KOALESCENCE. Osud jednotlivých kopií genů v populaci
|
|
- Vladimír Tobiška
- před 3 lety
- Počet zobrazení:
Transkript
1 A T T T T G G G C C A C T G
2
3 KOALESCENCE Osud jednotlivých kopií genů v populaci genové stromy
4 Species trees vs. gene trees: gen A
5 Species trees vs. gene trees: gen B
6 Fylogenetické vztahy 2 dceřiných populací (např. mtdna): polyfylie parafylie reciproční monofylie
7 Ancestrální polymorfismus a sortování linií bariéra polyfylie
8 Ancestrální polymorfismus a sortování linií parafyletická fáze
9 Ancestrální polymorfismus a sortování linií druh A druh B reciproční monofylie
10 Ancestrální polymorfismus a sortování linií nekompletní sortování linií druh A druh B recentní tok genů Problém: incomplete lineage sorting je většinou obtížné odlišit od důsledků toku genů
11 Wrightův-Fisherův model: W-F populace: Sewall Wright diploidní, hermafrodit velikost omezená, žádné fluktuace N náhodné oplození kompletní izolace (žádný tok genů) diskrétní generace žádná věková struktura žádná selekce rozptyl výběru gamet do další generace Poissonovo rozdělení Ronald A. Fisher
12 Sortování linií ve W-F modelu: Sewall Wright Ronald A. Fisher čas
13 Sortování linií ve W-F modelu: Sewall Wright Ronald A. Fisher čas
14 Sortování linií ve W-F modelu: Sewall Wright Ronald A. Fisher čas
15 Sortování linií ve W-F modelu: lineage sorting Sewall Wright Ronald A. Fisher čas
16
17
18
19 Koalescence: současná generace John F.C. Kingman čas
20 Koalescence: koalescence John F.C. Kingman čas
21 Koalescence: koalescence John F.C. Kingman čas
22 Koalescence: John F.C. Kingman MRCA = nejbližší společný předek (most recent common ancestor) MRCA čas
23 Koalescence: John F.C. Kingman nevíme, kolik kopií bylo v generaci MRCA čas
24 Koalescence: John F.C. Kingman nevíme, co bylo před MRCA MRCA čas
25 n = 5 kopií ve vzorku N = 20 kopií v populaci většinou n N MRCA
26 Pravděpodobnost setkání 2 švábů je n(n 1)/4N, kde n = počet švábů v krabici, N = počet míst v krabici
27 při koalescenci se počet švábů (kopií) sníží o 1...
28 s tím, jak klesá počet švábů (n), roste čas k dalšímu kontaktu (koalescenci) při koalescenci se počet švábů (kopií) sníží o 1...
29 ... až nakonec zůstane jen 1 kopie
30
31
32 Kingmanova koalescence: čím menší počet zbývajících kopií, tím se proces koalescence zpomaluje (pro velká n 4N, pro 2 kopie 2N) splynutí posledních k kopií zabere (1 1/n)/(1 1/k) prvních 90% kopií splyne během 9% celkového času, zbývajících 91% času se čeká na splynutí posledních 10 kopií! jestliže 100 linií, pravděpodobnost, že 101. linie přidá hlubší kořen je pouze 0,02% přidání další genové kopie pravděpodobně nepovede k hlubší (starší) koalescenci
33 rozdělení času mezi koalescencemi je přibližně exponenciální: f(n) s tím, jak klesá počet kopií (n), roste čas k další koalescenci *) n *) viz počet švábů v krabici
34 s klesajícím počtem volných kopií se proces zpomaluje... přidání dalších sekvencí pravděpodobně nepovede k hlubší koalescenci...
35 50 genových kopií, 10 náhodně vybraných: v tomto případě 10 kopií stačí k nalezení nejhlubšího kořene koalescenčního stromu
36 Pokud nás zajímají staré koalescence, nepotřebujeme velké vzorky např. pouhé 2 kopie poskytují v průměru 50 % koalescenčního času pro celou populaci! Naopak pokud nás zajímá čas do první koalescence z n na n 1, odhad N e /[n/(n 1)] je citlivý vůči n např. rozptyl průměrné doby první a poslední koalescence pro 10 genů je 0,0444N e až 3,60N e ; zvýšením n na 100 genů, rozmezí bude 0,0004N e 3,96N e zvýšením n 10 se rozdíl zvýší pro poslední koalescenci prakticky žádný rozdíl Z toho plyne, že pro odhady starých evolučních genových událostí stačí malé vzorky, pro odhady recentních událostí jsou velké vzorky nezbytné
37 Koalescence je ovlivněna různými faktory, např.: mutací rekombinací selekcí změnami velikosti populace koalescenční teorii lze použít k odhadu těchto parametrů
38 Koalescence je ovlivněna různými faktory, např.: migrací
39 Slabá migrace vede k většině koalescencí uvnitř lokálních populací,... MRCA... k prodloužení času k MRCA a zvýšení jeho rozptylu.
