Impedanční spektroskopie
|
|
- Arnošt Esterka
- před 9 lety
- Počet zobrazení:
Transkript
1 Tento dokument je na internetu na adrese: (Elektronické pomůcky) Celý návod bude rovněž k dispozici ve vytištěné formě v laboratoři, VŠCHT Praha Impedanční spektroskopie Návod k laboratorní práci Impedanční spektroskopie VŠCHT Praha červenec 203 v
2 This work is licensed under the Creative Commons Uveďte autora-neužívejte dílo komerčně-nezasahujte do díla 3.0 Česko License. To view a copy of this license, visit 2
3 Obsah Obsah... 3 Obecné informace k práci Teoretické základy Impedance ideálních součástek Impedance reálného odporu, cívky, kondenzátoru Krystalový rezonátor Elektrické vlastnosti krystalového rezonátoru Bezpečnostní instrukce Zadání laboratorní úlohy... 5 Postup měření Pokyny pro vypracování protokolu Reference
4 Obecné informace k práci Absolvování laboratorní práce Impedanční spektroskopie předpokládá určitou úroveň teoretických znalostí. Potřebný učební text je v kapitole 2 tohoto návodu. Pouze poznatky shrnuté v kapitole 2 budou také náplní vstupního testu. Před započetím práce v laboratoři musí studenti absolvovat test, jehož náplní budou: vztahy pro výpočet impedance ideálního rezistoru, induktoru a kapacitoru, fázové posunutí mezi napětím a proudem v obvodu těchto prvků, schematické znázornění závislosti impedance na frekvenci měřicího signálu pro paralelní a sériovou rezonanci, náhradní elektrické schéma krystalového rezonátoru, definice činitele jakosti krystalového rezonátoru. Kapitoly 3-7 není nutné předem detailně studovat; informace v nich obsažené slouží jako průvodce činností teprve během vlastního měření v laboratoři. Dále se tento návod odvolává na manuál k impedačnímu analyzátoru Agilent 4294A, který bude v tištěné podobě studentům k dispozici až na pracovišti. 4
5 2 Teoretické základy Impedance Z popisuje úhrnný "zdánlivý odpor" elektronických prvků při průchodu harmonického střídavého proudu dané frekvence. Ze znalosti hodnoty impedance, resp. její frekvenční závislosti lze určit např. fázový posun mezi napětím a proudem, a tedy charakterizovat vlastnosti konkrétního elektronického prvku (v této laboratorní práci se jako modelový prvek použije krystalový rezonátor s nanesenou tenkou verstvou sorbentu) a konstruovat jeho náhradní obvod. V kapitole 2 se nejprve seznámíme s impedančním chováním základních "stavebních kamenů" každého náhradního obvodu - rezistoru, induktoru a kapacitoru. Pak si ukážeme, jak vypočítat impedanci jejich sériových a paralelních kombinací a jaká jsou kritéria rezonance v sériových a paralelních rezonančních obvodech. Získané zkušenosti budeme demonstrovat na modelovém senzoru - krystalovém rezonátoru, u něhož nalezneme podobu náhradního obvodu a stanovíme sériovou i paralelní rezonanční frekvenci. 2. Impedance ideálních součástek - rezistoru, induktoru, kapacitoru Hodnota impedance se udává pomocí komplexního čísla, které se skládá z reálné část R a imaginární části X. Imaginární jednotka se značí j. Z = R + jx () Absolutní hodnota (velikost) impedance (Ω) se určí podle vztahu: Z 2 2 R X (2) a fázový úhel (fázový posun mezi napětím a proudem) pak je: X arctg (3). R Impedance ideálního rezistoru má pouze reálnou část - rezistanci, jejíž hodnota je nezávislá na frekvenci (4). Z R = R (4) Reaktance se dále dělí na induktanci X L (kladná reaktance) a kapacitanci X C (záporná reaktance). Induktance představuje reaktanci cívky. Je závislá na frekvenci a proud je v jejím důsledku opožděn za napětím o určitý fázový úhel. U ideální cívky - induktoru - (5) o indukčnosti L má impedance pouze imaginární část a fázový úhel nabývá hodnoty +90. Z L = X L = ωl (5) Kapacitance je naproti tomu reaktancí kondenzátoru a v tomto případě proud naopak předbíhá napětí o určitý fázový úhel. U ideálního kondenzátoru - kapacitoru - (6) o kapacitě C má impedance pouze imaginární část a fázový úhel nabývá hodnoty 90. Z C = X C = / ωc (6) 5
