10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI
|
|
- Ludvík Kašpar
- před 8 lety
- Počet zobrazení:
Transkript
1 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí síťových zdrojů. Protože neexistuje dokonalý magnetický vodič relativní permeabilita jádra je maximálně v desítkách tisíc a vzduch má relativní permeabilitu, magnetický tok se neuzavírá pouze jádrem a vždy existuje rozptylové magnetické pole. Pokud tento fakt nezohledníme při konstrukci elektronického zařízení s transformátorem a do oblasti rozptylového pole umístíme třeba desku plošného spoje, bude se do smyček vodičů na spoji indukovat rušivé napětí 50 Hz (tzv. brum). Úloha ukazuje velikost rozptylového pole u konkrétních transformátorů a seznamuje rovněž s principy a problémy spojenými s jeho měřením. Po změření úlohy bude jasné, proč jsou např. v zesilovačích pro akustické účely zásadně používány toroidní transformátory. Zleva: EI transformátor, jádro EI transf. (vinutí patří na širší středový sloupek), toroidní transformátor a jeho řez Otázky k úloze (domácí příprava): Jaký senzor je vhodný pro měření maximální hodnoty indukce střídavého magnetického pole? Jaká hodnota výstupního napětí u tohoto senzoru (střední, efektivní nebo maximální) odpovídá maximální hodnotě indukce? Úkol měření. Změřte indukci rozptylového magnetického pole (μt) transformátoru s jádrem EI. Výsledky měření zpracujte v Excelu do společného paprskového grafu (jako v obr. 4).. Ověřte potlačení rozptylového magnetického pole u toroidního transformátoru. Otáčením transformátoru vyhledejte maximum pole v poloze a srovnejte ho s maximem pole u transformátoru EI. Nepovinná část: 3. Určete rezonanční kmitočet snímací cívky. 4. Měřením ve větší vzdálenosti v tzv. Gaussových polohách (v poloze pro = 0 o, v poloze pro = 90 o ) u transformátoru EI ověřte, zda indukce mg. pole klesá se 3. mocninou vzdálenosti. 5. U transformátoru EI zvažte, lze-li rozptylové pole ve vzdálenosti 5 cm považovat za pole přibližně dipólového charakteru. Pokud ano, spočtěte Ampérův magnetický moment ma (Am ) Str. /8
2 Poznámky k měření K bodu : Měření proveďte ve vodorovné rovině procházející středním sloupkem transformátoru (viz obr. ). U tohoto typu transformátoru s cívkou na středním sloupku lze očekávat přibližně dipólový charakter rozptylového pole (viz obr. 3). Umístěte transformátor na polohovacím zařízení tak, aby osa cívky byla ve směru Měřte s cívkou citlivou ve směru (radiální) a citlivou ve směru (tangenciální), vždy ve vzdálenosti 5 cm od středu transformátoru. Pro oba směry citlivosti měřte s krokem minimálně K bodu : Zde měřte v rovině kolmé na osu rotace transformátoru (obr. ). Obr.. Umístění transformátoru s jádrem EI na polohovacím zařízení Obr.. Umístění toroidního transformátoru na polohovacím zařízení Obr. 3. Magnetické pole dipólového zdroje U ideálního toroidního transformátoru (homogenní jádro, rovnoměrné vinutí) se veškerý tok uzavírá jádrem a rozptylový tok je nulový. U reálného transformátoru, kde není celistvý počet vrstev vinutí, se rozptylový tok objevuje zejména tehdy, je-li jeho jádro více syceno (klesá permeabilita). Str. /8
3 K bodu a : Pro periodické průběhy s jedním průchodem nulou během periody lze magnetickou indukci vypočítat ze vztahu U s Bm () 4 f S N kde Bm je maximální hodnota složky měřené indukce B(t) (T), Us aritmetická střední hodnota napětí U(t) (po dvoucestném usměrnění) indukovaného v měřicí cívce (V), f kmitočet základní harmonické měřeného napětí (Hz), N počet závitů měřicí cívky, S plocha průřezu měřicí cívky (m ). Součin NS se často určuje kalibrací cívky ve známém poli a nazývá se závitová plocha (m ). NS měřicí cívky je...,,,,,,,, m. Poznámka: Budeme-li napětí indukované v měřicí cívce měřit voltmetrem udávajícím hodnotu Uef získanou měřením střední hodnoty Us po dvoucestném usměrnění a násobením činitelem tvaru, pro sinusový průběh, můžeme hodnotu Us získat vydělením údaje přístroje,. (Pozor, pro neharmonický průběh neodpovídá údaj efektivní hodnotě). Magnetické pole dipólu Ideální dipól (obr. 3) je tvořen nekonečně malým zdrojem ma. V praxi velmi dobře dipólovému zdroji odpovídá pro vzdálenosti x >> d malý jednovrstvý solenoid s poměrem l/d = /. Jeho Ampérův magnetický moment ma = NSI (m ). V rovině dipólu lze radiální a tangenciální složky indukce spočítat ze vztahu B m cos 4 r m sin 4 r 0 A 0 A rad 3 tg 3 B B total B B (), (3), (4) Průběh Brad = f(), Btg = f() a Btotal = f() je pro konstantní vzdálenost od dipólu uveden na obr. 4. rad tg Brad (poloha "") Btg (poloha "") B total Obr.4. Průběh B rad = f(), B tg = f() a B total = f() pro konstantní vzdálenost od dipólu Poznámka: Měřicí cívka s voltmetrem nerozlišuje fázi napětí, proto jsou v modelu na obr. 4 funkce sin a cos počítány v absolutní hodnotě. Str. 3/8