40 Koalescence je ovlivněna různými faktory, např.: rekombinací
41 Vliv selekce na tvar koalescenčního stromu pozitivní selekce vede ke dřívější koalescenci balancující selekce vede k pozdější koalescenci neutrální recentní balancující selective sweep
42 Vliv změn velikosti populace na tvar koalescenčního stromu zmenšující se populace: koalescence se postupně zrychlují rostoucí populace: koalescence se postupně zpomalují
43 n = gen. 90 gen. 36 gen. N e = 100 N e = 10 N e = 25
44 Genové vs. druhové stromy ještě jednou: dlouhé intervaly mezi speciačními událostmi stromy stejné krátké intervaly mezi speciačními událostmi být jiné než druhové (hemiplazie) genové a druhové genové stromy mohou protože odhadujeme divergenci mezi sekvencemi a ne mezi druhy, jsou naše odhady nutně nadhodnocené nesrovnalosti mezi genovými a druhovými stromy lze minimalizovat použitím markerů s nízkou N e, např. mtdna nebo chromozom Y
45 FYLOGEOGRAFIE studuje principy a procesy ovlivňující geografické rozložení genealogických linií svým způsobem propojuje mikroevoluční procesy (populační genetika) s makroevolucí (fylogeneze) John C. Avise většinou vnitrodruhové studie nebo blízce příbuzné druhy
46 Mus macedonicus Minimum Spanning Tree (MST) Mimum Spanning Network (MSN) Median-joining network Mustela erminea
47 Recentní expanze: rychlé rozšíření jednoho haplotypu akumulace malého počtu mutací hvězdicová struktura
48 Změny velikosti populace Tajimův test (Tajima s D) rozdělení párových rozdílů (mismatch distribution) koalescence, ML nebo BA, MCMC Bayesian Skyline Plot
49 1. Tajimův test (Tajima s D) založený na porovnání haplotypové diverzity a nukleotidové diverzity primárně jde o test selektivní neutrality, ale může indikovat i růst populace nebo bottleneck silně záporné hodnoty indikují populační expanzi převládá mladý polymorfismus, kdy se vytvořily nové haplotypy, ale nukleotidová diverzita je stále nízká programy Arlequin, DnaSP podobně Fu s test a další
50 Frekvence Frekvence Frekvence 2. Rozložení párových neshod (mismatch distribution) párová srovnání všech sekvencí histogram Sekvence navzájem velmi podobné Divergence (%) Sekvence navzájem velmi odlišné Divergence (%) Směs podobných a odlišných sekvencí Divergence (%)
51 frekvence rostoucí test shody skutečného rozdělení s teoretickou predikcí: Harpending s raggedness index (Harpending 1994) sum of squared deviations stabilní doba expanze/bottlenecku: = 1/2u, kde u je mutační frekvence pro celou sekvenci můžeme odhadnout i velikost populace před a po expanzi párové rozdíly
52
53
54 3. ML a bayesiánské odhady MCMC srovnání modelu stabilní velikosti a modelu exponenciálního růstu/redukce populace pomocí LRT s 1 stupněm volnosti program Fluctuate: parametr růstu g ML i BA přístup
55 4. Bayesovský panoramatický graf (Bayesian Skyline Plot BSP) exponenciálně rostoucí populace stabilní populace
56 Bayesovský panoramatický graf rozložení genealogických linií v čase BSP vychází z tohoto postupu programy BEAST a Tracer změny velikosti populace mezi uzly klasický generalizovaný
57 Myší kolonizace Evropy expanze do Evropy domesticus původ mimo Evropu domesticus - Evropa expanze do Evropy původ mimo Evropu musculus - Evropa
58 Karmin et al. Genome Research 2015
59 Možné výsledky fylogeografických studií (Avise 2000) Kategorie I: zřetelně oddělené alopatrické linie bariéry toku genů nebo nízká disperze rozdíly díky sortování linií nebo akumulaci nových mutací Apteryx australis
60 Kategorie II: sympatrické, ale jasně hluboce oddělené linie dříve oddělených populací sekundární kontakt
61 Kategorie III: alopatrické, málo oddělené linie blízce příbuzné ale geograficky lokalizované haplotypy populace v nedávném historickém kontaktu ale: tok genů dostatečně nízký drift a lineage sorting divergence populací často: na větší škále Kategorie I na menší škále Kategorie III př.: Geomys pinetis
62 Kategorie IV: sympatrické, málo oddělené linie silný tok genů absence geografických bariér nebo recentní expanze Anguilla rostrata Náhodná disperze larev Panmiktické agregace během tření
