu
Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:
Mongeovo promítání základní úlohy metrické (skutečná velikost úsečky - sklápění, kolmice k rovině, vzdálenost bodu od roviny, vzdálenost bodu od přímky, rovina kolmá k přímce, otáčení roviny, trojúhelník
Souřadnicové soustavy (systémy) na území naší republiky Klady a rozměry mapových listů velkých a středních měřítek. Kartografie.
Souřadnicové soustavy (systémy) na území naší republiky Klady a rozměry mapových listů velkých a středních měřítek Kartografie přednáška 4 Souřadnicové systémy na území ČR každý stát nebo skupina států
Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8.
Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8. Výuka matematického semináře bude probíhat jednou týdně v dvouhodinovém bloku.
Podniková norma energetiky pro rozvod elektrické energie ŽELEZOBETONOVÉ PATKY PRO DŘEVĚNÉ SLOUPY VENKOVNÍCH VEDENÍ DO 45 KV
Podniková norma energetiky pro rozvod elektrické energie REAS ČR, ZSE ŽELEZOBETONOVÉ PATKY PRO DŘEVĚNÉ SLOUPY VENKOVNÍCH VEDENÍ DO 45 KV PNE 34 8211 Odsouhlasení normy Konečný návrh podnikové normy energetiky
info@novingrosty.cz 420 595 782 426 NOVING ROŠTY s.r.o. Na Baštici 168, 738 01 Staré Město, okres Frýdek-Místek Tel./ fax: 595 782 425-6
info@novingrosty.cz 420 595 782 426 TAHOKOVOVÉ PODLAHOVÉ ROŠTY A SCHODIŠŤOVÉ STUPNĚ ČSN EN ISO 9001:2001 www.novingrosty.cz NOVING ROŠTY s.r.o. Na Baštici 168, 738 01 Staré Město, okres Frýdek-Místek Tel./
SM 23 STROJNÍ VÝROBA JEDNODUCHÝCH SOUČÁSTÍ
SM 23 STROJNÍ VÝROBA JEDNODUCHÝCH SOUČÁSTÍ část původního dokumentu (původní text viz Obnova a modernizace technických oborů v Olomouckém kraji, registrační číslo CZ.1.07/1.1.04/02.0071) NÁVRH JEDNODUCHÝCH
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 2 LOŽISKA
Instrukce Měření umělého osvětlení
Instrukce Měření umělého osvětlení Označení: Poskytovatel programu PT: Název: Koordinátor: Zástupce koordinátora: Místo konání: PT1 UO-15 Zdravotní ústav se sídlem v Ostravě, Centrum hygienických laboratoří
2.1.7 Zrcadlo I. Předpoklady: 020106. Pomůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr
2.1.7 Zrcadlo I ředpoklady: 020106 omůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr ř. 1: Nakresli dva obrázky. Na prvním zachyť, jak vidíme vzdálené předměty, na druhém jak vidíme
Všeobecně lze říci, že EUCOR má několikanásobně vyšší odolnost proti otěru než tavený čedič a řádově vyšší než speciální legované ocele a litiny.
KATALOGOVÝ LIST E-02 A. CHARAKTERISTIKA EUCOR je obchodní označení korundo-baddeleyitového materiálu, respektive odlitků, vyráběných tavením vhodných surovin v elektrické obloukové peci, odléváním vzniklé
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Nevyváženost rotorů rotačních strojů je důsledkem změny polohy (posunutí, naklonění) hlavních os setrvačnosti rotorů vzhledem
Tématická oblast Programování CNC strojů a CAM systémy Příprava součásti pro obrábění
Číslo projektu CZ.1.07/1.5.00/34.0556 Číslo materiálu VY_32_INOVACE_VC_CAM_11 Název školy Střední průmyslová škola a Vyšší odborná škola Příbram, Hrabákova 271, Příbram II Autor Martin Vacek Tématická
VY_32_INOVACE_241_Konstrukční spoje_pwp
Číslo projektu Číslo materiálu Název školy Autor CZ.1.07/1.5.00/34.0880 VY_32_INOVACE_241_Konstrukční spoje_pwp Střední odborná škola a Střední odborné učiliště Česká Lípa, 28. října 2707, příspěvková
SYLABUS 5. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE
SYLABUS 5. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Měření a vytyčování úhlů a svislic) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. listopad 2015 1 5. ÚHLOVÉ
DUM 02 téma: Popisové pole na výrobním výkrese
DUM 02 téma: Popisové pole na výrobním výkrese ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika
Řešené příklady z OPTIKY II
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Řešené příklady z OPTIKY II V následujícím článku uvádíme několik vybraných příkladů z tématu Optika i s uvedením
MONTÁŽNÍ A UŽIVATELSKÝ NÁVOD SPRCHOVÝ KOUT PREMIUM PSDKR 1/90 S
763 64 Spytihněv č.p. 576, okres Zlín tel.:+420 577 110 311, fax:+420 577 110 315 teiko@teiko.cz; www.teiko.cz zelená linka 800 100 050 MONTÁŽNÍ A UŽIVATELSKÝ NÁVOD SPRCHOVÝ KOUT PREMIUM PSDKR 1/90 S ver.