4 K bodu 3: Určení rezonančního kmitočtu cívky Měřicí cívku lze nahradit obvodem RLC dle obr 5. Je zřejmé, že se jedná o paralelní rezonanční obvod. Pokud se frekvence měřeného pole (nebo některá složka jeho frekvenčního spektra) přiblíží rezonančnímu kmitočtu fr, vybudí se v cívce rezonance a měření je zatíženo hrubou chybou. Před použitím měřicí cívky se tedy musíme přesvědčit, že tento stav nenastane. Hodnotu vlastního rezonančního kmitočtu fr cívky můžeme zjistit v zapojení dle obr. 5, kde při rezonančním kmitočtu nastane minimum proudu. ma I měřicí cívka L s C p R s G U V Obr. 5 Obvod pro stanovení vlastního rezonančního kmitočtu měřicí cívky Poznámka : Kapacita Cp je fiktivní a nahrazuje účinek jednotlivých mezizávitových kapacit. Náhradní obvod dobře vyhovuje pro nejnižší rezonanční kmitočet, kapacita Cp je zde tvořena hlavně kapacitou kabelu. Poznámka : V současné době je v mnoha zařízeních tzv. spínaný zdroj. I v něm je transformátor, síťové napětí je ale nejprve usměrněno, potom znovu rozstřídáno na kmitočtu desítek až stovek khz, transformováno a opět usměrněno. Z rovnice (6) vyplývá, že pro vyšší kmitočet postačí menší transformátor. Str. 4/8
5 0b. Měření amplitudové permeability Úvod: Z níže uvedené rovnice (6) mimo jiné vyplývá, že pokud v jádru transformátoru můžeme dosáhnout vyšší hodnoty Bm, můžeme ušetřit na průřezu transformátor bude menší, nebo na mědi transformátor bude tvrdší a hlavně levnější a s menšími ztrátami. Pokud ale maximální hodnotu Bm překročíme, klesne permeabilita, dramaticky rostou ztráty a také rozptylové pole. Hledisko ztrát je velmi významné u distribučních transformátorů velkých výkonů, kde každá desetina procenta zlepšení účinnosti přináší velké ekonomické úspory. Tvar hysterezní smyčky má zásadní vliv i na parametry senzorů, které obsahují jádro z magnetického materiálu (senzory proudu, senzory magnetické indukce). Úloha prezentuje základní principy měření magnetických parametrů feromagnetických materiálů. BH smyčka moderního materiálu pro distribuční transformátory (porovnání nežíhaného a žíhaného materiálu) Otázky k úloze (domácí příprava): Za jakých podmínek lze určit intenzitu magnetického pole z magnetovacího proudu? Za jakých podmínek lze použít pasivní integrační článek pro integraci indukovaného napětí? Úkol měření:. Zapojte měřicí obvod dle obr.. Tr Tr i N N R R 0 V ~ U R 4 = 0, U V R 3 C U v OSC Y OSC X Obr.. Schéma zapojení pro měření amplitudové permeability a zobrazení dynamické hysterezní smyčky na osciloskopu. Zobrazte na osciloskopu (viz obr. 4) dynamickou hysterezní smyčku prstencového (toroidního) vzorku magneticky měkkého materiálu při napěťovém magnetování (sinusovém průběhu B) pro zadanou maximální hodnotu magnetické indukce Bm =,75 T. Pozorujte vliv velikosti integrační konstanty použitého pasivního integračního RC článku na tvar smyčky a pro další měření rozhodněte, který z rezistorů R, R, R3 v integračním článku je vhodné použít. Str. 5/8
6 3. Z naměřené hodnoty Im a zadaných parametrů vzorku určete hodnotu Hm. Odečtem z osciloskopu zjistěte hodnotu remanence Br a koercitivity Hc. 4. Změřte závislost amplitudové permeability μa na maximální hodnotě magnetické indukce pro zadané hodnoty Bm = 0,45; 0,65; 0,9;,;,3;,55;,75 T. Poznámky k měření: Před měřením spočtěte pro zadané hodnoty Bm odpovídající hodnoty indukovaného napětí na měřicím vinutí N. Maximální hodnoty magnetovacího proudu Im se zjišťují měřením úbytku napětí na snímacím rezistoru číslicovým osciloskopem viz obr. 5. (Synchronizace Line - síťovým kmitočtem, hodnotu Up-p měřte s průměrováním.) Parametry vzorku: počty závitů: N = 3 z, N = 64 z rozměry: D = 50 mm, D = 98 mm, v = 40 mm v S D D Obr.. Prstencový vzorek K bodu : Výpočet B m Z Faradayova indukčního zákona odvodíme t d dbt ui t N N S () Fe dt dt kde ui(t) je okamžitá hodnota indukovaného napětí (V), N počet závitů sekundárního (měřicího) vinutí, SFe průřez měřeného vzorku (m ), t okamžitá hodnota magnetického toku ve vzorku (Wb); () pro okamžitou hodnotu magnetické indukce B(t) platí Bt N S t Fe 0 ui t d t () Ze vztahu () vyplývá, že časový průběh magnetické indukce má stejný tvar jako průběh integrálu indukovaného napětí. Střídavá magnetická měření se standardně provádějí při sinusovém průběhu magnetické indukce, což odpovídá požadavku sinusového průběhu indukovaného napětí. Tuto podmínku je nutné dodržet, protože parametry magnetických materiálů, jako např. permeabilita, koercitivita nebo ztráty jsou závislé na průběhu indukce. Požadovaného sinusového průběhu indukce B(t) se dosahuje tzv. napěťovým magnetováním, tj. buzením vzorku ze zdroje sinusového napětí. Celková impedance