Analýza default mode sítě u zdravých dobrovolníků
|
|
- Františka Fišerová
- před 9 lety
- Počet zobrazení:
Transkript
1 původní práce Analýza default mode sítě u zdravých dobrovolníků Default Mode Network Analysis in Healthy Volunteers Souhrn Default mode síť (DMN) je organizovaná síť mozkových oblastí zapojených do mozkové aktivity pozorovatelné v klidovém stavu. Při cíleném provádění experimentální kognitivní úlohy v průběhu vyšetření funkční magnetickou rezonancí (fmr) se tyto oblasti projevují jako tzv. deaktivace. Hlavními oblastmi zapojenými do této sítě jsou ventromediální prefrontální kortex/přední cingulum, zadní cingulum/precuneus a gyrus angularis/lobulus parietalis inferior. Pro sledování DMN u naší skupiny 10 zdravých dobrovolníků jsme použili jednak zobrazení deaktivace ve vztahu k paměťovému úkolu a korelační analýzu (tzv. seed funkční konektivitu) vycházející z oblasti zájmu přestavující cluster zadní cingulum/precuneus, jednak zobrazení pomocí analýzy nezávislých komponent (independent component analysis, ICA). Dále byly provedeny korelace fmr signálu s výkonem ve vizuálním prostorově paměťovém testu a v Addenbrookském kognitivním testu (ACE), konkrétně se subskóry verbální fluence (VFT) a paměť. Zobrazení DMN pomocí seed funkční konektivity významně lépe korelovalo s výsledkem ICA analýzy než s obrazem prosté deaktivace. Dále jsme našli korelaci mezi MR signálem v clusteru zadní cingulum/precuneus a kognitivním výkonem ve VFT. Abstract The default mode network (DMN) is an organized network of brain structures involved in brain activity that may be observed in the resting state. In the course of the performance of an experimental cognitive task during functional MRI examination (fmr), these regions manifest as deactivations. The main areas involved in this network are the ventromedial prefrontal cortex/anterior cingulate cortex, posterior cingulate cortex/precuneus and angular gyrus/inferior parietal cortex. In a group of 10 healthy volunteers we employed the following approaches to the detection of DMN: deactivations related to a visual spatial memory task; seed functional connectivity from the specific region of interest (cluster posterior cingulate cortex/precuneus); and independent component analysis (ICA). We then sought correlations between the MRI signal and the results of the visuo-spatial memory task and the Addenbrook cognitive examination (ACE), in concrete terms with the ACE verbal fluency subscore (VFT), and memory. The ICA approach revealed a higher correlation rate with the results from functional connectivity compared with pure deactivation mapping. We found correlation between MRI signal in the cluster posterior cingulate cortex/precuneus and VFT performance. L. Krajčovičová, M. Mikl, R. Mareček, I. Rektorová I. neurologická klinika LF MU a FN u sv. Anny v Brně * doc. MUDr. Irena Rektorová, Ph.D. I. neurologická klinika LF MU a FN u sv. Anny Pekařská Brno irena.rektorova@fnusa.cz Přijato k recenzi: Přijato do tisku: Klíčová slova default mode síť funkční magnetická rezonance kognitivní úkol deaktivace resting state Key words default mode network functional magnetic resonance cognitive task deactivations resting state Práce byla podpořena výzkumným záměrem MSM Cesk Slov Ne urol N 2010; 73/ 106(5):
2 Úvod Koncept default mode sítě (z anglického default mode network DMN, kde označení default mode představuje bazální mozkovou aktivitu) se začal rozvíjet v 90. letech minulého století, kdy za pomocí neurozobrazovacích metod (nejdříve studie prostřednictvím pozitronové emisní tomografie PET, později i fmr) byly v průběhu provádění cílených úkolů zaznamenány poklesy aktivity (tzv. deaktivace) v určitých oblastech mozku, zatímco jiné oblasti mozku, přímo zodpovědné za reakce na tyto podněty, se aktivovaly. Stejné oblasti deaktivující se v průběhu úkolu naopak vykazovaly určitou aktivitu za stavu klidu či pasivní oční fixace, kdy žádný úkol prováděn nebyl [1]. Signál, kterým se tato aktivita za klidu projevovala, měl typický průběh a byl označen jako nízkofrekvenční fluktuace. Tyto fluktuace o frekvenci do 0,1 Hz vykazovaly nápadné shody u jednotlivých vyšetřovaných skupin a pravděpodobně představují spontánní fluktuující neuronální aktivitu, často označovanou také jako resting state (klidový stav) [1]. Regionální deaktivace měřitelné pomocí fmr v průběhu provádění cílených úkolů pravděpodobně představují mozkovou aktivitu, která je nepřetržitá v průběhu klidového stavu a snižována v průběhu cílených reakcí. Odtud plyne i název default mode funkce mozku. Zjistilo se, že některé oblasti vykazující takovou aktivitu jsou organizovány do určitého systému a byly označeny jako default mode síť. Součásti této sítě jsou zadní cingulum/přilehlý praecuneus, přední cingulum/ ventromediální prefrontální kortex, gyrus angularis/lobulus parietalis inferior, dále též mediální temporální oblasti včetně hipokampu. Nicméně pravděpodobně všechny oblasti mozku mohou vykazovat určitý stupeň organizované default aktivity [1]. Byly již identifikovány další mozkové oblasti, které tyto nízkofrekvenční fluktuace ve stavu klidu vykazují, například zadní parietální, frontotemporální a přední temporální oblasti, limbický lalok, ale také podkorové oblasti, jako thalamus, bazální ganglia či mozeček [2,3]. Na rozdíl od DMN se v průběhu kognitivního úkolu tyto oblasti aktivují. Představují tak tzv. anti-korelující aktivitu k deaktivacím v DMN a obě tyto komponenty mohou být součástí jedné sítě, přičemž aktivující se součást by mohla zajišťovat reakce na neočekávané či nové události [4]. Obr. 1. Příklady stimulů použitých v průběhu kognitivního vizuálního úkolu (vpravo). Vlevo kontrolní obrazce. Funkce DMN zatím nebyla objasněna, na vysvětlení jejího významu bylo vysloveno několik hypotéz. Lze předpokládat, že mozkové reakce se neobjevují jen jako pouhá odpověď na momentální požadavky prostředí, ale že mají i určitou vnitřní aktivitu stojící na pozadí těchto odpovědí. Tento předpoklad podporuje skutečnost, že pouze 0,5 1 % celkové energie mozku je vynaloženo na procesy související s reakcemi na podněty z prostředí; % energie je využito na podporu komunikace mezi neurony [1]. Přítomnost DMN může být odrazem této vnitřní aktivity mozku a v rámci jejích možných funkcí, zatím ne zcela objasněných, může DMN hrát roli v interpretaci a předvídání stimulů z prostředí či udržování rovnováhy mezi excitačními a inhibičními vstupy a tím ulehčovat odpovědi na podněty. Předpokládá se rovněž funkce DMN v kognitivních procesech [1,5]. Cílem naší práce bylo zjistit, které z možných metod zpracování získaných fmr dat nám nejlépe umožní identifikovat DMN a reprodukovat výsledky publikované v literatuře. Dalším naším cílem bylo ověřit hypotézu, že míra úspěšnosti v kognitivních testech pozitivně koreluje s mírou deaktivací v hlavních oblastech zapojených do DMN. Metodika Do naší pilotní studie bylo zařazeno 10 zdravých dobrovolníků (sedm žen, tři muži), všichni praváci a všichni bez onemocnění mozku, demence či psychiatrického onemocnění, průměrný věk 61,7 ± 6,7 let. Všichni dobrovolníci podstoupili vyšetření kognitivních funkcí Addenbrookským kognitivním testem [6]. Vyšetření pomocí fmr sestávalo ze tří částí: a) vizuální kognitivní úkol, b) klidový stav neboli resting state, c) anatomické snímky. Addenbrookský kognitivní test (Addenbrook cognitive examination, ACE) Slouží k detailnější diagnostice demence. Test sestává z 18 úkolů uspořádaných do pěti domén hodnotí se pozornost a orientace, paměť, verbální fluence, jazyk a zrakově-prostorové schopnosti. Jeho součástí je rovněž MMSE (Mini mental state examination). Maximální počet bodů dosažitelný v tomto testu je 100, minimální počet je 0 bodů. Skóruje-li pacient 88 bodů, je senzitivita pro diagnostiku demence 94 % a specificita 89 % [6]. Klidový stav Před zahájením snímání klidových dat byli dobrovolníci vyzváni, aby leželi v klidu se zavřenýma očima a snažili se odpočívat, nehýbat se a na nic konkrétního nemyslet (nic konkrétního v duchu neřešit). Snímání trvalo 15 minut. Kognitivní vizuální úkol Úloha byla navržena podle úkolu použitého ve studii dle Rabina et al [7] a spočívala v testování vizuální paměti. Zkoumané osoby měly za úkol sledovat obrázky s různou tematikou promítané v zrcadle hlavové cívky a snažit se je zapamatovat. Celkový počet obrázků byl 60, obrázky byly promítány v sekvencích po deseti, přerušených deseti kontrolními obrazci. Vyšetření začínalo i končilo sekvencí deseti kontrolních obrazců (kontrolních obrazců bylo tedy celkem 70). Délka promítání obrazců byla 3,5 s; délka pauzy mezi obrazci 550 ms (obr. 1). 518 Cesk Slov Ne urol N 2010; 73/ 106(5):