6 Případ, kdy v konkrétním obvodu mají induktance a kapacitance stejné absolutní hodnoty, se nazývá rezonance. Fázový úhel mezi proudem a napětím je potom nulový. Rozeznáváme dva druhy rezonance paralelní (impedance nabývá maxima) a sériovou (impedance nabývá minima). 2.2 Impedance reálného odporu, cívky a kondenzátoru U reálných, fyzicky vyrobených součástek (běžně nazývaných odpor, cívka, kondenzátor) se rezistance, indukčnost a kapacita nevyskytují samostatně; naopak chování reálné součástky je vždy jistou kombinací všech těchto tří příspěvků. Kromě žádané vlastnosti se tak objevují ještě tzv. parazitní prvky. Zdrojem parazitní rezistance je především odpor přívodního vedení, u cívky také odpor vlastního vinutí, v případě kondenzátoru to bývá především svod mezi deskami, způsobený nedokonalostí dielektrika. Parazitní indukčnost má zdroj rovněž v přívodním vedení, projeví se zvlášť při jeho větší délce. Parazitní kapacita se objevuje např. mezi přívodními vodiči v nestíněných kabelech, dále mezi protilehlými kontakty odporů o vyšších hodnotách, sousedními závity v cívce apod. Chování reálné součástky můžeme ilustrovat např. náhradním obvodem obecného kondenzátoru (Obr. ), který vedle hlavního prvku C zahrnuje rovněž parazitní sériový odpor R s a parazitní indukci L (důsledky přípojného vedení) a parazitní paralelní odpor R p (svod mezi elektrodami kondenzátoru). L R s R p Obr. Náhradní obvod obecného kondenzátoru Protože se v náhradním obvodu na Obr. vyskytuje sériová kombinace R, L, C, můžeme při měření součástky s uvedeným náhradním obvodem při vyšších frekvencích pozorovat tzv. sériovou rezonanci, pro kterou je charakteristické minimum impedance (viz Obr.2). C log Z fázový úhel log (f) rezonance Obr. 2 Impedance reálného kondenzátoru v závislosti na frekvenci 6
7 K posouzení kvality reálné cívky se používá tzv. činitel jakosti Q. Jedná se o bezrozměrnou hodnotu definovanou vztahem Q = X L /R = ωl/r. Tato hodnota je současně rovna tgφ tangentě fázového posunu mezi napětím a proudem (viz rovnice 3). V případě kondenzátoru bývá zvykem uvádět tzv. ztrátový činitel D = R/X C = /ωcr. Představuje tangentu tzv. ztrátového úhlu Krystalový rezonátor Krystalový rezonátor (krystal) je pasivní elektronická součástka (vyrobená ze speciálně nařezaného krystalu SiO 2 ) používaná v elektronických obvodech jako rezonátor s velmi přesnou a stabilní rezonanční frekvencí. Používá se zpravidla v přesných oscilátorech, například v digitálních hodinách a hodinách pro taktování procesorů v počítačích a dalších zařízeních spotřební elektroniky. V chemii nachází uplatnění po pokrytí tenkou vrstvou sorbentu, kdy slouží jako chemický senzor detekující s vysokou citlivostí molekuly plynů a par v sorbentu zachycené. 