63 Kategorie V: kombinace III a IV málo oddělené linie některé linie značně rozšířeny (zřejmě ancestrální), jiné (nové) geograficky omezeny jako vhodné znaky je nutné vybrat privátní haplotypy
64 Genealogické konkordance Ryby JV USA
65 Genealogické konkordance (shody na různých úrovních) Různé části sekvence genu Více sekvencí (genů) od stejného druhu Více druhů ve stejné oblasti Podpora biogeografických oblastí (více druhů, více oblastí)
66 Genetické důsledky ledových dob Refugia (iberské, apeninské, balkánské) V refugiích malé populace relativně dlouhou dobu Linneage sorting (případně mutace) Následné šíření vnitrodruhové hybridní zóny Ale některé druhy měly i severská refugia! Chorthippus parallelus
67 Horáček, Vesmír 94 (2015)
68 disperze B A C a b c vikariance a a a b c c a b a2 a1 b c1 c2 A a1,a2 B b1,b2 c C b a1 a2 c1 c2 A A B A C a1 a2 b1 b2 c A A B B C
69 samčí disperze a tok genů vysoké nízké Vztah mezi genetickou strukturou populace, pohlavně-specifickou disperzí a režimy toku genů (Avise 2000) samičí disperze a tok genů nízké vysoké geografická struktura v: geografická struktura v: mtdna ANO mtdna NE autozomy ano autozomy ano chr. Y ano chr. Y *** geografická struktura v: geografická struktura v: mtdna (u samic) ANO mtdna NE autozomy ne autozomy ne chr. Y ne chr. Y ne
70 Alan R. Templeton Nested Clade Analysis (NCA) clade distance (D c ): měří, jak daleko se klad rozšířil nested clade dist. (D n ): měří, do jaké míry změnil klad svoji polohu ve vztahu ke kladu, ze kterého vzniknul
71 Ambystoma tigrinum Nested Clade Analysis (NCA)
72 programy GeoDis, TCS
73 Nested Clade Analysis (NCA) Problémy: absence evolučního modelu simulace: vysoké procento false positives (>75%; Petit 2008) lokální procesy zdánlivé expanze
74 markery: sekvence mtdna sekvence Y mikrosatelity SNP
75 Proč je mtdna výhodná?? Malá (15-20 kb), kruhová molekula? Bez intronů? Minimum nekódujících oblastí? Dědí se jen po jednom rodiči (po matce)? Nerekombinuje? V buňce jen jeden typ v mnoha kopiích? Neutralita (různé varianty v populaci mají stejnou fitness)... a proč ty otazníky?
76 Problémy pro populační genetiku: Neutralita Mezidruhový přenos Nukleární pseudogeny Biparentální dědičnost Rekombinace
77 Neutralita? vliv variant mtdna na fitness (experimentální důkazy): myš (Mus) octomilka (Drosophila) člověk
78 Mezidruhový přenos: zajíci ve Španělsku: existence mtdna Lepus timidus u druhů L. granatensis, L. castroviejoi a L. europaeus L. timidus však vymizel na konci posledního glaciálu několikanásobný přenos různých mtdna linií = mtdna capture
79 Jaderné pseudogeny mitochondriálního původu = NUMT (Nuclear Mitochondrial DNA): kopie segmentů mtdna integrované do jaderné DNA ztráta funkce molekulární fosilie podobnost s původní sekvencí problém!! riziko amplifikace namísto mtdna výskyt různý u různých skupin i u různých druhů téže skupiny např. u 7 druhů kočkovitých šelem: numt > 12,5 kb člověk: 27 numt v linii po oddělení od společného předka se šimpanzem
80 Jak na numt? ultracentrifugace (většinou nutný čerstvý vzorek, nebo alespoň hluboce zmražený) použití tkání s velkým množstvím mitochondrií (např. svaly) long-range PCR RT-PCR elektronická PCR (u druhů se známým genomem)
81 Rekombinace mtdna: nutné podmínky: biparentální dědičnost fúze mitochondrií existence proteinového aparátu pro rekombinaci: existuje i u člověka biparentální dědičnost: navzdory mýtům, mitochondrie otce obvykle přeneseny do zygoty tam jsou označeny a následně zlikvidovány (u savců značení provádí jaderné geny otce) u někt. druhů paternal leakage : Mus, Drosophila, Parus, Homo
82 Rekombinace mtdna: biparentální dědičnost: Gyllensten et al.,1991: Paternal inheritance of mitochondrial DNA in mice. Nature 352: F1 hybridi Mus spretus C57BL frekvence otcovské mtdna ve vztahu k mateřským 10-4 Shitara et al.,1998: Genetics 148: F1 hybridi Mus spretus C57BL prosakování otcovské mtdna ne ve všech tkáních pouze u F1, ne v dalších generacích (u zpětných kříženců) specifická exkluze druhově
83 Zbývá zodpovědět: Frekvence biparentální dědičnosti Frekvence rekombinací Jen somatické tkáně? Dědičnost rekombinantních molekul Rekombinace s nukleárními pseudogeny? Mechanismus biparentální dědičnosti a rekombinace Výjimečné události u živočichů?