Antény. Zpracoval: Ing. Jiří. Sehnal. 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén
ANTÉNY Sehnal Zpracoval: Ing. Jiří Antény 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén Pod pojmem anténa rozumíme obecně prvek, který zprostředkuje přechod elektromagnetické
Předepisování přesnosti rozměrů, tvaru a polohy
Předepisování přesnosti rozměrů, tvaru a polohy Geometrické tolerance Na správné funkci součásti se kromě přesnosti rozměrů a jakosti povrchu významně podílí také geometricky přesný tvar funkčních ploch.
Vysoce pružné spojky typu SET 100; 132; 200; 250; 315; 500; 750kW. s možností montáže brzdy
Kapitálová skupina Fasing Vysoce pružné spojky typu SET 100; 132; 200; 250; 315; 500; 750kW s možností montáže brzdy INFORMÁTOR NÁVOD K OBSLUZE A OPRAVÁM KATALOG SOUČÁSTÍ Vydání 2011 I M2 c KOPIE ORIGINÁLU
Ústav stavebního zkušebníctví Zkušební laboratoř Jiřího Potůčka 115, 530 09 Pardubice ČSN EN 12390-7 ČSN EN 1097-5 ČSN EN 12504-1 ČSN 73 1322
Zkoušky: List 1 z 5 1 * Zkouška konzistence - zkouška sednutím 2 * Zkouška konzistence - zkouška rozlitím 3 * Zkouška objemové hmotnosti 4 * Zkouška obsahu vzduchu. Tlaková metoda 5 Zkouška pevnosti v
Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků
Vzdělávací obor: Matematika a její aplikace Matematika Obsahové, časové a organizační vymezení Charakteristika vyučovacího předmětu 1.-2. ročník 4 hodiny týdně 3.-5. ročník 5 hodin týdně Vzdělávací obsah
Dveře plné ocelové falcované/ s polodrážkou s požární odolností EW 30 DP1
OBSAH : Úvod, kontakty 1. Charakteristika a použití 2. Standardní rozměry 3. Popis standardního provedení 4. Technické parametry 5. Nadstandardní provedení za příplatek 6. Stavební příprava 7. Záruční
DLAŽBA PLOŠNÁ HLADKÁ povrch Standard
TECHNICKÝ LIST BETONOVÉ DLAŽEBNÍ DESKY DLAŽBA PLOŠNÁ HLADKÁ povrch Standard Dlaždice 30/30; Dlaždice 40/40; Dlaždice 50/50 betonové dlažební desky na bázi cementu a plniva (kameniva) modifikované zušlechťujícími
70 350 x 110 10H7 6,5 4622260 70 500 x 110 10H7 9,5 4622261 120 700 x 180 12H7 30 4622262
8-6 Zařízení pro kontrolu obvodového házení 818 Pro rychlou a jednoduchou kontrolu obvodového házení Měřicí deska: Rovinnost dosedací plochy dle DIN 876/1 2 T-drážky pro upevnění upínacích koníků popř.