3 fmr vyšetření Akvizice byla provedena na MR tomografu Siemens Magnetom Symphony 1,5T. Při kognitivním úkolu byla naměřena série 260 objemů (skenů) T2* vážených snímků pomocí echoplanárního zobrazování (EPI). Každý sken sestával z 20 transverzálních řezů s rozlišením voxelů, zorným polem (field of view, FOV) mm a z toho vyplývající velikostí pixelu 3,75 3,75 mm. Tloušťka řezu byla 5 mm. Repetiční čas akvizice byl ms, čas TE byl 50 ms a sklápěcí úhel 90. Pro klidová data byla naměřena série 300 skenů T2* vážených EPI snímků. Každý sken sestával z 32 transverzálních řezů s rozlišením voxelů, FOV mm a z toho vyplývající velikostí pixelu 3,4375 3,4375 mm. Tloušťka řezu byla 3,5 mm. Repetiční čas akvizice byl ms, čas TE byl 40 ms a sklápěcí úhel 90. Po sériích funkčních snímků následovala akvizice T1 vážených podrobných anatomických snímků mozku o 160 sagitálních řezech s tloušťkou 1,18 mm a rozlišením voxelů převzorkovaných na Po naměření fmr dat následovalo testování rekognice (znovupoznání). Subjektům bylo v časovém odstupu cca 30 minut od fmr vyšetření promítáno na počítačovém monitoru všech 60 obrázků viděných v průběhu fmr vyšetření náhodně promíchaných se 60 novými obrázky (celkem tedy 120 obrázků). Pod obrázky se nacházela tlačítka pro označení známého či nového obrázku a tlačítko pauza. Rychlost střídání obrázků v průběhu testování rekognice byla stejná jako v průběhu fmr vyšetření. Podle toho, zda subjekt obrázek rozpoznal jako již viděný v průběhu fmr vyšetření, bylo zmáčknuto tlačítko známý, pokud tento obrázek subjekt rozpoznal jako neznámý, bylo zmáčknuto tlačítko nový. V některých případech, když subjekt nestihl reagovat či obrázek nebyl schopen zařadit, zůstal obrázek neoznačen. Pro případ nutnosti dočasně přerušit testování sloužilo tlačítko pauza. Program byl ovládán pomocí myši a podle toho, zda subjekt zvládal práci s myší, pracoval s programem subjekt (ovládání myši pravou rukou), v opačném případě bylo testování zprostředkováno vyšetřovatelem. Tab. 1. Výsledky ACE testu včetně jednotlivých podtestů. Subjekt Celkové skóre MMSE Pozornost a orientace Analýza fmr dat Data z kognitivního úkolu byla zpracována pomocí programu SPM5 ( www. fil. ion.ucl.ac.uk/spm/) v prostředí Matlab 7.5. Funkční snímky byly korigovány na zjištěný pohyb, normalizovány do standardního stereotaktického prostoru pomocí MNI šablony a prostorově vyhlazeny Gaussovým filtrem s FWHM = 8 mm. Statistické zpracování bylo provedeno pomocí obecného lineár ního modelu implementovaného v programu SPM5. Z dat byly odfiltrovány nízké frekvence (cut-off = 128 s) a byla provedena korekce na autokorelaci signálu. Regresor zájmu byl modelován konvolucí stimulační funkce s průběhem hemo dynamické odezvy. Dále byly použity regresory představující odhadnutý průběh pohybu (šest regresorů, tři pro posuny a tři pro rotace), které sloužily k eliminaci pohybových artefaktů ve výsledných statistických parametrických mapách. Výsledek pak byl zobrazen pomocí t-statistiky, kdy bylo sledováno významné zvýšení nebo naopak snížení (tzv. deaktivace) fmr signálu ve shodě s průběhem stimulace. Následně byla provedena korelační analýza (tzv. seed funkční konektivita) vycházející z oblasti zájmu lokalizované v zadním cingulu/precuneu, určené při zobrazení deaktivace u jednotlivých subjektů. Ta spočívala v identifikaci oblastí, které měly podobný průběh signálu jako ve vybraných oblastech zájmu. Byla provedena skupinová analýza metodou náhodných efektů (random effect analysis) pro zobrazení aktivace a deaktivace dle kognitivního úkolu a pro korelační seed konektivitu. Při skupinové analýze byl jako kovariát použit věk subjektů. Paměť Verbální fluence Jazyk Zrakověprostorové schopnosti Průměr 94,7 29,5 17,6 23,5 11,9 25,8 15,9 K prohlížení výsledných statistických parametrických map byla použita hladina významnosti p < 0,0001 a minimální rozsah aktivace 5 voxelů. Dále jsme sledovali, jak fmr signál v průběhu deaktivací koreluje s výkonem v kognitivních testech, konkrétně s úspěšností ve vizuálním paměťovém úkolu, Addenbrookském kognitivním testu a jeho dvou subtestech testu verbální fluence a testu paměti. Klidová data byla zpracována pomocí ICA v programu GIFT verze 2.0a ( icatb. sourceforge.net/) v prostředí Matlab 7.5. U každé osoby byl identifikován optimální počet komponent a ten použit při individuálním zpracování. Komponenta představující resting state byla identifikována na základě prostorové korelace s maskou obsahující oblasti zapojené do DMN. Tato maska je součástí programu GIFT. Pro ohodnocení podobnosti jednotlivých přístupů zobrazení DMN byly vypočteny korelační koeficienty mezi mapami deaktivací a ICA komponentami a mezi mapami seed konektivity a ICA komponentami. K prohlížení zpracovaných dat byl použit program Xjview rovněž v prostředí Matlab 7.5. Výsledky Behaviorální data V naší studii jsme pro testování kognitivních funkcí použili jednak Addenbrookský kognitivní test (a), jednak kognitivní vizuální úkol v průběhu fmr vyšetření s následným testováním rekognice (b). Cesk Slov Ne urol N 2010; 73/ 106(5):
4 Tab. 2. Výsledky paměťového vizuál ního úkolu s počty správně a nesprávně rozpoznaných obrázků. Subjekt Správně označené Nesprávně označené Průměr 87,8 32,2 Obr. 2. Zobrazení resting state sítě vycházející z ICA analýzy klidových fmr dat. Zobrazeno při p < 0,0001 nekorigovaně. Hlavními oblastmi zapojenými do DMS s největší intenzitou signálu (barvy blížící se žluté/bíle) jsou zadní cingulum/precuneus, ventromediální prefrontální kortex/přední cingulum a gyrus angularis/lobulus parietalis inferior bilaterálně. ad a) Addenbrookský kognitivní test Průměrná úspěšnost v ACE byla 94,7 ± 3,8 bodů, žádný z dobrovolníků neměl počet bodů menší než 89 (cut-off skóre pro demenci je 88). Detailnější výsledky všech subtestů viz tab. 1. Pro korelační analýzu bylo použito celkové skóre a dále subskóre při testu verbální fluence a paměti, a to proto, že v těchto doménách vykazovali naši dobrovolníci největší variabilitu (tab. 1). ad b) Testování rekognice Průměrná úspěšnost v paměťovém vizuálním úkolu byla 73,2 ± 7,3 %, tj. dobrovolníci průměrně rozpoznali správně 87,8 ± 8,1 obrázků z celkového množství 120 obrázků jako známých či neznámých. Výsledky u jednotlivých subjektů viz tab. 2. Počty správně rozpoznaných obrázků u jednotlivých subjektů jsme rovněž použili pro následnou korelační analýzu. Sledování default-mode sítě Pro sledování DMN jsme použili (a) klidová data a zpracování