FYLOGEOGRAFIE A KOALESCENCE
FYLOGEOGRAFIE A KOALESCENCE A T T T T G G G C C A C T G Koalescence Osud jednotlivých kopií genů v populaci genové stromy Species trees vs. gene trees: gen A Species trees vs. gene trees: gen B Fylogenetické
Osud jednotlivých kopií genů v populaci genové stromy
FYLOGEOGRAFIE A KOALESCENCE A T T T T G G G C C A C T G Koalescence Osud jednotlivých kopií genů v populaci genové stromy Species trees vs. gene trees: gen A Species trees vs. gene trees: gen B Fylogenetické
Coalesce spojit se, splynout, sloučit se. Didaktická simulace Coalescence = splynutí linií
Koalescence 1 2 Coalesce spojit se, splynout, sloučit se Didaktická simulace http://www.coalescent.dk/ Coalescence = splynutí linií 3 Koalescence Matematický model, který popisuje průběh genealogií. Postupujeme
Populační genetika III. Radka Reifová
Populační genetika III Radka Reifová Genealogie, speciace a fylogeneze Genové genealogie Rodokmeny jednotlivých kopií určitého genu v populaci. Popisují vztahy mezi kopiemi určitého genu v populaci napříč
Teorie neutrální evoluce a molekulární hodiny
Teorie neutrální evoluce a molekulární hodiny Teorie neutrální evoluce Konec 60. a začátek 70. let 20. stol. Ukazuje jak bude vypadat genetická variabilita v populaci a jaká bude rychlost evoluce v případě,
Teorie neutrální evoluce a molekulární hodiny
Teorie neutrální evoluce a molekulární hodiny Teorie neutrální evoluce Konec 60. a začátek 70. let 20. stol. Ukazuje jak bude vypadat genetická variabilita v populaci a jaká bude rychlost divergence druhů
3) Analýza mtdna mitochondriální Eva, kdy a kde žila. 8) Haploskupiny mtdna a chromozomu Y v ČR
p 1) Jak to, že máme společného předka 2) Metodika výzkumu mtdna 3) Analýza mtdna mitochondriální Eva, kdy a kde žila 4) Problémy a názory proti 5) Analýza chromozomu Y 6) Jak jsme osídlili svět podle
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika populací Studium dědičnosti a proměnlivosti skupin jedinců (populací)
Populační genetika II
Populační genetika II 4. Mechanismy měnící frekvence alel v populaci Genetický draft (genetické svezení se) Genetický draft = zvýšení frekvence alely díky genetické vazbě s výhodnou mutací. Selekční vymetení
3) Analýza mtdna mitochondriální Eva, kdy a kde žila. 8) Haploskupiny mtdna a chromozomu Y v ČR
Hledání našeho společného předkap 1) Jak to, že máme společného předka 2) Metodika výzkumu mtdna 3) Analýza mtdna mitochondriální Eva, kdy a kde žila 4) Problémy a názory proti 5) Analýza chromozomu Y
Populační genetika II. Radka Reifová
Populační genetika II Radka Reifová Literatura An Introduction to Population Genetics. Rasmus Nielsen and Montgomery Slatkin. 2013. (v knihovně) Elements of Evolutionary Genetics (2010) Brian Charlesworth
Typologická koncepce druhu
Speciace Co je to druh? Nebudu zde ani probírat různé definice pojmu druh. Žádná z nich až dosud neuspokojila všechny přírodovědce, ale každý přírodovědec zhruba ví, co míní tím, když mluví o druhu. (Charles
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Populační genetika Radka Reifová
Populační genetika Radka Reifová Prezentace ke stažení: http://web.natur.cuni.cz/~radkas v záložce Courses Literatura An Introduction to Population Genetics. Rasmus Nielsen and Montgomery Slatkin. 2013.