2.4 Elektrické vlastnosti krystalového rezonátoru Činnost krystalového rezonátoru je založena na piezoelektrickém jevu. Ten se projevuje tak, že při mechanickém namáhání krystalu ve vhodném směru se na krystalu objeví elektrické napětí a naopak po přiložení elektrického napětí se krystal mechanicky zdeformuje. Krystalový rezonátor je tvořen tenkou destičkou (krystalovým výbrusem) opatřenou elektrodami. Nejčastěji se výbrus zhotovuje z monokrystalu křemene a v závislosti na orientaci řezu se dosahuje různých vlastností krystalového rezonátoru. Po přiložení střídavého napětí se destička rezonátoru rozkmitá. Fyzikálně lze popsat tento děj teorií vynucených kmitů. Jejich amplituda závisí na velikosti vnucené periodické síly, na rozdílu vlastní frekvence výbrusu a frekvence vnucené síly a na činiteli tlumení kmitů. Ve stavu rezonance, kdy jsou obě uvedené frekvence prakticky shodné, dosahuje amplituda kmitů extrémní hodnotu závislou na činiteli tlumení. Mechanické vlastnosti destičky krystalového rezonátoru lze popsat elektrickými parametry náhradního elektrického obvodu pomocí elektromechanické analogie. Z pohledu obvodu, ve kterém je rezonátor zapojen, se totiž krystal chová jako elektrický rezonanční obvod s několika rezonančními kmitočty. Krystalový rezonátor je možné vybudit do stavu sériové nebo paralelní rezonance. Pro popis vlastností a vyjádření rezonančních frekvencí se nejčastěji používá elektrické náhradní schéma (obr.). Paralelní kapacita C 0 je určena především kapacitou samotného krystalového výbrusu mezi elektrodami a kapacitou jeho držáku. Obr. 3 Náhradní schéma rezonátoru 7
8 Pro frekvenční pásmo 00 khz až 30 MHz, kde se užívá základní harmonická, je typická hodnota kapacity C 0 = ( až 40) pf. Parametry C, L a R popisují vlastnosti rezonátoru při sériové rezonanci. Jejich typické hodnoty jsou C = (0,003 až 0,3) pf; L = (3 až 500) mh; R = (2 až 200) Ω. Kmitočet pro sériovou rezonanci určíme ze vztahu f r (7) 2 LC Při sériové rezonanci má komplexní impedance obvodu pouze reálnou část, obvod se chová jako elektrický odpor, impedance obvodu při sériové rezonanci dosahuje minima, fázové posunutí mezi napětím a proudem je nulové. Vlivem tlumícího účinku odporu v rezonanční větvi náhradního schématu, kterým se vyjadřuje tlumení mechanických kmitů výbrusu, se dosáhne podmínek sériové rezonance při frekvenci o jednotky Hz nižší, než udává vztah (). Kmitočet pro paralelní rezonanci fa určíme ze vztahu f a 2 L C C 0 /( C C0 ) (8) Tento vztah lze zjednodušit f a C fr ( ) (9) 2C 0 Protože kapacita C 0 je řádově vyšší než kapacita C, jsou frekvence pro sériovou a paralelní rezonanci blízko sebe. Při paralelní rezonanci dosahuje impedance náhradního obvodu rezonátoru maxima. Závislost impedance Z náhradního elektrického obvodu na frekvenci je na obr. 2 a vykazuje dva extrémy pro frekvence f r a f a. Mezi uvedenými frekvencemi f r a f a má impedance obvodu charakter induktance (impedance s frekvencí roste). Fázové posunutí mezi napětím a proudem je zde Obr. 4 Závislost impedance na frekvenci θ = π/2. Mimo vymezenou kmitočtovou oblast má impedance charakter kapacitance a fázové posunutí mezi proudem a napětím θ = - π/2. Zápis výsledku měření závislosti impedance Z na frekvenci a závislosti fázového posunutí θ na frekvenci pomocí impedančního analyzátoru je na obr. 5. 8
9 Obr. 5 Záznam výsledku měření na krystalovém rezonátoru na obrazovce impedančního analyzátoru Agilent 4294A. Důležitou charakteristikou mechanického rezonujícího systému je tzv. činitel jakosti Q m. Je definován jako 2π násobek poměru energie akumulované v systému (průměrné energie kmitání) k energii rozptýlené tlumící silou za jednu periodu. Pomocí náhradního schématu krystalového rezonátoru lze odvodit vztah pro činitel jakosti Q m r L (0) R C R 2 f C R r r Obvody s vysokým činitelem jakosti mají úzkou rezonanční křivku s dobře vyjádřeným extrémem obvodové veličiny. Krystalové rezonátory mají činitele jakosti Q m = 0 4 až