pomocí ICA (b) hodnocení prosté deaktivace v průběhu kognitivního vizuálního úkolu, (c) hodnocení ad b) s použitím seed funkční konektivity vycházející z oblasti zájmu zadní cingulum(pcc)/praecuneus. Obr. 3. Oblasti deaktivující se v průběhu vizuálního kognitivního úkolu se nacházejí v pravém precuneu/zadním cingulu, pravém ventromediálním prefrontálním kortexu a v lobulus parietalis inferior bilaterálně. Jde o sníženou aktivitu (deaktivaci) v DMS oproti jejímu základnímu stavu, který představuje resting state. Zobrazeno při p < 0,0001 nekorigovaně. Obr. 4. Oblasti zapojené do DMS identifikované pomocí seed analýzy jsou rovněž zadní cingulum/precuneus, ventromediální prefrontální kortex/přední cingulum a gyrus angularis/lobulus parietalis inferior bilaterálně. V porovnání se zobrazením deaktivací je tato mapa rozsáhlejší a lépe koreluje s výsledky ICA analýzy. Zobrazeno při p < 0,0001 nekorigovaně. Ad a) Klidová data Obr. 2 demonstruje výsledek ICA analýzy ve vybrané komponentě, která nejlépe korelovala s maskou představující DMN, zobrazené v programu Xjview. Aktivní oblasti v průběhu klidového stavu zde viditelné jsou zejména PCC/precuneus, ventro mediální prefrontální kortex (VMPFC)/ přední cingulum (ACC) a gyrus angularis (GA)/lobulus parietalis inteferior (LPI). Ad b) Zpracování pomocí ICA Obr. 3 představuje oblasti deaktivací v průběhu vizuálního úkolu zobrazené pomocí programu Xjview. I zde dochází ke změnám MR signálu v obdobných oblastech jako při hodnocení metodou a), nicméně rozsah a signifikance statistické mapy modelující DMN je mnohem nižší. Obraz komponenty představující DMN v ICA analýze v tomto případě koreluje s obrazem prosté deaktivace v průběhu kognitivního úkolu s korelačním koeficientem r = 0,09. Ad c) Hodnocení s použitím seed funkční konektivity Obr. 4 ukazuje výsledky seed analýzy vycházející z oblasti zájmu PCC/precuneus (v programu Xjview). V porovnání s výsledky prosté deaktivace (obr. 3) je statistická mapa oblastí získaná na podkladě seed analýzy rozsáhlejší a lépe koreluje s výsledky ICA analýzy (r = 0,29). 520 Cesk Slov Ne urol N 2010; 73/ 106(5):
5 Obr. 5. Místo deaktivace záporně korelující s výkonem v testu verbální fluence (BA 31; x = 9; y = 48; z = 36; r = 0,95). Zobrazeno při p < 0,0001 nekorigovaně. Obr. 6. Místo deaktivace záporně korelující s výkonem ve vizuálním paměťovém úkolu (VM PFC; x = 6; y = 57; z = 12; r = 0,85). Zobrazeno při p < 0,001 nekorigovaně. Korelace s behaviorálními daty Použili jsme výsledky úspěšnosti rekognice ve vizuálním paměťovém úkolu (tab. 2) a celkové skóre v ACE a jeho dvou subtestech testu verbální fluence a testu paměti (tab. 1). Našli jsme signifikantní zápornou korelaci (p < 0,0001 nekorigovaně) mezi MR signálem v pcc/ precuneu a výkonem v testu verbální fluence, tj. čím vyšší byl výkon v testu verbální fluence, tím významnější byla deaktivace v pcc/ precuneu (obr. 5). Další záporná korelace, ale na nižší hladině významnosti (p < 0,001 nekorigovaně) byla zjištěna mezi MR signálem v oblasti VMPFC a skórem rekognice ve vizuálním paměťovém úkolu, tj. čím lepší byla rekognice, tím významnější byla deaktivace ve VMPFC (obr. 6). Diskuze V naší pilotní studii jsme ověřili schopnost detekovat DMN u zdravých dobrovolníků pomocí tří různých přístupů, a to pomocí ICA analýzy, pomocí zobrazení prosté deaktivace průběhu kognitivního úkolu a pomocí funkční seed konektivity vycházející z dat získaných při hodnocení prosté deaktivace v průběhu kognitivního paměťového úkolu. Pro zobrazení funkční seed konektivity jsme jako oblast zájmu (seed) zvolili oblast zasahující do zadního cingula nebo precuneu. Oblast zadního cingula a precuneu byla použita pro tento účel i v některých předchozích obdobných studiích [5,8]. Bez ohledu na použitou metodu jsme byli schopni detekovat tři oblasti zapojené do DMN, a to: zadní cingulum/precuneus, ventromediální prefrontální kortex/přední cingulum a gyrus angularis/lobulus parietalis inferior. Naše výsledky jsou tedy ve shodě s oblastmi popsanými v literatuře [1,5,8 13]. Nejlepší zobrazení DMN přineslo zpracování pomocí ICA analýzy. Výsledky ICA analýzy jsme proto dále porovnávali s prostými deaktivacemi a s výsledky funkční seed konektivity v průběhu kognitivního úkolu. Zjistili jsme, že výsledky ICA analýzy významně lépe korelují s výsledky seed konektivity ze zadního cingula/precuneu než s prostým obrazem deaktivace (viz též obr. 2 4). Výsledky funkčních neurozobrazovacích metod nasvědčují tomu, že precuneus má reciproční spoje se zadním i předním cingulem, retrosplenickým kortexem, zadní premotorickou a suplementární motorickou areou. Obecně má precuneus rozsáhlá spojení s vyššími korovými a podkorovými asociačními oblastmi, přičemž nebyly pozorovány přímé spoje s primárními senzorickými oblastmi. Obecně je precuneus zapojen spíše do rozsáhlých procesů hodnotících vysoce integrované a asociativní informace než do přímého zpracovávání vnějších podnětů [14]. Pre- cuneus hraje roli ve vybavování epizodické paměti, zrakově-prostorové představivosti, zpracování informací týkajících se vlastního já a v udržování bdělého stavu vědomí [14]. Mediální prefrontální kortex má spoje s limbickými oblastmi důležitými pro paměť, motivaci a afektivitu, je součástí mnoha kognitivních funkcí zahrnujících behaviorální inhibici, pozornost a plánování, ukládání a vybavování epizodické paměti [15 18]. Důležitá je jeho role v procesech souvisejících s vlastním já, jako sebehodnocení, rozhodování či přerozdělování pozornosti mezi informace související s vlastním já nebo s vnějšími podněty [16]. Obecně se dá říct, že mediální prefrontální kortex je spíše spojen s procesy zaměřenými na vlastní osobu jako takovou, zatímco zadní cingulum spíše na vlastní já v kontextu sociálním [19]. Avšak jen málo je známo o behaviorálním korelátu deaktivací v těchto oblastech (či v posteromediálních parietálních a mediálních prefrontálních oblastech obecně). Jednou z možností je, že v době, kdy je jednotlivec při vědomí, ale nevykonává žádný kognitivní úkol (tj. je ve stavu klidu), precuneus a další propojené oblasti, jako zadní cingulum a ventromediální prefrontální kortex, provádějí třídění informací týkajících se vlastního já a vnějšího prostředí, účastní se procesů spojených s konzolidací epizodické paměti a jejího vybavování, zpracovávání informací ve formě spontánních mimovolně plynoucích myšlenek a mentálních představ a manipulací s těmito informacemi za účelem řešení problémů a plánování [9]. Když je pak klidový stav přerušen kognitivním procesem, dochází k přerozdělení zdrojů využívaných pro třídění a manipulaci s vnitřními informacemi ve prospěch aktivity spojené s koncentrovanou volní odpovědí na zevní stimuly a nutné pro úspěšné vykonání kognitivního úkolu [14]. V naší studii jsme zjistili, že čím vyšší byla úspěšnost v testu verbální fluence, tím výraznější byla deaktivace v oblasti zadního cingula/precuneu. V této oblasti Schlösser et al 1998 [20] také pozorovali (pomocí fmr) snížení BOLD signálu přímo v průběhu provádění testu verbální fluence. Při zkoumání korelace deaktivací v DMN s výsledky vizuálního paměťového úkolu při použité hladině významnosti p < 0,0001 nekorigovaně nebyl Cesk Slov Ne urol N 2010; 73/ 106(5):