MONTÁŽNÍ NÁVOD DELTA DESIGN PLECHOVÉ KAZETY, LAMELY A TRAPÉZY
MONTÁŽNÍ NÁVOD DELTA DESIGN PLECHOVÉ KAZETY, LAMELY A TRAPÉZY VŠEOBECNĚ PRACOVNÍ POSTUP 1. Projektová dokumentace zpracovává se na základě dokumentace skutečného provedení stavby - dodá investor, nebo
1. Popis... 3. 2. Provedení... 3 III. TECHNICKÉ ÚDAJE 6. 4. Základní parametry... 6 IV. ÚDAJE PRO OBJEDNÁVKU 6 V. MATERIÁL, POVRCHOVÁ ÚPRAVA 6
Tyto technické podmínky stanoví řadu vyráběných velikostí a provedení krycích mřížek (dále jen mřížek) KMM. Platí pro výrobu, navrhování, objednávání, dodávky, montáž a provoz. I. OBSAH II. VŠEOBECNĚ 3
Fakulta bezpečnostního inženýrství Vysoká škola báňská Technická univerzita Ostrava Tunely Požární bezpečnost část B2
Fakulta bezpečnostního inženýrství Vysoká škola báňská Technická univerzita Ostrava Tunely Požární bezpečnost část B2 Ostrava, 2013 Ing. Isabela Bradáčová, Ing. Petr Kučera, Ph.D. Osnova bloku B Bezpečnostní
Učební texty Montáže - Rozebiratelné a nerozebiratelné spoje
Předmět: Ročník: Vytvořil: Datum: Praxe 2 Fleišman Luděk 29.5.2012 Název zpracovaného celku: Učební texty Montáže - Rozebiratelné a nerozebiratelné spoje Rozebiratelné spoje Def.: Spoje, které lze rozebrat
Návrh opevnění. h s. h min. hmax. nános. r o r 2. výmol. Obr. 1 Definice koryta v oblouku z hlediska topografie dna. Vztah dle Apmanna B
Topografie dna v oblouku. Stanovení hloubky výmolu v konkávní části břehu a nánosu v konvexní části břehu. Výpočet se provádí pro stejný průtok, pro nějž byla stanovena odolnost břehů, tj. Q 20. Q 20 B
TECHNICKÝ LIST BETONOVÉ TVÁRNICE
TECHNICKÝ LIST BETONOVÉ TVÁRNICE BETONOVÁ CIHLA Cihla betonová cihla na bázi cementu a plniva (kameniva) modifikované zušlechťujícími přísadami s povrchovou úpravou History povrchová úprava History vzniká
Měření prostorové průchodnosti tratí
Štefan Mayerberger, Vít Bureš Klíčové slovo: průchodnost tratí. Cíl projektu Měření prostorové průchodnosti tratí Ve firmě ROT-HSware spol. s r.o. ve spolupráci s Výzkumným ústavem železničním, pracoviště
Dřevoobráběcí stroje. Quality Guide. Vyhodnocení nástrojů
Dřevoobráběcí stroje Quality Guide Vyhodnocení nástrojů 2 PrůVoDce kvalitou Vyhodnocení nástrojů Dávno jsou pryč doby, kdy se nástroje od sebe výrazně odlišovali kvalitou a vzhledem provedení. V současnosti
BRICSCAD V13. Přímé modelování
BRICSCAD V13 Přímé modelování Protea spol. s r.o. Makovského 1339/16 236 00 Praha 6 - Řepy tel.: 235 316 232, 235 316 237 fax: 235 316 038 e-mail: obchod@protea.cz web: www.protea.cz Copyright Protea spol.
OPTIMUM M A S C H I N E N - G E R M A N Y
www.1bow.cz tel. 585 378 012 OPTIMUM Návod k obsluze Verze 1.1 Dělící hlava TA 125 Návod pečlivě uschovejte pro další použití! OPTIMUM Dělící hlava 1 Rozsah aplikací Dělící hlava TA 125 se používá jako
Základní prvky a všeobecná lyžařská průprava
Základní prvky a všeobecná lyžařská průprava Základní prvky a všeobecná lyžařská průprava na běžeckých lyžích Základními prvky nazýváme prvky elementární přípravy a pohybových dovedností, jejichž zvládnutí
ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Úloha: 5. Broušení TÉMA 5.2 MĚŘIDLA, MĚŘENÍ A KONTROLA Obor: Ročník: Mechanik seřizovač II. Zpracoval(a): Jiří Žalmánek Střední odborná škola Josefa Sousedíka Vsetín,
SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G
SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se
HERZ svěrné šroubení pro ocelové a měděné trubky
HERZ svěrné pro ocelové a měděné trubky Technický list pro 6273 6292 Vydání AUT 0406 Vydání CZ 0608 5151 M 22 1,5 15 mm Svěrný kroužek, gumové těsnění (EPDM) na potrubí, svěrná matice M 22 1,5. Provedení
Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování učiva 2. ročníku Sčítání a odčítání oboru do 100
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA 3. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování učiva 2. ročníku
1.7. Mechanické kmitání
1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického
Technické a materiálové požadavky pro technickoprovozni evidenci vodních toků v. 2011_02
Geodetická data 1.1 Základní zásady V rámci zpracování TPE jsou pořizována geodetická data, z nichž lze následně vycházet při výpočtu záplavových území, studií odtokových poměrů a ostatních činností při
iglidur "Clips" pouzdra iglidur
iglidur Produktová řada Snadná montáž Dvě příruby Dobrá odolnot proti opotřebení Samomazné předvídatelnou životnotí Speciální rozměry jou možné HENNLICH.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz
VY_32_INOVACE_253_Konstrukční spoje_pwp
Číslo projektu Číslo materiálu Název školy Autor CZ.1.07/1.5.00/34.0880 VY_32_INOVACE_253_Konstrukční spoje_pwp Střední odborná škola a Střední odborné učiliště Česká Lípa, 28. října 2707, příspěvková