10 3 Bezpečnostní instrukce Účelem bezpečnostních instrukcí je zabránit úrazu obsluhy či zničení laboratorní stanice. Před zahájením práce se stanicí s Vámi asistent detailně probere zásady práce s analyzátorem. Nedodržení těchto pokynů může být penalizováno předčasným ukončením laboratoře s hodnocením F. Při práci s laboratorní stanicí platí tato obecná pravidla: je nutno jakoukoliv zjištěnou závadu neprodleně nahlásit vyučujícímu asistentovi, je zakázáno zapínat impedanční analyzátor v nepřítomnosti asistenta, je zakázáno neuváženě manipulovat s tlačítky na ovládacím panelu. 0
11 4 Zadání laboratorní úlohy Cílem laboratorní úlohy je seznámit se s teoretickými základy impedančních měření, poznat režimy funkce impedančního analyzátoru Agilent 4294A a proměřit impedanční chování reálných elektronických součástek (rezistorů, kondenzátorů a cívek) v závislosti na frekvenci testovacího signálu. Tyto součástky jsou stavebními kameny náhradních obvodů senzorů. Tím studenti získají obecnou průpravu pro měření a vyhodnocování parametrů náhradních obvodů různých senzorů fyzikálních a chemických veličin. V návaznosti na to pak budou vyšetřovat impedanční chování konkrétního senzoru - krystalového rezonátoru s vrstvou sorbentu a stanoví parametry jeho náhradního obvodu. Úkol : Změřte závislost absolutní hodnoty komplexní impedance Z na frekvenci f pro následující součástky: a) rezistory o nominálních velikostech Ω, kω, MΩ; b) cívky o nominálních velikostech indukčnosti mh, 0 mh, 00 mh; c) kondenzátory o nominálních velikostech kapacity pf, nf, μf. Měření ve všech případech provádějte v rozsahu frekvencí f = 40 Hz - 00 MHz. Získané závislosti zakreslete schematicky v logaritmických souřadnicích (odděleně pro případ a), b), c)). Úkol 2: U cívky o indukčnosti 00 mh změřte činitel jakosti Q, u kondenzátoru o kapacitě μf ztrátový činitel D při frekvencích 00 Hz, khz, 0 khz, 00 khz, MHz, 0 MHz a 00 MHz. Výsledky uveďte ve formě tabulky. Úkol 3: Změřte závislost absolutní hodnoty komplexní impedance Z na frekvenci f pro následující články: sériová kombinace R-L, R-C, R-L-C; paralelní kombinace R-L, R-C, R-L-C. Měření proveďte pro rozsah frekvencí f = 40 Hz - 00 MHz. Zakreslete schematicky průběhy závislosti pro jednotlivé kombinace. V případě sériového uspořádání R-L-C a paralelního uspořádání R-L-C určete také rezonanční frekvence. Úkol 4: U paralelní R-L-C kombinace proveďte modelování ekvivalentního obvodu. Hodnoty jednotlivých prvků ekvivalentního obvodu vypočtené přístrojem porovnejte s nominálními hodnotami odporu, indukčnosti a kapacity skutečných součástek, z nichž je kombinace sestavena. Úkol 5: Změřte závislost impedance Z krystalového rezonátoru na frekvenci f (frekvenční charakteristiku) a určete frekvenci f r sériové rezonance a frekvenci f a paralelní rezonance. Úkol 6: Stanovte parametry R,L,C a C 0 náhradního schématu krystalového rezonátoru. Z vypočtených parametrů modelujte teoretickou podobu frekvenční charakteristiky. Proveďte zpětné porovnání frekvenční charakteristiky simulované s její podobou reálně naměřenou v předchozím úkolu. Úkol 7: Určete činitel jakosti Q m krystalového rezonátoru.