6 patrný žádný signifikantní výsledek, avšak při snížení hladiny na p < 0,001 se objevila záporná korelace mezi mírou deaktivace v oblasti ventromediálního prefrontálního kortexu a výkonem v paměťovém vizuálním úkolu (testování rekognice). Tento námi zjištěný trend bude ovšem nutné ověřit studiemi na větším souboru subjektů. Ačkoliv se jednalo o vyšetření zdravých dobrovolníků s normálním kognitivním výkonem dle skríningového ACE-R testu, zjistili jsme, že kognitivní výkon přinejmenším v subtestu verbální fluence souvisel s mírou deaktivace v oblasti zadního cingula/precuneu, tj. v oblasti zapojené do DMN. To by podporovalo hypotézu o významu DMN pro kognitivní procesy v mozku. Tato hypotéza je ve shodě i s výsledky studií zaměřených na změnu DMN u pacientů s Alzheimerovou nemocí či mírným kognitivním deficitem (Mild cognitive impairment, MCI), kde byla zjištěna snížená resting-state aktivita či konektivita mezi jednotlivými oblastmi DMN [8,10,11,13,16]. Proces přechodu z bazální resting state aktivity do stavu deaktivací v průběhu provádění kognitivního úkolu je však proces složitější, ovlivněný aktivitou četných dalších nervových sítí. Proto snížení resting state aktivity nemusí vždy paušálně předpokládat i snížení míry deaktivací a naopak. DMN tvoří s dalšími oblastmi mozku funkčně propojený systém, jehož správná funkce závisí na adekvátním přerozdělování ( switch ) aktivity mezi DMN a jinými sítěmi. Teoreticky tak narušení deaktivací může být výsledkem chybného přerozdělení této aktivity spojeného s nedostatečnou funkcí některého z těchto zapojených systémů, přičemž samotný resting state narušen být nemusí. Nebo může docházet ke kompenzatorním přesunům aktivací/deaktivací ve prospěch DMN či jiných sítí. Výsledky hodnocení DMN pomocí ICA analýzy z resting state dat mohou mít tedy jiný patofyziologický podklad než hodnocení DMN pomocí deaktivací naměřených v průběhu kognitivního úkolu. ICA je navíc zatížena problémem správného výběru komponenty. Výsledky naší pilotní studie je nutno ověřit na větší skupině zdravých dobrovolníků. Dalším krokem bude porovnání se skupinou věkově vázaných pacientů s parkinsonovou nemocí, Alzheimerovou demencí a demencí u Parkinsonovy nemoci. Je možné, že vyšetření DMN by mohlo v budoucnu sloužit jako časný marker kognitivní poruchy a demence [8,10,11,13]. Závěr Naše metoda je vhodná pro studium DMN, kterou jsme pozorovali s pomocí fmr jednak za klidového stavu (jako tzv. resting state), jednak v průběhu provádění kognitivního úkolu (jako tzv. deaktivace). Míra těchto deaktivací koreluje s kognitivním výkonem dobrovolníků. Je možné, že vyšetření DMN by mohlo sloužit jako časný marker kognitivní poruchy a/nebo demence. Výsledky naší studie jsou ovšem pilotní a je nutno je ověřit na větší skupině zdravých subjektů. Literatura 1. Raichle ME, Snyder ZE. A default mode of brain function: a brief history of an evolving idea. Neuroimage 2007; 37(4): Robinson S, Basso G, Soldati N, Sailer JJ, Bruzzone L, Krypsin-Exner I et al. A resting state network in the motor control circuit of the basal ganglia. BMC Neuro sci 2009; 10: Calhoun VD, Kiehl KA, Pearlson GD. Modulation of temporally coherent brain network estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 2008; 29(7): Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009; 33(3): Greicius MD, Krasnow B, Reiss AL, Menon V. Functi onal connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003; 100(1): Hummelová-Fanfrdlová Z, Rektorová I, Sheardová K, Bartoš A, Línek V, Ressner P et al. Česká adaptace Addenbrookského kognitivního testu. Československá psychologie 2009; 53: Rabin ML, Narayan VM, Kimberg DY, Casasanto DJ, Glosser G, Tracy JI et al. Functional MRI predicts postsurgical memory following temporal lobectomy. Brain 2004; 127(10): Greicius MD, Srivastava G, Reiss AL, Menon V. default-mode network activity distinguishes Alzheimer s disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci U S A 2004; 101(13): Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001; 2(10): Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L et al. Changes in hippocampal connectivity in the early stages of Alzheimer s disease: evidence from resting state fmri. Neuroimage 2006; 31(2): Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state network in mild cognitive impairment and mild Alzheimer s disease: an fmri study. Hum Brain Mapp 2005; 26(4): Harrison BJ, Pujol J, López-Solà M, Hernández-Ribas R, Deus J, Ortiz H et al. Consistency and functional specialization in the default mode brain network. Proc Natl Acad Sci U S A 2008; 105(28): Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain connectivity in Alzheimer s disease. PLoS Comput Biol 2008; 4(6): e Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioral correlates. Brain 2006; 129(3): Briand LA, Gritton H, Howe WM, Zoung DA, Sarter M. Modulators in concert for cognition: Modulator interactions in the prefrontal cortex. Prog Neurobiol 2007; 83(2): Dumontheil I, Burgess PW, Blakemore SJ. Development of rostral prefrontal cortex and cognitive and behavioural disorders. Dev Med Child Neurol 2008; 50(3): Lepage M, Ghaffar O, Nyberg L, Tulving E. Prefrontal cortex and episodic memory retrieval mode. Proc Natl Acad Sci U S A 2000; 97(1): Ranganath C, Johnson MK, D Esposito M. Left anterior prefrontal activation increases with demands to recall specific perceptual information. J Neurosci 2000; 20(22): Johnson MK, Raye CL, Mitchell KJ, Touryan SR, Greene EJ, Nolen-Hoeksema S. Dissociating medial frontal and posterior cingulate activity during self-reflection. Soc Cogn Affect Neurosci 2006; 1(1): Schlösser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J et al. Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry 1998; 64(4): Cesk Slov Ne urol N 2010; 73/ 106(5):
Neinvazivní mozková stimulace pro modulaci nemotorických symptomů Parkinsonovy a Alzheimerovy nemoci Irena Rektorová
Neinvazivní mozková stimulace pro modulaci nemotorických symptomů Parkinsonovy a Alzheimerovy nemoci Irena Rektorová 1.Neurologická klinika LF MU, FN u sv. Anny Aplikované Neurovědy, CEITEC MU Barker,
TERMINOLOGIE ... NAMĚŘENÁ DATA. Radek Mareček PŘEDZPRACOVÁNÍ DAT. funkční skeny
PŘEDZPRACOVÁNÍ DAT Radek Mareček TERMINOLOGIE Session soubor skenů nasnímaných během jednoho běhu stimulačního paradigmatu (řádově desítky až stovky skenů) Sken jeden nasnímaný objem... Voxel elementární
SIMULTÁNNÍ EEG-fMRI. EEG-fMRI. Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ. EEG-fMRI. pozorování jevu z různých úhlú lepší pochopení
SIMULTÁNNÍ Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ pozorování jevu z různých úhlú lepší pochopení některé jevy jsou lépe pozorovány pomocí jedné modality, pozorovatele však zajímá informace obsažená
SIMULTÁNNÍ EEG-fMRI. Radek Mareček
SIMULTÁNNÍ EEG-fMRI Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ pozorování jevu z různých úhlú lepší pochopení některé jevy jsou lépe pozorovány pomocí jedné modality, pozorovatele však zajímá informace
Efekt rtms na hypokinetickou dysartrii u Parkinsonovy nemoci
Efekt rtms na hypokinetickou dysartrii u Parkinsonovy nemoci Luboš Brabenec, Jiří Mekyska, Zoltán Galáž, Patrícia Klobušiaková, Milena Košťalova, Irena Rektorová Úvod Hypokinetická dysartrie Hypokinetická
Vzdělávací workshop. Brno, Posluchárna 1. NK LF MU / FN u sv. Anny
Vzdělávací workshop Brno, 25. 4. 2012 Posluchárna 1. NK LF MU / FN u sv. Anny Přehled programu 9:00 11:00 První blok (základní koncepce a metody ve fmri) Obecný princip fmri (Michal Mikl) Zpracování dat
Braakova stadia vývoje ACH
Jednoduché škály pro klinické hodnocení MRI mozku u pacientů s demencí Doc. MUDr. Jakub Hort, PhD. Neurologická klinika UK, 2.LF a FN Motol Mezinárodní centrum klinického výzkumu, Brno Zapůjčeno A. Bartos
Spasticita jako projev maladaptivní plasticity CNS po ischemické cévní mozkové příhodě a její ovlivnění botulotoxinem. MUDr.