Drift nejen v malých populacích (nebo při bottlenecku resp. efektu zakladatele)
Drift nejen v malých populacích (nebo při bottlenecku resp. efektu zakladatele) Nově vzniklé mutace: nová mutace většinou v 1 kopii u 1 jedince mutace modelovány Poissonovým procesem Jaká je pravděpodobnost,
Využití molekulárních markerů v systematice a populační biologii rostlin. 12. Shrnutí,
Využití molekulárních markerů v systematice a populační biologii rostlin 12. Shrnutí, Přehled molekulárních markerů 1. proteiny isozymy 2. DNA markery RFLP (Restriction Fragment Length Polymorphism) založené
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
Genetická diverzita masného skotu v ČR
Genetická diverzita masného skotu v ČR Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Ing. Irena Vrtková 26. listopadu 2009 Genetická diverzita skotu pojem diverzity Genom skotu 30 chromozomu, genetická
Jak měříme genetickou vzdálenost a co nám říká F ST
Jak měříme genetickou vzdálenost a co nám říká F ST 1) Genetická vzdálenost a její stanovení Pomocí genetické rozmanitosti, kterou se populace liší, můžeme určit do jaké míry jsou si příbuznější jaká je
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Fisher M. & al. (2000): RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae).
Populační studie Fisher M. & al. (2000): RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). American Journal of Botany 87(8): 1128
Speciace. Radka Reifová. Katedra zoologie
Speciace Radka Reifová Katedra zoologie Speciace Proces vzniku nových druhů Biologická diverzita je diskontinuální. Druhy objektivně existují. Jak je definovat? Nebudu zde ani probírat různé definice pojmu
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika populací Studium dědičnosti a proměnlivosti skupin jedinců (populací)
Populační genetika a fylogeneze jedle bělokoré analyzována pomocí izoenzymových genových markerů a variability mtdna
Mendelova genetika v příkladech Populační genetika a fylogeneze jedle bělokoré analyzována pomocí izoenzymových genových markerů a variability mtdna Roman Longauer, Ústav zakládání a pěstění lesů, MENDELU
Evoluční genetika II. Radka Reifová
Evoluční genetika II Radka Reifová Literatura An Introduction to Population Genetics. Rasmus Nielsen and Montgomery Slatkin. 2013. (v knihovně) Elements of Evolutionary Genetics (2010) Brian Charlesworth
Molecular Ecology J. Bryja, M. Macholán MU, P. Munclinger - UK
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Molecular Ecology J. Bryja, M. Macholán MU, P. Munclinger - UK Co je molekulární ekologie? Uměle vytvořený obor vymezený technickým
Malcomber S.T. (2000): Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple DNA markers: evidence of a rapid radiation in a widespread,
Malcomber S.T. (2000): Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple DNA markers: evidence of a rapid radiation in a widespread, morphologically diverse genus. Evolution 56(1):42-57 Proč to
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního
Hardy-Weinbergův zákon - cvičení
Genetika a šlechtění lesních dřevin Hardy-Weinbergův zákon - cvičení Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
Populační genetika Radka Reifová
Populační genetika Radka Reifová Prezentace ke stažení: http://web.natur.cuni.cz/~radkas v záložce Courses Populační genetika Obor zabývající se genetickou variabilitou v populacích a procesy, které ji
GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost
GENETIKA vědecké studium dědičnosti a jejich variant studium kontinuity života ve vztahu ke konečné délce života individuálních organismů Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální
Rekonstrukce biogeografické historie: outline přednášky
Rekonstrukce biogeografické historie: outline přednášky tradiční přístupy (do 80-ých let) a jejich slabiny Croizatova panbiogeografie a její slabiny Hennigovo progression rule a jeho slabiny disperzní
Mendelistická genetika
Mendelistická genetika Základní pracovní metodou je křížení křížení = vzájemné oplozování organizmů s různými genotypy Základní pojmy Gen úsek DNA se specifickou funkcí. Strukturní gen úsek DNA nesoucí
3) Analýza mtdna mitochondriální Eva, kdy a kde žila. 8) Haploskupiny mtdna a chromozomu Y v ČR
p p 1) Jak to, že máme společného předka 2) Metodika výzkumu mtdna 3) Analýza mtdna mitochondriální Eva, kdy a kde žila 4) Problémy a názory proti 5) Analýza chromozomu Y 6) Jak jsme osídlili svět podle
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Pohlavní typy Drosophila Protenor Člověk Lymantria/Abraxas (bekyně) Habrobracon/haplodiploidie
World of Plants Sources for Botanical Courses
Speciace a extinkce Speciace Pojetí speciace dominuje proces, při němž vznikají nové druhy organismů z jednoho předka = kladogeneze, štěpná speciace jsou možné i další procesy hybridizace (rekuticulate
Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis.