magnetovacího obvodu musí být tedy co nejmenší. Jako snímací rezistor pro měření magnetovacího proudu je proto nutné použít rezistor malé hodnoty (pro měření magnetovacího proudu nelze použít ampérmetr, protože proud není sinusový). Při měření musíme dodržet také nízký výstupní odpor napájecího zdroje (což je obvykle odpor vinutí napájecího transformátoru) a nízký odpor primárního (magnetovacího) vinutí vzorku. Tento požadavek lze snadno dodržet při použití napájecího transformátoru dimenzovaného na velký proud (s velkým průřezem vinutí) a magnetovacího vinutí s velkým průřezem drátu. Hodnotu Bm lze pro obecný periodický průběh stanovit z aritmetické střední hodnoty indukovaného napětí. Integrujeme-li rovnici (), dostaneme pro kladnou půlperiodu napětí ui(t) rovnici Str. 6/8
7 a po vydělení rovnice hodnotou T/ bude T t 4 u t t T i d T N t T t t u t dt N m, kde i T m d f (4) Levá strana rovnice (4) je aritmetická střední hodnota Usar indukovaného napětí, kterou určíme např. z údaje voltmetru s usměrňovačem vydělením údaje činitelem,. (V tomto případě nelze použít voltmetr, který měří efektivní hodnotu.) Dostaneme tedy U 4 f N (5) sar a konečně pro maximální hodnotu magnetické indukce vztah Fe m U Bm (6) 4,44 f N S kde U je údaj voltmetru s usměrňovačem (V), který měří aritmetickou střední hodnotu, ale udává tuto hodnotu násobenou činitelem,; f frekvence magnetovacího proudu (Hz). m C u i US CM + CM - CM (3) 0 t 0 t t T/ Obr. 3. Průběh magnetického toku a indukovaného napětí t Integrace Přenos pasivního integračního RC článku je U v U jrc (7) Platí-li RC >> můžeme psát U v, U jrc (8) což je přenos ideálního integrátoru. Použití příliš malé časové konstanty RC integrátoru a tedy nesplnění podmínky RC >> vede ke zkreslení tvaru hysterezní smyčky. Použijeme-li velkou hodnotu RC, bude sice tato podmínka splněna, ale amplituda výstupního napětí integrátoru Uv může být příliš malá pro kvalitní zobrazení hysterezní smyčky na osciloskopu. Hodnoty použitých prvků RC článku: C = 470 nf, R = 40 kr = 0 kr3 = 350 k Poznámka: Pasivní integrační RC článek lze nahradit přesným elektronickým integrátorem. V měřicím systému řízeném počítačem, kde se využívá vzorkování průběhů, se integrace provádí numericky. Str. 7/8
8 K bodu 3: Pro intenzitu magnetického pole uvnitř prstencového vzorku platí vztah N Ht l s i t (9) kde H(t) je okamžitá hodnota intenzity magnetického pole (A m - ), N počet závitů primárního (magnetovacího) vinutí, ls střední délka siločáry ve vzorku (m), ls D D D pro <.3 D i(t) okamžitá hodnota magnetovacího proudu (A), D, D vnější a vnitřní průměr vzorku [m]. Časový průběh H(t) tedy přímo odpovídá časovému průběhu i(t). Je-li průběh H(t) a i(t) deformovaný, nelze hodnotu Hm počítat ani z efektivní, ani z aritmetické střední hodnoty proudu i(t). Špičkovou hodnotu Im lze s dostatečnou přesností změřit číslicovým osciloskopem (obr. 5). Poznámka: Mají-li být měřením stanoveny vlastnosti materiálu, musí být vzorek magnetován homogenně. To je dostatečně splněno pro D /D <.3. Při velkém poměru poloměrů je materiál blíže k vnitřnímu průměru vystaven výrazně vyšší intenzitě než materiál u obvodu vnějšího a jádro je tedy magnetováno nerovnoměrně. Získané výsledky jsou průměrnou hodnotou přes celý průřez a nelze je považovat za správnou charakteristiku materiálu. Tato skutečnost nevadí v případě, že naměřené výsledky chápeme jako charakteristiku příslušného uzavřeného vzorku (náš případ). Str. 8/8
9 Obr. 4. Princip výpočtu hodnoty H c a B r s použitím kurzorů v režimu XY Obr. 5. Měření maximální hodnoty proudu osciloskopem v režimu Quick meas, pro R 4 = 0, platí I m = 0 U p-p /. K bodu 4: Amplitudová permeabilita je definována z poměru amplitud (tj. maximálních hodnot) veličin B a H podle vztahu Bm a (-; T, H m -, A m - ) (8) H kde 0 = 40-7 H/m. 0 m Str. 9/8
10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI
0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci
VíceMĚŘENÍ HYSTEREZNÍ SMYČKY TRANSFORMÁTORU
niverzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 4 MĚŘEÍ HYSTEREZÍ SMYČKY TRASFORMÁTOR Jméno(a): Jiří Paar, Zdeněk epraš (Dušan Pavlovič, Ondřej
VíceMĚŘENÍ HYSTEREZNÍ SMYČKY TRANSFORMÁTORU
niverzita Pardubice Ústav elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 4 MĚŘEÍ HYSTEREZÍ SMYČKY TRASFORMÁTOR Jméno(a): Ondřej Karas, Miroslav Šedivý, Ondřej Welsch
Více1 Přesnost měření efektivní hodnoty různými typy přístrojů
1 Přesnost měření efektivní hodnoty různými typy přístrojů Cíl: Cílem této laboratorní úlohy je ověření vhodnosti použití různých typů měřicích přístrojů při měření efektivních hodnot střídavých proudů
Více6. Střídavý proud. 6. 1. Sinusových průběh
6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.
VíceLaboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí
Laboratorní úloha KLS Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULTISIM.0) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť
VíceMĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH.
MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. 1. Měření napětí ručkovým voltmetrem. 1.1 Nastavte pomocí ovládacích prvků na ss zdroji napětí 10 V. 1.2 Přepněte voltmetr na rozsah 120 V a připojte
VíceSynchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu.
ZADÁNÍ: ) Seznamte se se zapojením a principem činnosti synchronního detektoru 2) Změřte statickou převodní charakteristiku synchronního detektoru v rozsahu vstupního ss napětí ±V a určete její linearitu.
VícePracovní třídy zesilovačů
Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému
VíceLaboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku
Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá
VíceLaboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí
Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULISIM) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť
VícePokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_EM_2.11_měření rekvence a áze Střední odborná škola a Střední odborné učiliště,
Více17 Vlastnosti ručkových měřicích přístrojů
17 Vlastnosti ručkových měřicích přístrojů Ručkovými elektrickými přístroji se měří základní elektrické veličiny, většinou na principu silových účinků poli. ato pole jsou vytvářena buď přímo měřeným proudem,
VíceEle 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu
Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 9. 203 Ele elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu
Více6. Senzory elektrického proudu. Měření výkonu.
6. Senzory elektrického proudu. Měření výkonu. Úvod: Elektrický proud [A] je jedinou elektrickou veličinou v soustavě SI. Proud potřebujeme měřit při konstrukci, oživování a opravách elektronických zařízení.
VíceMĚŘENÍ Laboratorní cvičení z měření Měření magnetických veličin, část 3-9-1
MĚŘENÍ Laboratorní cvičení z měření Měření magnetických veličin, část 3-9-1 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada:
VíceHarmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1
Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. Zadání. Naučte se pracovat s generátorem signálů Agilent 3320A, osciloskopem Keysight a střídavým voltmetrem Agilent 34405A. 2. Zobrazte
VíceVY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory
Číslo projektu Číslo materiálu CZ..07/.5.00/34.058 VY_3_INOVACE_ENI_.MA_04_Zesilovače a Oscilátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
VíceÚloha 1 Multimetr. 9. Snižte napájecí napětí na 0V (otočením ovládacího knoflíku výstupního napětí zcela doleva).
Úloha 1 Multimetr CÍLE: Po ukončení tohoto laboratorního cvičení byste měli být schopni: Použít multimetru jako voltmetru pro měření napětí v provozních obvodech. Použít multimetru jako ampérmetru pro
Více3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. P = 1 T
1 Pracovní úkol 1. Změřte účiník (a) rezistoru (b) kondenzátoru (C = 10 µf) (c) cívky Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost
VíceMĚŘENÍ TRANZISTOROVÉHO ZESILOVAČE
Úloha č. 3 MĚŘÍ TRAZISTOROVÉHO ZSILOVAČ ÚOL MĚŘÍ:. Změřte a) charakteristiku I = f (I ) při U = konst. tranzistoru se společným emitorem a nakreslete její graf; b) zesilovací činitel β tranzistoru se společným
VíceSeznámení s přístroji, používanými při měření. Nezatížený a zatížený odporový dělič napětí, měření a simulace PSpice
Cvičení Seznámení s přístroji, používanými při měření Nezatížený a zatížený odporový dělič napětí, měření a simulace PSpice eaktance kapacitoru Integrační článek C - přenos - měření a simulace Derivační
VíceUniverzita Tomáše Bati ve Zlíně
Univerzita omáše Bati ve Zlíně LABORAORNÍ CVIČENÍ ELEKROECHNIKY A PRŮMYSLOVÉ ELEKRONIKY Název úlohy: Měření frekvence a fázového posuvu proměnných signálů Zpracovali: Petr Luzar, Josef Moravčík Skupina:
VíceMĚŘENÍ Laboratorní cvičení z měření. Měření magnetických veličin, část 3-9-4
MĚŘEÍ Laboratorní cvičení z měření Měření magnetických veličin, část 3-9-4 Číslo projektu: CZ..07/.5.00/34.0093 ázev projektu: Inovace výuky na VOŠ a PŠ Šumperk Šablona: III/ Inovace a zkvalitnění výuky
VíceElektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112
Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška
Vícenapájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól
. ZESILOVACÍ OBVODY (ZESILOVAČE).. Rozdělení, základní pojmy a vlastnosti ZESILOVAČ Zesilovač je elektronické zařízení, které zesiluje elektrický signál. Má vstup a výstup, tzn. je to čtyřpól na jehož
Více3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.
Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost
Více2. Určete komplexní impedanci dvojpólu, jeli dáno: S = 900 VA, P = 720 W a I = 20 A, z jakých prvků lze dvojpól sestavit?
Otázky a okruhy problematiky pro přípravu na státní závěrečnou zkoušku z oboru EAT v bakalářských programech strukturovaného studia na FEL ZČU v ak. r. 2013/14 Soubor obsahuje tématické okruhy, otázky
VíceDatum tvorby 15.6.2012
Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_2.MA_01_Lineární prvky el_obvodů Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
Více11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr
Úvod: 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Odporové senzory teploty (například Pt100, Pt1000) použijeme pokud chceme měřit velmi přesně teplotu v rozmezí přibližně 00 až +
VíceProjekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE Použitá literatura: Kesl, J.: Elektronika I - analogová technika, nakladatelství BEN - technická
VíceEle 1 RLC v sérií a paralelně, rezonance, trojfázová soustava, trojfázové točivé pole, rozdělení elektrických strojů
Předmět: očník: Vytvořil: Datum: ELEKTOTECHNIKA PVNÍ ZDENĚK KOVAL Název zpracovaného celku: 3. 0. 03 Ele LC v sérií a paralelně, rezonance, trojfázová soustava, trojfázové točivé pole, rozdělení elektrických
VíceELEKTŘINA A MAGNETIZMUS
EEKTŘINA A MAGNETIZMUS XII Střídavé obvody Obsah STŘÍDAÉ OBODY ZDOJE STŘÍDAÉHO NAPĚTÍ JEDNODUHÉ STŘÍDAÉ OBODY EZISTO JAKO ZÁTĚŽ 3 ÍKA JAKO ZÁTĚŽ 5 3 KONDENZÁTO JAKO ZÁTĚŽ 6 3 SÉIOÝ OBOD 7 3 IMPEDANE 3
VíceOsciloskopické sondy. http://www.coptkm.cz/
http://www.coptkm.cz/ Osciloskopické sondy Stejně jako u ostatních měřicích přístrojů, i u osciloskopu jde především o to, aby připojení přístroje k měřenému místu nezpůsobilo nežádoucí ovlivnění zkoumaného
VíceMěření vlastností střídavého zesilovače
Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. 7 Měření vlastností střídavého zesilovače Datum měření: 8. 11. 2011 Datum
VíceTeoretické úlohy celostátního kola 53. ročníku FO
rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž
VíceRezonanční elektromotor
- 1 - Rezonanční elektromotor Ing. Ladislav Kopecký, 2002 Použití elektromechanického oscilátoru pro převod energie cívky v rezonanci na mechanickou práci má dvě velké nevýhody: 1) Kmitavý pohyb má menší
VíceSMĚŠOVAČ 104-4R 6.10. 13.10. 7
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy SMĚŠOVAČ 104-4R Zadání 1. Sestavte měřící obvod pro měření
VíceÚčinky elektrického proudu. vzorová úloha (SŠ)
Účinky elektrického proudu vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud jako
VíceMĚŘENÍ Laboratorní cvičení z měření. Měření magnetických veličin, část 3-9-3
MĚŘENÍ Laboratorní cvičení z měření Měření magnetických veličin, část 3-9-3 Číslo projektu: CZ..07/.5.00/34.0093 Název projektu: Inovace výuky na VOŠ a SPŠ Šumperk Šablona: III/ Inovace a zkvalitnění výuky
Vícesf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj
http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru
VíceKAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE
KAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE (2.2, 2.3 a 2.4) Ing. Pavel VYLEGALA 2014 Kapacitní snímače Vyhodnocují kmity oscilačního obvodu RC. Vniknutím předmětu do elektrostatického pole kondenzátoru
VíceFyzikální praktikum...