Spasticita jako projev maladaptivní plasticity CNS po ischemické cévní mozkové příhodě a její ovlivnění botulotoxinem MUDr. Tomáš Veverka Neurologická klinika Lékařské fakulty Univerzity Palackého a Fakultní
Doc. MUDr. A. Bartoš, PhD. AD Centrum Národní ústav duševního zdraví (NUDZ), Klecany & Neurologická klinika, UK 3.
Doc. MUDr. A. Bartoš, PhD AD Centrum Národní ústav duševního zdraví (NUDZ), Klecany & Neurologická klinika, UK 3. LF a FNKV, Praha Obsah sdělení výběr kognitivních testů: 1) pro demenci test kreslení hodin
Neuropsychologie v konceptu preklinického stadia AN
Neuropsychologie v konceptu preklinického stadia AN Tomáš Nikolai Kognitivní centrum, Neurologická klinika 2.LF UK a FN Motol v Praze Universita Karlova v Praze, 1. lékařská fakulta a Všeobecná fakultní
VLIV POUŽITÉ ANESTEZIE NA INCIDENCI POOPERAČNÍ KOGNITIVNÍ DYSFUNKCE. MUDr. Jakub Kletečka KARIM, FN a LF UK Plzeň
VLIV POUŽITÉ ANESTEZIE NA INCIDENCI POOPERAČNÍ KOGNITIVNÍ DYSFUNKCE MUDr. Jakub Kletečka KARIM, FN a LF UK Plzeň Spoluautoři I. Holečková 2, P. Brenkus 3, P. Honzíková 1, S. Žídek 2, J. Beneš 1 a I. Chytra
Matematické modely spontánní aktivity mozku
Matematické modely spontánní aktivity mozku Jaroslav Hlinka Ústav informatiky, Akademie věd ČR Oddělení nelineární dynamiky a složitých systémů http://ndw.cs.cas.cz/ FJFI ČVUT, Seminář současné matematiky,
Aleš BARTOŠ. AD Centrum Psychiatrické centrum Praha & Neurologická klinika, UK 3. LF a FNKV, Praha
Aleš BARTOŠ AD Centrum Psychiatrické centrum Praha & Neurologická klinika, UK 3. LF a FNKV, Praha Psychiatrické centrum Praha, Bohnice Poradna pro poruchy paměti, Neurologická klinika UK 3. LF, FN Královské
Vliv konopných drog na kognitivní funkce
Vliv konopných drog na kognitivní funkce Lenka Miovská Michal Miovský Centrum adiktologie Psychiatrické kliniky 1.LF UK a VFN v Praze Obsah prezentace Aktuální situace Mechanismus působení Výsledky výzkumů
MUDr. Milena Bretšnajdrová, Ph.D. Prim. MUDr. Zdeněk Záboj. Odd. geriatrie Fakultní nemocnice Olomouc
MUDr. Milena Bretšnajdrová, Ph.D. Prim. MUDr. Zdeněk Záboj Odd. geriatrie Fakultní nemocnice Olomouc Neurodegenerativní onemocnění mozku, při kterém dochází k postupné demenci. V patofyziologickém obraze
11/6/2015. Subjektivní kognitivní stížnosti. Stádia preklinické AN. Demence MCI SMC/SCD. 0 bez neuropatologických změn. 1 přítomnost betaamyloidu
Subjektivní stížnosti na paměť Demence Práh demence Martin Vyhnálek Časná stádia MCI mírná kognitivní porucha Klinicky asymptomatické stádium Centrum pro kognitivní poruchy, Neurologická klinika dospělých
Doc. MUDr. A. Bartoš, PhD. AD Centrum Národní ústav duševního zdraví (NUDZ), Klecany & Neurologická klinika, UK 3.
Doc. MUDr. A. Bartoš, PhD AD Centrum Národní ústav duševního zdraví (NUDZ), Klecany & Neurologická klinika, UK 3. LF a FNKV, Praha Změna nároků na kognitivní test dříve:zjistit syndrom demence (tj. když
Časná diagnostika demencí s příznaky parkinsonismu
Časná diagnostika demencí s příznaky parkinsonismu Irena Rektorová Centrum pro kognitivní poruchy 1. Neurologická klinika LFMU FN u sv. Anny Aplikované neurovědy, CEITEC MU, Brno Obsah přednášky Demence
Efekt neinvazivní mozkové stimulace na kognitivní funkce
Efekt neinvazivní mozkové stimulace na kognitivní funkce ELIÁŠOVÁ I. 1,2 1 I.NEUROLOGICKÁ KLINIKA LF MU A FN U SV. ANNY 2 APLIKOVANÉ NEUROVĚDY, CEITEC Definice neinvazivní mozkové stimulace Nástroj k modulaci
Doc. MUDr. Aleš Bartoš, PhD. AD Centrum, Národní ústav duševního zdraví &Neurologická klinika, UK 3. LF a FNKV, Praha
Doc. MUDr. Aleš Bartoš, PhD AD Centrum, Národní ústav duševního zdraví &Neurologická klinika, UK 3. LF a FNKV, Praha Národní ústav duševního zdraví, Oddělení kognitivních poruch, Klecany u Prahy Kde nové
AD Centrum Psychiatrické centrum Praha & Neurologická klinika,, UK 3. LF a FNKV, Praha
Aleš BARTOŠ AD Centrum Psychiatrické centrum Praha & Neurologická klinika,, UK 3. LF a FNKV, Praha AD Centrum Psychiatrické centrum Praha, Bohnice Poradna pro poruchy paměti, Neurologická klinika UK 3.
VYŠETŘENÍ PAMĚTI. Mgr. Zuzana Hummelová Kurz Kognitivní poruchy a demence VIII 22.-23.9.2011 Brno
VYŠETŘENÍ PAMĚTI Mgr. Zuzana Hummelová Kurz Kognitivní poruchy a demence VIII 22.-23.9.2011 Brno Praktické rady/úvahy pro začátek paměť, jako kognitivní schopnost, nefunguje nikdy samostatně a izolovaně,
Základní buněčné a fyziologické mechanismy paměti. MUDr. Jakub Hort, PhD. Neurologická klinika UK, 2.LF a FN Motol
Základní buněčné a fyziologické mechanismy paměti MUDr. Jakub Hort, PhD. Neurologická klinika UK, 2.LF a FN Motol Poradna pro poruchy paměti FN Motol SYNDROM DEMENCE poškození paměti + jeden další příznak:
Co je nového na poli DLB
Co je nového na poli DLB Irena Rektorová Centrum pro kognitivní poruchy 1. Neurologická klinika LFMU FN u sv. Anny Středoevropský technologický institut, Masarykova univerzita Brno Onemocnění s Lewyho
Nová diagnostická kritéria Alzheimerovy nemoci
Nová diagnostická kritéria Alzheimerovy nemoci Doc. MUDr. Irena Rektorová, Ph.D. Vedoucí Centra pro kognitivní poruchy I. Neurologická klinika LF MU FN u sv. Anny, Brno Demence Rok 2001: 24 milionů lidí
Tüdös Z, Hok P, Hluštík P. Vyšetření verbální pracovní paměti metodou funkční MR
Vyšetření verbální pracovní paměti metodou funkční MR Verbal working memory investigation using functional MRI původní práce Zbyněk Tüdös 1 Petr Hluštík 2 Pavel Hok 2 1 Radiologická klinika UP a FN, Olomouc
Scintigrafie mozku přehled využití u nemocných s demencí
Scintigrafie mozku přehled využití u nemocných s demencí Kateřina Táborská 1, Monika Hartmanová 1, Jan Laczó 2,3 KNME UK 2.LF a FN Motol Praha 1 Kognitivní centrum - Neurologická klinika UK 2.LF a FN Motol
Metody zpracování a analýzy medicínských obrazových dat: možnosti využití v neurovědním výzkumu
Metody zpracování a analýzy medicínských obrazových dat: možnosti využití v neurovědním výzkumu Ing. Daniel Schwarz, Ph.D. Bc. Eva Janoušov ová INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ O čem budu mluvit? Neurovědy
Zahájení činnosti neurokognitivní laboratoře vfn vostravě. Michal Bar MUDr.Ph.D. přednosta neurologické kliniky FN Ostrava
Zahájení činnosti neurokognitivní laboratoře vfn vostravě Michal Bar MUDr.Ph.D. přednosta neurologické kliniky FN Ostrava Definice demence Demence je podle diagnostických kritérií demence DSM-IV (Diagnostic
Tomáš Zaoral KDL FN Ostrava. Odd.dětské intenzivní a resuscitační péče
Těžká sepse a akutní postižení ledvin (AKI) u dětí : Nezávislý rizikový faktor mortality a funkčního poškození Acute kidney injury in pediatric severe sepsis: An independent risk factor for death and new
Parietální atrofie na magnetické rezonanci mozku u Alzheimerovy nemoci s pozdním začátkem
original paperp původní práce doi: 10.14735/amcsnn201991 Parietální atrofie na magnetické rezonanci mozku u Alzheimerovy nemoci s pozdním začátkem Magnetic resonance imaging show ing parietal atrophy of
Výtvrarné umění a demence. As. MUDr. Irena Rektorová, Ph.D. Centrum pro kognitivní poruchy 1.neurologická klinika LF MU FN u sv.