Populační studie Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis. Molecular Ecology 10:205 216 Proč to studovali?
Testování lidské identity
Testování lidské identity Brno, 2009 J.M.Butler Forensic DNA Typing workshop, 2006 Bryan Sykes Sedm dcer Eviných, 2005 Využití testování lidské identity Řešení trestních činů shoda mezi podezřelým a stopou
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/..00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG) Tento
MENDELOVSKÁ DĚDIČNOST
MENDELOVSKÁ DĚDIČNOST Gen Část molekuly DNA nesoucí genetickou informaci pro syntézu specifického proteinu (strukturní gen) nebo pro syntézu RNA Různě dlouhá sekvence nukleotidů Jednotka funkce Genotyp
Tok GI v buňce. Genetický polymorfizmus popis struktury populací. Organizace genetického materiálu. Definice polymorfismu
Genetický olymorfizmus ois struktury oulací Tok GI v buňce Dr. Ing. Urban Tomáš ÚSTAV GEETIKY MZLU Brno urban@mendelu.cz htt://www.mendelu.cz/af/genetika/ Seminář doktorského grantu 53/03/H076 : Molekulárn
Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy genetiky 2a Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základní genetické pojmy: GEN - úsek DNA molekuly, který svojí primární strukturou určuje primární strukturu jiné makromolekuly
Mikroevoluce = vznik a osud genetické variability na druhové a nižší úrovni děje a mechanismy v populacích
Mikroevoluce = vznik a osud genetické variability na druhové a nižší úrovni děje a mechanismy v populacích Evoluce = genetická změna populací v čase a prostoru Evoluce = změna frekvence alel v populacích
Genotypy absolutní frekvence relativní frekvence
Genetika populací vychází z: Genetická data populace mohou být vyjádřena jako rekvence (četnosti) alel a genotypů. Každý gen má nejméně dvě alely (diploidní organizmy). Součet všech rekvencí alel v populaci
Metody studia historie populací. Metody studia historie populací
1) Metody studia genetické rozmanitosti komplexní fenotypové znaky, molekulární znaky. 2) Mechanizmy evoluce mutace, přírodní výběr, genový posun a genový tok 3) Anageneze x kladogeneze - co je vlastně
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Mendelovská genetika - Základy přenosové genetiky Základy genetiky Gregor (Johann)
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
Populační genetika Radka Reifová
Populační genetika Radka Reifová Prezentace ke stažení: http://web.natur.cuni.cz/~radkas v záložce Courses Literatura An Introduction to Population Genetics. Rasmus Nielsen and Montgomery Slatkin. 2013.
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Degenerace genetického kódu
AJ: degeneracy x degeneration CJ: degenerace x degenerace Degenerace genetického kódu Genetický kód je degenerovaný, resp. redundantní, což znamená, že dva či více kodonů může kódovat jednu a tutéž aminokyselinu.
Dědičnost pohlaví Genetické principy základních způsobů rozmnožování
Dědičnost pohlaví Vznik pohlaví (pohlavnost), tj. komplexu znaků, vlastností a funkcí, které vymezují exteriérové i funkční diference mezi příslušníky téhož druhu, je výsledkem velmi komplikované série
Paleogenetika člověka
Budeme se snažit najít odpověď na možná nejstarší otázku člověka: Kdo jsme a odkud pocházíme? Budeme se snažit najít odpověď na možná nejstarší otázku člověka: Kdo jsme a odkud pocházíme? Kdo je náš předek?
Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské. doc. RNDr. Ivan Mazura, CSc.
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské praxi doc. RNDr. Ivan Mazura, CSc. Historie forenzní genetiky 1985-1986 Alec Jeffreys a satelitní DNA 1980 Ray
Genetická variabilita. rostlinných populací
Genetická variabilita rostlinných populací Literatura Fox & Wolf eds. (2006) Evolutionary Genetics. Genetická variabilita Základ pro evoluci, možnosti selekce Kvalitativní vs. kvantitativní znaky Kvalitativní
Typy fylogenetických analýz
Typy fylogenetických analýz Distanční metody: Neighbor-Joining Minimum Evolultion UPGMA,... Maximum Likelihood Bayesian Inference Maximum Parsimony Genetické distance, substituční modely pro výpočet fylogenetických
Druhový koncept protist
Druhový koncept protist Pavel Škaloud, katedra botaniky PřF UK Protistologie (MB160P62) Druhový koncept protist Význam druhového konceptu Koncepty druhů u protist Automatické odlišení druhů Druhy Základní
Evoluční genetika KBI/GENE Mgr. Zbyněk Houdek Evoluční teorie Evoluční teorii vyslovil Ch. Darwin v díle O původu druhů (1859), kde ukazoval, že druhy se postupně měnily v dlouhých časových periodách.