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při
VíceW1- Měření impedančního chování reálných elektronických součástek
Návod na laboratorní úlohu Laboratoře oboru I W1- Měření impedančního chování reálných elektronických součástek Úloha W1 1 / 6 1. Úvod Impedance Z popisuje úhrnný "zdánlivý odpor" prvků obvodu při průchodu
VíceMěření kapacity Opakování kapacita C (farad F) kapacita deskového kondenzátoru
Měření kapacity Opakování kapacita C (farad F) kapacita deskového kondenzátoru kde ε permitivita S plocha elektrod d tloušťka dielektrika kapacita je schopnost kondenzátoru uchovávat náboj kondenzátor
Více4. Magnetické pole. 4.1. Fyzikální podstata magnetismu. je silové pole, které vzniká v důsledku pohybu elektrických nábojů
4. Magnetické pole je silové pole, které vzniká v důsledku pohybu elektrických nábojů 4.1. Fyzikální podstata magnetismu Magnetické pole vytváří permanentní (stálý) magnet, nebo elektromagnet. Stálý magnet,
VíceE L E K T R I C K Á M Ě Ř E N Í
Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace E L E K T R I C K Á M Ě Ř E N Í R O Č N Í K MĚŘENÍ ZÁKLDNÍCH ELEKTRICKÝCH ELIČIN Ing. Bouchala Petr Jméno a příjmení Třída Školní
VíceZadání úlohy: Schéma zapojení: Střední průmyslová škola elektroniky a informatiky, Ostrava, příspěvková organizace. Třída/Skupina: / Měřeno dne:
Číslo úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Název úlohy: Zobrazení hysterézní smyčky feromagnetika pomocí osciloskopu Spolupracovali ve skupině.. Zadání úlohy: Proveďte zobrazení hysterezní
Více4.SCHÉMA ZAPOJENÍ. a U. kde a je zisk, U 2 je výstupní napětí zesilovače a U vst je vstupní napětí zesilovače. Zesilovač
RIEDL 4.EB 7 1/6 1.ZADÁNÍ a) Změřte frekvenční charakteristiku korekčního předzesilovače b) Znázorněte ji graficky na semiaritmický papír. Měření proveďte při souměrném napájení 1V v pásmu 10Hz až 100kHz,
Více5. ELEKTRICKÁ MĚŘENÍ
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 5. ELEKTCKÁ MĚŘENÍ rčeno pro posluchače všech bakalářských studijních programů FS 5.1 Úvod 5. Chyby měření 5.3 Elektrické
VíceLaboratorní úloha č. 1 Základní elektrická měření
Laboratorní úloha č. 1 Základní elektrická měření Úkoly měření: 1. Zvládnutí obsluhy klasických multimetrů. 2. Jednoduchá elektrická měření měření napětí, proudu, odporu. 3. Měření volt-ampérových charakteristik
Více1.5 Operační zesilovače I.
.5 Operační zesilovače I..5. Úkol:. Změřte napěťové zesílení operačního zesilovače v neinvertujícím zapojení 2. Změřte napěťové zesílení operačního zesilovače v invertujícím zapojení 3. Ověřte vlastnosti
VíceINFORMACE NRL č. 12/2002 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí 50 Hz. I. Úvod
INFORMACE NRL č. 12/2 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí Hz I. Úvod V poslední době se stále častěji setkáváme s dotazy na vliv elektromagnetického pole v okolí
VíceZkouškové otázky z A7B31ELI
Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se
VíceŘešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
VíceNávod k přípravku pro laboratorní cvičení v předmětu EO.
Měření na výkonovém zesilovači Návod k přípravku pro laboratorní cvičení v předmětu EO. Cílem měření je seznámit se s funkcí výkonového zesilovače, pracujícího ve třídě B, resp. AB. Hlavními úkoly jsou:
Více9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM
9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM Úkoly měření: 1. Změřte převodní charakteristiku deformačního snímače síly v rozsahu 0 10 kg 1. 2. Určete hmotnost neznámého závaží. 3. Ověřte, zda lze měření zpřesnit
VícePříklady: 31. Elektromagnetická indukce
16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci
VíceZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ
VíceIntegrovaná střední škola, Sokolnice 496
Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných
Více22.9. 29.9. 11. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy MĚŘENÍ NA VEDENÍ 102-4R-T,S Zadání 1. Sestavte měřící
Více3. Komutátorové motory na střídavý proud... 29 3.1. Rozdělení střídavých komutátorových motorů... 29 3.2. Konstrukce jednofázových komutátorových
ELEKTRICKÁ ZAŘÍZENÍ 5 KOMUTÁTOROVÉ STROJE MĚNIČE JIŘÍ LIBRA UČEBNÍ TEXTY PRO VÝUKU ELEKTROTECHNICKÝCH OBORŮ 1 Obsah 1. Úvod k elektrickým strojům... 4 2. Stejnosměrné stroje... 5 2.1. Úvod ke stejnosměrným
VíceMĚŘENÍ JALOVÉHO VÝKONU
MĚŘENÍ JALOVÉHO VÝKONU &1. Které elektrické stroje jsou spotřebiči jalového výkonu a na co ho potřebují? &2. Nakreslete fázorový diagram RL zátěže připojené na zdroj střídavého napětí. &2.1 Z fázorového
VíceMĚŘĚNÍ LOGICKÝCH ČÍSLICOVÝCH OBVODŮ TTL I
MĚŘĚNÍ LOGICKÝCH ČÍSLICOÝCH OBODŮ TTL I 1. Podle katalogu nakreslete vývody a vnitřní zapojení obvodu MH7400. Jde o čtveřici dvouvstupových hradel NND. 2. Z katalogu vypište mezní hodnoty a charakteristické
Vícevýkon střídavého proudu, kompenzace jalového výkonu
, výkon střídavého proudu, kompenzace jalového výkonu Návod do měření ng. Václav Kolář, Ph.D., Doc. ng. Vítězslav týskala, Ph.D., poslední úprava 0 íl měření: Praktické ověření vlastností reálných pasivních
VíceVyzařování černého tělesa, termoelektrický jev, závislost odporu na teplotě.