12 5 Postup měření Veškerá měření popisovaná v rámci této úlohy se budou provádět na impedančním analyzátoru Agilent 4294A. V laboratoři rovněž máte k dispozici tištěný manuál k tomuto analyzátoru. Úkoly a 3 : Při měření absolutní hodnoty komplexní impedance jednotlivých součástek a sériových nebo paralelních článků v závislosti na frekvenci postupujte následovně: V manuálu k impedančnímu analyzátoru si prostudujte kapitoly Postup kalibrace při připojení přípravku (str. 37-4), dále Výběr parametrů měření (str. 58-6). Problematiku měření následně diskutujte s asistentem. Zaměřte se přitom hlavně na následující otázky: a) určení druhu přípravku, který se musí použít při měření součástek; b) sled kroků při kalibraci přípravku; c) nastavení analyzátoru, aby zobrazoval velikost impedance v závislosti na frekvenci měřicího signálu Zapněte impedanční analyzátor a obslužný počítač. Proveďte nastavení parametrů měření: pomocí klávesy MEAS zvolte vhodný typ zobrazení měřených dat; z menu SWEEP vyberte frekvenci testovacího signálu jako nezávisle proměnnou veličinu a dále určete, zda se má frekvence v zadaném intervalu 40 Hz - 00 MHz měnit lineárně nebo logaritmicky. Klávesami SOURCE a LEVEL nastavte požadovanou velikost amplitudy testovacího signálu. Stisknutím klávesy TRIGGER a následnou volbou CONTINUOUS nastavte režim kontinuálního měření. S použitím režimu FIXTURE COMPENSATION zkalibrujte přípravek pro měření součástek (je součástí standardního vybavení analyzátoru). Kalibrace se musí provádět v rozpojeném i zkratovaném stavu (funkce OPEN / SHORT). Přitom se kalibruje přímo při zadaných frekvencích budoucího měření; režim interpolované kompenzace je nepřípustný. Ke správnému provedení kalibrace je nezbytné, aby probíhala zásadně až po nastavení všech parametrů experimentu (viz předchozí odstavec). Jen tak se zajistí kompenzace rušivých vlivů při aktuálně používaném režimu měření. Pokud se provede během experimentu jakákoli změna v menu MEAS, SWEEP nebo SOURCE, je nutno kalibraci opakovat. Po dokončení kalibrace vkládejte jednotlivé součástky do přípravku. Na obrazovce analyzátoru sledujte kontinuální měření velikosti impedance v závislosti na frekvenci testovacího signálu. Po ustálení sledované závislosti dejte v menu TRIGGER volbu SINGLE, což zajistí, že se provede jediný odměr ustálené podoby křivky. Na obslužném počítači v adresáři DATA vyhledejte naměřený soubor, který si vhodně nazvěte a vyexportujte do EXCELu. Sestrojte grafy (v logaritmických souřadnicích) závislostí absolutních hodnot komplexní impedance na frekvenci. Úkol 2: V kapitole Výběr parametrů měření (str. 58-6) si nastudujte měření činitele jakosti cívky (režim L p - Q) a disipačního faktoru kondenzátoru (režim C p - D). Pomocí klávesy MEAS nastavte tyto režimy měření. V další činnosti (nastavení frekvence a amplitudy testovacího signálu, kalibrace přípravku, export dat) už postupujte stejně jako v případě řešení Úkolu a 3. Úkol 4 : V manuálu k analyzátoru si prostudujte kapitolu 5.5 Analýza ekvivalentního obvodu a vyhledejte Tab. 8-3 na str Analyzátor umožňuje modelovat celkem 5 typů náhradních obvodů. Na základě grafu Z vs. f pro paralelní článek R-L-C (výstup řešení Úkolu 3) rozhodněte, kterým typem náhradního obvodu budete článek modelovat. Potom v menu DISPLAY proveďte volbu EQUIV CKT. Pomocí tlačítka SELECT CIRCUIT zadejte vybraný typ ekvivalentního obvodu (označený písmeny 2