Výtvrarné umění a demence As. MUDr. Irena Rektorová, Ph.D. Centrum pro kognitivní poruchy 1.neurologická klinika LF MU FN u sv. Anny, Brno Vizuální kreativita u demence Nedominantní hemisféra dominantní
Analýzy intrakraniálního EEG signálu
BSG 2018 Analýzy intrakraniálního EEG signálu Ing. Radek Janča, Ph.D. jancarad@fel.cvut.cz Fakulta elektrotechnická České vysoké učení technické v Praze Česká republika Analýzy ieeg signálu 2/38 Epilepsie
Takto ne! Standardní neurologické vyšetření postihne jen malou část kortexu. Takto ano, ale jak se v tom vyznat? 11/6/2015
Jak hodnotit závěr neuropsychologického vyšetření Takto ne! Kognitivní výkon v pásmu podprůměru. IQ 90. neodpovídá premorbidním možnostem pacienta.. pravděpodobný organicky podmíněný kognitivní deficit.
Martina Mulačová, Dagmar Krajíčková Neurologická klinika LF UK a FN Hradec Králové
Martina Mulačová, Dagmar Krajíčková Neurologická klinika LF UK a FN Hradec Králové Porucha poznávacích funkcí ztráta jedné nebo více kognitivních funkcí (KF)- neméně hodnotný korelát anatomického poškození
Artefakty a šum ve fmri, zdroje variability dat, variabilita a modelování HRF. Bartoň M. CEITEC MU, Masarykova univerzita
Artefakty a šum ve fmri, zdroje variability dat, variabilita a modelování HRF Bartoň M. CEITEC MU, Masarykova univerzita Obsah prezentace Arteficiální variabilita nežádoucí efekty při GE EPI akvizici obrazů
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Doc. MUDr. A. Bartoš, PhD. AD Centrum Národní ústav duševního zdraví (NUDZ), Klecany & Neurologická klinika, UK 3.
Doc. MUDr. A. Bartoš, PhD AD Centrum Národní ústav duševního zdraví (NUDZ), Klecany & Neurologická klinika, UK 3. LF a FNKV, Praha Jak najít hranice mezi stárnutím a Alzheimerovou nemocí? Bartoš, Raisová:
5.2.1 Axiomy neurovědy Axiomy a potencionální falsifikátory Falsifikace reaktivní tradice?
Obsah 1 Úvod... 1 2 Default mode network... 3 2.1 Neurovědecké objevy na přelomu století... 3 2.2 První uchopení Default mode network... 5 2.3 Anatomie Default mode network... 9 2.4 Typy konektivity a
Exekutivní dysfunkce Jak se odráží v běžně dostupných psychologických testech a v životě pacienta
Exekutivní dysfunkce Jak se odráží v běžně dostupných psychologických testech a v životě pacienta Sabina Telecká I. neurologická klinika FN u sv. Anny v Brně Exekutivní funkce To, co dělá člověka člověkem
Funkcionální komunikace
Funkcionální komunikace Milena Košťálová Neurologická klinika LF MU a FN Brno, Brno Výzkumná skupina aplikované neurovědy CEITEC MU, Brno Obsah přednášky Úvod - komunikace, funkcionální komunikace Dotazník
ria pro Alzheimerovu nemoc v podmínk AD Centrum
Stará a nová diagnostická kritéria ria pro Alzheimerovu nemoc v podmínk nkách ČR Aleš Bartoš AD Centrum AD Centrum Psychiatrické centrum Praha Poradna pro poruchy paměti, Neurologická klinika FNKV, 3.
Aleš BARTOŠ. AD Centrum Neurologická klinika, UK 3. LF a FNKV, Praha & Psychiatrické centrum Praha
Aleš BARTOŠ AD Centrum Neurologická klinika, UK 3. LF a FNKV, Praha & Psychiatrické centrum Praha Psychiatrické centrum Praha, Bohnice Poradna pro poruchy paměti, Neurologická klinika UK 3. LF, FN Královské
kognitivního deficitu schizofrenie (repetitivní transkraniáln lní magnetická stimulace)
Nefarmakologické přístupy ovlivnění kognitivního deficitu schizofrenie (repetitivní transkraniáln lní magnetická stimulace) Radovan PřikrylP Psychiatrická klinika LF MU a FN Brno 2009 Obsah sdělen lení
HŠ *1935. Alzheimerova choroba. Průběh MCI. Může nám pomoci neuropsychologie? Využití kognitivních testů k detekci hipokampálního postižení
Zhoršování kognice 3.11.2014 Využití kognitivních testů k detekci hipokampálního postižení Martin Vyhnálek Zdravotní sestra 2 roky obtíže Zapomíná brát léky, nestará se o domácnost Neschopna si vařit Několikrát
Irena Rektorová 1. neurologická klinika LF MU FN u sv. Anny CEITEC, Masarykova univerzita Brno
Diagnostika onemocnění s Lewyho tělísky v prodromálním stadiu: role zobrazování Irena Rektorová 1. neurologická klinika LF MU FN u sv. Anny CEITEC, Masarykova univerzita Brno McKeith et al. 2017 Hlavní
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
Neurorehabilitační péče po CMP
Neurorehabilitační péče po CMP As. MUDr. Martina Hoskovcová Rehabilitační oddělení Neurologické kliniky 1. LF UK a VFN v Praze Ucelená rehabilitace výcvik nebo znovuzískání co možná nejvyššího stupně funkčních
Spánek. Neurobiologie chování a paměti. Eduard Kelemen. Národní ústav duševního zdraví, Klecany
Spánek Neurobiologie chování a paměti Eduard Kelemen Národní ústav duševního zdraví, Klecany Spánek Spánková stadia a architektura spánku Role spánku při konsolidaci paměti behaviorální studie Role spánku
Repetitivní transkraniální magnetická stimulace ke studiu a ovlivnění kognitivních funkcí
Repetitivní transkraniální magnetická stimulace ke studiu a ovlivnění kognitivních funkcí Irena Rektorová Centrum pro kognitivní poruchy 1. neurologická klinika LF MU, FN u sv. Anny a CEITEC MU Barker,
Diferenciální diagnostika onemocnění vedoucích k demenci. MUDr. Jan Laczó, Ph.D. Neurologická klinika UK 2. LF a FN Motol
Diferenciální diagnostika onemocnění vedoucích k demenci MUDr. Jan Laczó, Ph.D. Neurologická klinika UK 2. LF a FN Motol Každý 6. má jinou dg, než si myslíme.. Příčiny demence BETA AMYLOID + TAU PROTEIN
Elektrofyziologické metody a studium chování a paměti
Elektrofyziologické metody a studium chování a paměti EEG - elektroencefalogram Skalpové EEG Intrakraniální EEG > 1 cm < 1 cm Lokální potenciály Extracelulární akční potenciály ~ 1 mm ~ 1 um EEG - elektroencefalogram
Laboratoř RTG tomografice CET
Výzkumná zpráva Pro projekt NAKI DF12P01OVV020 Komplexní metodika pro výběr a řemeslné opracování náhradního kamene pro opravy kvádrového zdiva historických objektů Laboratoř RTG tomografice CET Vypracovala:
Pokročilé přístupy ve funkčním MRI, fmri konektivita. Michal Mikl. CEITEC MU, Masarykova univerzita
Pokročilé přístupy ve funkčním MRI, fmri konektivita Michal Mikl CEITEC MU, Masarykova univerzita Osnova Stručný souhrn základních principů fmri Pokročilá témata Event-related desing a jeho specifika Kontrasty
Kognitivní rehabilitace, efekt u akutních onem.(cmp) a chronicky-progredientních onem.(ad).