Genetika vzácných druhů zuzmun
Genetika vzácných druhů Publikace Frankham et al. (2003) Introduction to conservation genetics Časopis Conservation genetics, založeno 2000 (máme online) Objekt studia Genetická diversita Rozložení genetické
Dědičnost a pohlaví. KBI/GENE Mgr. Zbyněk Houdek
Dědičnost a pohlaví KBI/GENE Mgr. Zbyněk Houdek Dědičnost pohlavně vázaná Gonozomy se v evoluci vytvořily z autozomů, proto obsahují nejen geny řídící vznik pohlavních rozdílů i další jiné geny. V těchto
Genetické markery. pro masnou produkci. Mgr. Jan Říha. Výzkumný ústav pro chov skotu, s.r.o.
Genetické markery ve šlechtění skotu pro masnou produkci Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Genetické markery Polymorfní místa v DNA, které vykazují asociaci na sledované znaky Příčinné
Genetika populací. kvalitativních znaků
Genetika populací kvalitativních znaků Úroveň studia genetických procesů Molekulární - struktura a funkce nukleových kyselin Buněčná buněčné struktury s významem pro genetiku, genetické procesy na buněčné
3) Analýza mtdna mitochondriální Eva, kdy a kde žila. 8) Haploskupiny mtdna a chromozomu Y v ČR
Hledání našeho společného předkap 1) Jak to, že máme společného předka 2) Metodika výzkumu mtdna 3) Analýza mtdna mitochondriální Eva, kdy a kde žila 4) Problémy a názory proti 5) Analýza chromozomu Y
Genetický polymorfismus
Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci
Důsledky selekce v populaci - cvičení
Genetika a šlechtění lesních dřevin Důsledky selekce v populaci - cvičení Doc. Ing. RNDr. Eva Palátová, PhD. Ing. R. Longauer, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován
Kolik jsme měli předků?
1) Velikost populace a demografická historie 2) Rozdílné pohledy na velikost populace 3) Odhad velikostí dávných populací - Ekologické odhady celkové velikosti populací - Genetické odhady efektivní velikosti
Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií
Obecná genetika Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií Ing. Roman Longauer, CSc. Ústav zakládání a pěstění lesů, LDF MENDELU Brno Tento projekt je spolufinancován Evropským
Genetika kvantitativních znaků. - principy, vlastnosti a aplikace statistiky
Genetika kvantitativních znaků Genetika kvantitativních znaků - principy, vlastnosti a aplikace statistiky doc. Ing. Tomáš Urban, Ph.D. urban@mendelu.cz Genetika kvantitativních vlastností Mendelistická
Základní pojmy I. EVOLUCE
Základní pojmy I. EVOLUCE Medvěd jeskynní Ursus spelaeus - 5 mil. let? - 10 tis. let - 200 tis. let? Medvěd hnědý Ursus arctos Medvěd lední Ursus maritimus Základní otázky EVOLUCE Jakto, že jsou tu různé
Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací. KBI/GENE: Mgr. Zbyněk Houdek
Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací KBI/GENE: Mgr. Zbyněk Houdek Kvantitativní znak Tyto znaky vykazují plynulou proměnlivost (variabilitu) svého fenotypového projevu. Jsou
Analýza archaické DNA
Analýza archaické DNA 1) Analýza adna člověka 2) Analýza první neandrtálské DNA 3) Analýza druhé neandrtálské DNA 4) Interpretace nalezených výsledků - Byli Neandrtálci odděleným druhem nebo byli odlišným
Genetické rozdíly mezi populacemi aneb něco o migracích a genovém toku. Genetické rozdíly mezi populacemi
Genetické rozdíly mezi populacemi Genetické rozdíly mezi populacemi 1) Genetická vzdálenost populací a její příčiny 3) Proč jsou subsaharské africké populace geneticky vzdálenější od populací ostatních?
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Příklady z populační genetiky lesních dřevin
Obecná genetika Příklady z populační genetiky lesních dřevin Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem a Státním
Tomimatsu H. &OharaM. (2003): Genetic diversity and local population structure of fragmented populations of Trillium camschatcense (Trilliaceae).
Populační studie Tomimatsu H. &OharaM. (2003): Genetic diversity and local population structure of fragmented populations of Trillium camschatcense (Trilliaceae). Biological Conservation 109: 249 258.