Klíčová slova Vyzařování černého tělesa, termoelektrický jev, závislost odporu na teplotě. Princip Podle Stefanova-Boltzmannova zákona vyzařování na jednotu plochy a času černého tělesa roste se čtvrtou
VíceModerní číslicové řídicí systémy vstupy, výstupy, připojení snímačů, problematika rušení (zpracoval P. Beneš)
Moderní číslicové řídicí systémy vstupy, výstupy, připojení snímačů, problematika rušení (zpracoval P. Beneš) Řídicí systém obvykle komunikuje s řízenou technologií prostřednictvím snímačů a akčních členů.
VíceNázev: Zdroje stejnosměrného napětí
Výukové materiály Název: Zdroje stejnosměrného napětí Téma: Zdroje stejnosměrného elektrického napětí RVP: využití Ohmova zákona při řešení praktických problémů Úroveň: střední škola Tematický celek: Praktické
Více20ZEKT: přednáška č. 10. Elektrické zdroje a stroje: výpočetní příklady
20ZEKT: přednáška č. 10 Elektrické zdroje a stroje: výpočetní příklady Napětí naprázdno, proud nakrátko, vnitřní odpor zdroje Théveninův teorém Magnetické obvody Netočivé stroje - transformátory Točivé
VíceMěření kmitočtu a tvaru signálů pomocí osciloskopu
Měření kmitočtu a tvaru signálů pomocí osciloskopu Osciloskop nebo také řidčeji oscilograf zobrazuje na stínítku obrazovky nebo LC displeji průběhy připojených elektrických signálů. Speciální konfigurace
Více3.1 Magnetické pole ve vakuu a v látkovén prostředí
3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká
VíceELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 2006, překlad: Vladimír Scholtz (2007) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 51: ŽÁROVKY A BATERIE 2 OTÁZKA 52: ŽÁROVKY A
VíceLaboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer
Laboratorní úloha č. Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon Max Šauer 14. prosince 003 Obsah 1 Popis úlohy Úkol měření 3 Postup měření 4 Teoretický rozbor
VíceMěření vlastností optických vláken a WDM přenos
Obecný úvod Měření vlastností optických vláken a WDM přenos Úloha se věnuje měření optických vláken, jejich vlastností a rušivých jevů souvisejících s vzájemným nedokonalým navázáním v konektorech. Je
VíceElektrotechnická měření - 2. ročník
Protokol SADA DUM Číslo sady DUM: Název sady DUM: VY_32_INOVACE_EL_7 Elektrotechnická měření pro 2. ročník Název a adresa školy: Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov Registrační
VíceMˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika
Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická
VíceMagneticky měkké materiály
Magneticky měkké materiály Pro DC: Nízkouhlíkaté oceli (max. 0,05 % C) Slitiny Fe-Ni (permalloye) (i pro AC) Slitina Fe Co (50 50) Permendur H s až 2,45 T Pro AC: Fe Si, Si: H c µ B s ρ křehkost Permalloye
VíceA U. kde A je zesílení zesilovače, U 2 je výstupní napětí zesilovače a U 1 je vstupní napětí na zesilovači. Zisk po té můžeme vypočítat podle vztahu:
RIEDL 4.EB 6 /8.ZDÁNÍ a) Na předložeém ízkofrekvečím zesilovači změřte vstupí impedaci b) Změřte zesíleí a zisk pro výko 50% c) Změřte útlumovou charakteristiku Měřeí proveďte při cc =0V a maximálě 50%
VíceInterakce ve výuce základů elektrotechniky
Střední odborné učiliště, Domažlice, Prokopa Velikého 640, Místo poskytovaného vzdělávaní Stod, Plzeňská 245 CZ.1.07/1.5.00/34.0639 Interakce ve výuce základů elektrotechniky OBVODY RLC Číslo projektu
VíceKroužek elektroniky 2010-2011
Dům dětí a mládeže Bílina Havířská 529/10 418 01 Bílina tel. 417 821 527 http://www.ddmbilina.cz e-mail: ddmbilina@seznam.cz Kroužek elektroniky 2010-2011 Dům dětí a mládeže Bílina 2010-2011 1 (pouze pro
Více4 Blikání světelných zdrojů způsobené kolísáním napětí
4 Blikání světelných zdrojů způsobené kolísáním napětí Cíl: Cílem laboratorní úlohy je ověření vlivu rychlých změn efektivní hodnoty napětí na vyzařovaný světelný tok světelných zdrojů. 4.1 Úvod Světelný
VíceGE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 20. 3. 2014
VíceMikroelektronika a technologie součástek
FAKULTA ELEKTROTECHNKY A KOMUNKAČNÍCH TECHNOLOGÍ VYSOKÉ UČENÍ TECHNCKÉ V BRNĚ Mikroelektronika a technologie součástek laboratorní cvičení Garant předmětu: Doc. ng. van Szendiuch, CSc. Autoři textu: ng.