Kognitivní rehabilitace, efekt u akutních onem.(cmp) a chronicky-progredientních onem.(ad). Pavel Ressner, Petr Nilius, Petra Szajtarová, Petra Bártová, Dagmar Beránková, Hana Srovnalová Kognitivní centrum,
Analýza časového vývoje 3D dat v nukleární medicíně
Diplomová práce Analýza časového vývoje 3D dat v nukleární medicíně Jan Kratochvíla Prezentováno Seminář lékařských aplikací 12. prosince 2008 Vedoucí: Mgr. Jiří Boldyš, PhD., ÚTIA AV ČR Konzultant: Ing.
Apraxie. Dělení apraxií. Ideomotorická (motorická) apraxie. Ideativní apraxie
Poruchy gnose, praxe a dalších kortikálních funkcí. Poruchy chování, prefrontální syndromy Jan Laczó, Neurologická klinika UK 2. LF a FN Motol Kortikální (symbolické) funkce = kognitivní funkce: Paměť
Využití MRI v diagnostice demencí. ¹Klinika zobrazovacích metod FN Plzeň ²Neurologická klinika FN Plzeň ³Psychiatrická klinika FN Plzeň
Využití MRI v diagnostice demencí J.Kastner¹, J.Ferda¹,B. Kreuzberg¹, V. Matoušek², T. Božovský², T. Petráňová³ ¹Klinika zobrazovacích metod FN Plzeň ²Neurologická klinika FN Plzeň ³Psychiatrická klinika
Základy klinické neuropsychologie
Základy klinické neuropsychologie Tomáš Nikolai 1. Centrum klinických neurověd, Neurologická klinika 1.LF UK a VFN v Praze. 2. Kognitivní centrum, Neurologická klinika 2.LF UK a FN Motol Neuropsychologie
Vlastnosti neuronových sítí. Zdeněk Šteffek 2. ročník 2. LF UK v Praze
Vlastnosti neuronových sítí Zdeněk Šteffek 2. ročník 2. LF UK v Praze 7. 3. 2011 Obsah Neuronální pooly Divergence Konvergence Prolongace signálu, kontinuální a rytmický signál Nestabilita a stabilita
Vybrané funkční metody mapování mozku: PET a SPECT (SISCOM)
Vybrané funkční metody mapování mozku: PET a SPECT (SISCOM) MUDr. Ondřej Volný 1 MUDr. Petra Cimflová 2 prof. MUDr. Martin Bareš PhD 1 1 I. neurologická klinika FN u sv. Anny a LF Masarykovy univerzity
Obsah. 1. Gerontopsychiatrie - historie, osobnosti, současnost (Roman Jirák) 2. Nejčastější psychické poruchy v seniorském věku (Roman Jirák)
Obsah 1. Gerontopsychiatrie - historie, osobnosti, současnost (Roman Jirák) 2. Nejčastější psychické poruchy v seniorském věku (Roman Jirák) 3. Změny psychiky ve stáří (Tamara Tošnerová) Ztráta nezávislosti
VLIV DÉLKY REAKČNÍHO ČASU NA AMPLITUDU NEURONÁLNÍ ODEZVY PO VZÁCNÝCH PODNĚTECH V OBRAZE FUNKČNÍ MAGNETICKÉ REZONANCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
Deficit sémantického systému v kategorii čísel. Milena Košťálová Neurologická klinika LFMU a FN Brno
Deficit sémantického systému v kategorii čísel Milena Košťálová Neurologická klinika LFMU a FN Brno Deficit sémantického systému v kategorii čísel Uvedení do problematiky terminologie Teoretické modely
Aleš BARTOŠ. AD Centrum Neurologická klinika, UK 3. LF a FNKV, Praha & Psychiatrické centrum Praha
Aleš BARTOŠ AD Centrum Neurologická klinika, UK 3. LF a FNKV, Praha & Psychiatrické centrum Praha Psychiatrické centrum Praha, Bohnice Národní ústav duševního zdraví, NÚDZ, Klecany Poradna pro poruchy
Interpolace trojrozměrných dat magnetické rezonance
Rok / Year: Svazek / Volume: Číslo / Number: 2010 12 2 Interpolace trojrozměrných dat magnetické rezonance Interpolation of magnetic resonance threedimensional data Jan Mikulka mikulka@feec.vutbr.cz Ústav
Kognitivní trénink Happy neuron Mgr. Dana Chmelařová LF Plzeň UK Praha PK a NK FN Plzeň
Kognitivní trénink Happy neuron Mgr. Dana Chmelařová LF Plzeň UK Praha PK a NK FN Plzeň Terminologie Chování obsahuje z pohledu neuropsychologie 3 hlavní systémy: Kognitivní funkce Emoce (city a motivace)
Marek Baláž I. neurologická klinika LF MU FN u sv. Anny Brno
Hluboká mozková stimulace v indikaci kognitivních poruch Marek Baláž I. neurologická klinika LF MU FN u sv. Anny Brno Hluboká mozková stimulace (DBS) Klinická metoda v terapii neurologických (extrapyramidových,
Kognitivní deficit: Od screeningu k podrobnějšímu neuropsychologickému vyšetření. Sabina Goldemundová
Kognitivní deficit: Od screeningu k podrobnějšímu neuropsychologickému vyšetření Sabina Goldemundová Kdy nestačí screening? Pohled indikujícího lékaře X psychologa X pacienta Poměr cena : výkon Co všechno
ZNALOSTI A DOVEDNOSTI ČESKÝCH MUŽŮ V OBLASTI INFORMAČNÍ BEZPEČNOSTI - VÝSLEDKY STATISTICKÉ ANALÝZY
ZNALOSTI A DOVEDNOSTI ČESKÝCH MUŽŮ V OBLASTI INFORMAČNÍ BEZPEČNOSTI - VÝSLEDKY STATISTICKÉ ANALÝZY Knowledge and skills of Czech men in the field of information security - the results of statistical analysis
PaedDr. Lenka Dohnalová RNDr. Tomáš Fürst, PhD. Katedra Hv PdF UP Olomouc
Návrh experimentu a technické nástroje pro výzkum účinnosti muzikoterapeutických rehabilitačních strategií s uměle implementovanou komplexitou fyziologického typu PaedDr. Lenka Dohnalová RNDr. Tomáš Fürst,
Statistické zpracování naměřených experimentálních dat za rok 2012
Statistické zpracování naměřených experimentálních dat za rok 2012 Popis dat: Experimentální data byla získána ze tří měřících sloupů označených pro jednoduchost názvy ZELENA, BILA a RUDA. Tyto měřící
Vyšetřování libosti pachů se zaměřením na Parkinsonovu chorobu
5. česko slovenský kongres otorinolaryngologie a chirurgie hlavy a krku Vyšetřování libosti pachů se zaměřením na Parkinsonovu chorobu Pospíchalová K. (1), Vodička J. (2) (1) Interní klinika, Kardiologické
Kognitivní profil demence
Úvod do neuropsychologie Martin Vyhnálek Centrum pro kognitivní poruchy, Neurologická klinika dospělých UK, 2. lékařské fakulty a FN Motol Kognitivní profil demence Začátek v určitém místě mozku Postupné
Doc. MUDr. Aleš Bartoš, PhD. AD Centrum, Národní ústav duševního zdraví &Neurologická klinika, UK 3. LF a FNKV, Praha
Doc. MUDr. Aleš Bartoš, PhD AD Centrum, Národní ústav duševního zdraví &Neurologická klinika, UK 3. LF a FNKV, Praha Obsah sdělení monitorování stadií spánku (především EEG nálezy) spánek a paměť změny
Konstrukční varianty systému pro nekoherentní korelační zobrazení
Konstrukční varianty systému pro nekoherentní korelační zobrazení Technický seminář Centra digitální optiky Vedoucí balíčku (PB4): prof. RNDr. Radim Chmelík, Ph.D. Zpracoval: Petr Bouchal Řešitelské organizace:
LIMBICKÝ PŘEDNÍ MOZEK A AMYGDALÁRNÍ JÁDRA
LIMBICKÝ PŘEDNÍ MOZEK A AMYGDALÁRNÍ JÁDRA Účast ve vytváření nejrudimentálnějších a nejzákladnějších lidských emocí zahrnujících strach,sexuální touhu, záchvat zuřivosti, náboženskou extázi nebo bazální
Spatial navigation deficit in amnestic mild cognitive impairment.