Rozptyl a migrace. Petra Hamplová
Rozptyl a migrace Petra Hamplová Terminologie Rozptyl a migrace jsou dva nejčastější termíny k označení prostorových pohybů ROZPTYL Krátká vzdálenost Individuální Zpravidla bez návratu Nesměrované Nepravidelné
Počet chromosomů v buňkách. Genom
Počet chromosomů v buňkách V každé buňce těla je stejný počet chromosomů. Výjimkou jsou buňky pohlavní, v nich je počet chromosomů poloviční. Spojením pohlavních buněk vzniká zárodečná buňka s celistvým
Základy genetiky populací
Základy genetiky populací Jedním z významných odvětví genetiky je genetika populací, která se zabývá studiem dědičnosti a proměnlivosti u velkých skupin jedinců v celých populacích. Populace je v genetickém
Mikrosatelity (STR, SSR, VNTR)
Mikrosatelity (STR, SSR, VNTR) Repeats Více než polovina našeho genomu Interspersed (transposony) Tandem (mini- a mikrosatelity) Minisatellites (longer motifs 10 100 nucleotides) mikrosatelity Tandemová
Úvod do obecné genetiky
Úvod do obecné genetiky GENETIKA studuje zákonitosti dědičnosti a proměnlivosti živých organismů GENETIKA dědičnost - schopnost uchovávat soubor dědičných informací a předávat je nezměněný potomkům GENETIKA
Využití molekulárních markerů v systematice a populační biologii rostlin. 6. RFLP, cpdna
Využití molekulárních markerů v systematice a populační biologii rostlin 6. RFLP, cpdna Restriction Fragment Length Polymorphism polymorfismus v délce restrikčních fragmentů základní princip metody štěpení
Deoxyribonukleová kyselina (DNA)
Genetika Dědičností rozumíme schopnost rodičů předávat své vlastnosti potomkům a zachovat tak rozličnost druhů v přírodě. Dědičností a proměnlivostí jedinců se zabývá vědní obor genetika. Základní jednotkou
Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav morfologie, fyziologie a genetiky zvířat
Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav morfologie, fyziologie a genetiky zvířat Genetické markery ve studiu genetické diverzity v populacích hospodářských zvířat Bakalářská
Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů
Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců
GENETIKA POPULACÍ ŘEŠENÉ PŘÍKLADY
GENETIKA POPULACÍ ŘEŠENÉ PŘÍKLADY 5. Speciální případy náhodného oplození PŘÍKLAD 5.1 Testováním krevních skupin systému AB0 v určité populaci 6 188 bělochů bylo zjištěno, že 2 500 osob s krevní skupinou
Výuka genetiky na Přírodovědecké fakultě UK v Praze
Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený
1) Velikost populace a demografická historie. 1) Velikost populace a demografická historie. 1) Velikost populace a demografická historie
1) Velikost populace a demografická historie 2) Rozdílné pohledy na velikost populace 3) Odhad velikostí dávných populací - Ekologické odhady celkové velikosti populací - Genetické odhady efektivní velikosti
Biologie - Oktáva, 4. ročník (přírodovědná větev)
- Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k
Molekulární podstata adaptací a detekce selekce na molekulární úrovni
Molekulární podstata adaptací a detekce selekce na molekulární úrovni Adaptace Metody detekce selekce na molekulární úrovni Netřeba znát předem fenotyp. Lze detekovat i selekci, která působila v minulosti.
Coalescence = splynutí linií
Koalescence 1 2 Coalescence = splynutí linií 3 Koalescence Matematický model, který popisuje průběh genealogií. Postupujeme opačně v čase než u klasických modelů populační genetiky (Wright-Fisher model)
Typologická koncepce druhu
Speciace Co je to druh? Nebudu zde ani probírat různé definice pojmu druh. Žádná z nich až dosud neuspokojila všechny přírodovědce, ale každý přírodovědec zhruba ví, co míní tím, když mluví o druhu. (Charles
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Selekce v populaci a její důsledky
Genetika a šlechtění lesních dřevin Selekce v populaci a její důsledky Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
GENETIKA. Dědičnost a pohlaví
GENETIKA Dědičnost a pohlaví Chromozómové určení pohlaví Dvoudomé rostliny a gonochoristé (živočichové odděleného pohlaví) mají pohlaví určeno dědičně chromozómovou výbavou jedince = dvojicí pohlavních
Geografická variabilita
Geografická variabilita (teplota, fyziologický čas) Lucie Panáčková Geografická variabilita = výskyt rozdílů mezi prostorově oddělenými populacemi jednoho druhu Disjunktní- geograficky oddělené populace
Detekce selekce na molekulární úrovni a genetická podstata adaptací
Detekce selekce na molekulární úrovni a genetická podstata adaptací Typy selekce Pozitivní selekce snižuje genetickou variabilitu v populaci ( selective sweep ) zvyšuje míru divergence mezi druhy Negativní