VíceFázory, impedance a admitance
Fázory, impedance a admitance 1 Dva harmonické zdroje napětí s frekvencí jsou zapojeny sériově a S použitím fázorů vypočítejte časový průběh napětí mezi výstupními svorkami, jestliže = 30 sin(100¼t);u
Více1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.
Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)
VíceMĚŘENÍ POLOVODIČOVÉHO USMĚRŇOVAČE STABILIZACE NAPĚTÍ
Úloha č. MĚŘENÍ POLOVODIČOVÉHO SMĚRŇOVČE STBILIZCE NPĚTÍ ÚKOL MĚŘENÍ:. Změřte charakteristiku křemíkové diody v propustném směru. Měřenou závislost zpracujte graficky formou I d = f ( ). d. Změřte závěrnou
VíceZesilovač s tranzistorem MOSFET
Cvičení 8 Zesilovač s tranzistorem MOFET Nastavení klidového pracovního bodu a mezní parametry tranzistoru imulace vlivu teploty na polohu P, stabilizace Náhradní Lineární Obvod tranzistoru MOFET, odečet
VíceMotor s kotvou nakrátko. Konstrukce: a) stator skládá se: z nosného tělesa (krytu) motoru svazku statorových plechů statorového vinutí
Trojfázové asynchronní motory nejdůležitější a nejpoužívanější trojfázové motory jsou označovány indukční motory magnetické pole statoru indukuje v rotoru napětí a vzniklý proud vyvolává sílu otáčející
VíceObsah. 4.1 Astabilní klopný obvod(555)... 7 4.2 Astabilní klopný obvod(diskrétní)... 7
Obsah 1 Zadání 1 2 Teoretický úvod 1 2.0.1 doba náběhu impulsu....................... 2 2.0.2 překmit čela............................ 2 2.0.3 šířka impulsu........................... 2 2.0.4 pokles vrcholu
Více1. Určete proud procházející vodičem, jestliže za jednu minutu prošel jeho průřezem náboj a) 150 C, b) 30 C.
ELEKTRICKÝ PROUD 1. Určete proud procházející vodičem, jestliže za jednu minutu prošel jeho průřezem náboj a) 150 C, b) 30 C. 2. Vodičem prochází stejnosměrný proud. Za 30 minut jím prošel náboj 1 800
VíceZADÁNÍ: ÚVOD: Měření proveďte na osciloskopu Goldstar OS-9020P.
ZADÁNÍ: Měření proveďte na osciloskopu Goldstar OS-900P. 1) Pomocí vestavěného kalibrátoru zkontrolujte nastavení zesílení vertikálního zesilovače, eventuálně nastavte prvkem "Kalibrace citlivosti". Změřte
VíceElektronický analogový otáčkoměr V2.0
Elektronický analogový otáčkoměr V2.0 ÚVOD První verze otáčkoměru nevyhovovala z důvodu nelinearity. Přímé napojení pasivního integračního přímo na výstup monostabilního klopného obvodu a tento integrační
Více+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity
Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní
VíceVoltův článek, ampérmetr, voltmetr, ohmmetr
Úloha č. 1b Voltův článek, ampérmetr, voltmetr, ohmmetr Úkoly měření: 1. Sestrojte Voltův článek. 2. Seznamte se s multimetry a jejich zapojováním do obvodu. 3. Sestavte obvod pro určení vnitřního odporu
Více2. Změřte a nakreslete časové průběhy napětí u 1 (t) a u 2 (t). 3. Nakreslete převodní charakteristiku komparátoru
GENEÁTO PILOVITÉHO PŮBĚHU 303-4. Na nepájivém kontaktním poli sestavte obvod dle schématu na obr.. Hodnoty součástek a napájení zadá vyučující: =,7 kω, 3 = 3 = 0 kω, C = 00 nf, U CC = ± V. Změřte a nakreslete
Více"Rozvoj vědy a pokrok poznání se stávají stále obtížnější. Na experimentování již nestačí zápalky a sláma." Richard Philips Feynman
"Rozvoj vědy a pokrok poznání se stávají stále obtížnější. Na experimentování již nestačí zápalky a sláma." Richard Philips Feynman Tato publikace vznikla díky operačnímu programu Vzdělávání pro konkurenceschopnost
VíceVytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost CZ.1.07/1.1.30/01,0038 Automatizace výrobních procesů ve strojírenství a
Milan Nechanický Sbírka úloh z MDG Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost CZ.1.07/1.1.30/01,0038 Automatizace výrobních procesů ve strojírenství a řemeslech Střední průmyslová
VíceElektrická měření pro I. ročník (Laboratorní cvičení)
Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření
VíceNETYPICKÉ VYUŽITÍ INDUKČNÍHO VAŘIČE
Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT NETYPICKÉ VYUŽITÍ INDUKČNÍHO VAŘIČE Marek Mrva, Lukáš Hrubý, Nikola Krupková, Adam Bubeník Gymnázium Jevíčko A. K.
VíceHlídač plamene SP 1.4 S
Hlídač plamene SP 1.4 S Obsah: 1. Úvod 2. Technické údaje 3. Vnější návaznosti 4. Provoz 4.1 Způsob použití 4.2 Aplikace tubusu 4.3 Pokyny pro provoz 4.4 Bezpečnostní předpisy 4.5 Kontrola funkce 4.6 Zkušební
Více