Publikováno z 2. lékařská fakulta Univerzity Karlovy (https://www.lf2.cuni.cz) LF2 > Spatial navigation deficit in amnestic mild cognitive impairment. Spatial navigation deficit in amnestic mild cognitive
Kognitivně-psychologický výzkum Neuropsychologická diagnostika paměti
Kognitivně-psychologický výzkum Neuropsychologická diagnostika paměti Eva Rubínová University of Portsmouth eva.rubinova@port.ac.uk Experimentální metody pro kognitivně-psychologický výzkum paměti Deese-Roediger-McDermott
VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie
VYŠETŘENÍ NERVOVÉHO SYSTÉMU seminář z patologické fyziologie Osnova Morfologické vyšetřovací metody (zobrazovací diagnostika) 1 Počítačová (výpočetní) tomografie 2 Pozitronová emisní tomografie (PET) 3
Kognitivní poruchy u RS. Eva Havrdová 1.LF UK a VFN
Kognitivní poruchy u RS Eva Havrdová 1.LF UK a VFN Celkový přehled Výskyt kognitivních poruch: 43 70 % pacientů s RS ve všech stadiích choroby Lépe koreluje s progresí nemoci, atrofií CNS Důležitá determinanta
Problematika určování SUV z PET/CT obrazů (při použití 18F-FDG)
Problematika určování SUV z PET/CT obrazů (při použití 18F-FDG) Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc email: ptacekj@fnol.cz ICQ#: 22496995 Konference radiologických
Diagnostika afázie v praxi
Diagnostika afázie v praxi pokračování Milena Košťálová Neurologická klinika LF MU a FN Brno CEITEC MU Brno Zsolt Cséfalvay Katedra logopédie PdFUK v Bratislave Neurologická klinika Centrum klinických
Doc. MUDr. Aleš Bartoš, PhD. AD Centrum, Národní ústav duševního zdraví &Neurologická klinika, UK 3. LF a FNKV, Praha
Doc. MUDr. Aleš Bartoš, PhD AD Centrum, Národní ústav duševního zdraví &Neurologická klinika, UK 3. LF a FNKV, Praha Obsah sdělení 1) Správná diagnostika je základní předpoklad léčby Alzheimerovy nemoci
Parietální atrofický skór na magnetické rezonanci mozku u normálně stárnoucích osob
PŮVODNÍ PRÁCE ORIGINAL PAPER doi: 10.14735/amcsnn2018414 Parietální atrofický skór na magnetické rezonanci mozku u normálně stárnoucích osob Parietal atrophy score on magnetic resonance imaging of the
Doc. MUDr. Jakub Hort, Ph.D.
Publikováno z 2. lékařská fakulta Univerzity Karlovy (https://www.lf2.cuni.cz) LF2 > Doc. MUDr. Jakub Hort, Ph.D. Doc. MUDr. Jakub Hort, Ph.D. EFNS guidelines for the diagnosis and management of Alzheimer's
Péče o pacienty léčené pro demence v ambulantních a lůžkových zařízeních ČR v letech
Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 31. 12. 2012 66 Péče o pacienty léčené pro demence v ambulantních a lůžkových zařízeních ČR v letech 2007 2011 Health
////// tematická studie / thematic article ///////////////////////
TEORIE VĚDY / THEORY OF SCIENCE / XXXIV / 2012 / 2 ////// tematická studie / thematic article /////////////////////// DMN KLIDOVÁ SÍŤ MOZKU: KANDIDÁT NA NOVÉ NEURO- VĚDECKÉ PARADIGMA Abstrakt: Práce se
Spánek. kurz Neurobiologie chování a paměti. RNDr. Eduard Kelemen, Ph.D. Národní ústav duševního zdraví Fyziologický ústav AVČR
Spánek kurz Neurobiologie chování a paměti RNDr. Eduard Kelemen, Ph.D. Národní ústav duševního zdraví Fyziologický ústav AVČR Spánek Spánková stadia a spánková architektura Role spánku při konsolidaci
Neuropsychologické vyšetření kognitivního deficitu u lůžka. Sabina Telecká I. neurologická klinika FN u sv. Anny v Brně
Neuropsychologické vyšetření kognitivního deficitu u lůžka Sabina Telecká I. neurologická klinika FN u sv. Anny v Brně Demence Ztráta kognitivních schopností s dopadem na kvalitu fungování člověka v sociálních,
Hodnocení kognitivních funkcí ve stáří
Hodnocení kognitivních funkcí ve stáří Mild cognitive impairment -benigní stařecká zapomnětlivost lehká porucha kognitivních funkcí subjektivně pociťovaná i objektivně měřitelná nedosahuje stupně demence
Obsah. 1. FUNKČNí SYSTÉMY LIDSKÉHO MOZKU... 13. 2. ZRAKOVÉ POZNÁVÁNí... 29 PŘEDMLUVA... 11
Obsah PŘEDMLUVA... 11 1. FUNKČNí SYSTÉMY LIDSKÉHO MOZKU... 13 1.1. Makroskopická architektura mozku... 13»Konektom«- příklad současného studia neuronálních sítí lidského mozku....14 1.2. Mikroskopická
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ZKOUMÁNÍ VLIVU NEPŘESNOSTÍ V EXPERIMENTÁLNÍ STIMULACI U FMRI DOKTORSKÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
Biomarkery v moku Vyšetření mozkomíšního moku v časné a diferenciální diagnostice degenerativních onemocnění CNS.
Vyšetření mozkomíšního moku v časné a diferenciální diagnostice degenerativních onemocnění CNS. Demence Práh demence Martin Vyhnálek MCI mírná kognitivní porucha Centrum pro kognitivní poruchy a Neurologická
Marek Mechl. Radiologická klinika FN Brno-Bohunice
Marek Mechl Radiologická klinika FN Brno-Bohunice rentgenový snímek kontrastní RTG metody CT MR Anatomie - obratle 33 ks tělo a oblouk - 2 pedikly - 2 laminy - 4 kloubní výběžky -22 příčnép výběžky - 1
Statistické vyhodnocení průzkumu funkční gramotnosti žáků 4. ročníku ZŠ
Statistické vyhodnocení průzkumu funkční gramotnosti žáků 4. ročníku ZŠ Ing. Dana Trávníčková, PaedDr. Jana Isteníková Funkční gramotnost je používání čtení a psaní v životních situacích. Nejde jen o elementární
Péče o pacienty léčené pro demence v ambulantních a lůžkových zařízeních ČR v letech
Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 31. 12. 2013 57 Souhrn Péče o pacienty léčené pro demence v ambulantních a lůžkových zařízeních ČR v letech 2008 2012
MĚŘENÍ OBJEMŮ V PET/CT OBRAZECH PRO ÚČELY RADIOTERAPIE - na co si dát pozor?
MĚŘENÍ OBJEMŮ V PET/CT OBRAZECH PRO ÚČELY RADIOTERAPIE - na co si dát pozor? Ing. Jaroslav Ptáček, Ph.D. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc Obsah přednášky - efekt částečného
HLAVNÁ TÉMA. MUDr. Pavel Chlebus 1,2, Ing. Michal Mikl 1,3, doc. MUDr. Milan Brázdil, Ph.D. 1, doc. MUDr. Petr Krupa, CSc. 2 1
HLAVNÁ TÉMA FUNKČNÍ MAGNETICKÁ REZONANCE ÚVOD DO PROBLEMATIKY MUDr. Pavel Chlebus 1,2, Ing. Michal Mikl 1,3, doc. MUDr. Milan Brázdil, Ph.D. 1, doc. MUDr. Petr Krupa, CSc. 2 1 I. neurologická klinika LF
Genetické vlivy a vlivy prostředí. Jessen Visser, Verhey, Knol, et al., Lancet Neurology, 8, , 2009.
Novinky v diagnostice Alzheimerovy choroby? Martin Vyhnálek Centrum pro kognitivní poruchy a Neurologická klinika dospělých, 2. LF UK a FN Motol a ICRC Brno Subjektivní kognitivní pokles - SCD Ukládání