13 A-E). Po volbě menu CALCULATE PARAMETERS se na obrazovce objeví vypočtené hodnoty parametrů náhradního obvodu. Tyto údaje zaznamenejte do protokolu. Úkol 5: Nejprve proveďte kalibraci přípravku na měření součástek; postup je popsaný v instrukcích k Úkolu. Po dokončení kalibrace vložte krystalový rezonátor do přípravku. Na obrazovce analyzátoru sledujte kontinuální měření velikosti impedance v závislosti na frekvenci testovacího signálu. Tato závislost má charakter popsaný na Obr.5. Při měření je potřeba dodržet izotermní podmínky, protože vlastnosti krystalů závisejí na teplotě. Minimální opatření v tomto směru je, že pokud krystal upínáme do měřicího přípravku rukou, musíme následně -2 min počkat na ustálení podoby měřené závislosti. Po ustálení dejte v menu TRIGGER volbu SINGLE, což zajistí, že se provede jediný odměr ustálené podoby křivky. Na obslužném počítači v adresáři DATA vyhledejte naměřený soubor, který si vhodně nazvěte a vyexportujte do EXCELu. Vytvořte graf a vyhodnoťte z něj obě rezonanční frekvence f r a f a. Celý tento postup opakujte pro amplitudy testovacího signálu 0 mv, 20 mv, 50 mv, 00 mv, 200 mv, 500 mv a 000 mv. Sestrojte grafy závislostí hodnot rezonančních frekvencí na velikosti amplitudy testovacího signálu. Úkol 6: V manuálu k analyzátoru vyhledejte Tab. 8-3 na str Analyzátor umožňuje modelovat celkem 5 typů náhradních obvodů. Na základě závislosti velikosti impedance na frekvenci testovacího signálu (výstup řešení předchozího úkolu) rozhodněte, kterým typem náhradního obvodu budete krystal modelovat. Potom v menu DISPLAY proveďte volbu EQUIV CKT. Pomocí tlačítka SELECT CIRCUIT zadejte vybraný typ ekvivalentního obvodu (označený písmeny A-E). Po volbě menu CALCULATE PARAMETERS se na obrazovce objeví vypočtené hodnoty parametrů náhradního obvodu. Tyto údaje zaznamenejte do protokolu. Pro zpětnou kontrolu podoby simulované a reálné frekvenční charakteristiky se opět vraťte do menu DISPLAY a v něm proveďte volbu EQUIV CKT. Písmenem A-E označte uvažovaný typ ekvivalentního obvodu podle Tab Následným stisknutím klávesy DEFINE PARAMETERS se dostanete do režimu zadávání parametrů ekvivalentního obvodu. Použijte hodnoty stanovené v předchozím odstavci a po jejich zadání stiskněte SIMULATE F-CHRST. Na obrazovce analyzátoru se vykreslí simulovaná podoba frekvenční charakteristiky; tu následně vyneste do společného grafu s reálnou chrakteristikou a vytiskněte. Úkol 6 provádějte pouze pro data získaná měřením při amplitudě testovacího signálu 00 mv. Úkol 7: Činitel jakosti krystalového rezonátoru stanovte z vypočtených parametrů ekvivalentního obvodu podle vztahu (0). 3
14 6 Pokyny pro vypracování protokolu a) Laboratorní protokol musí splňovat formální náležitosti zadané vedoucím Laboratoře charakterizace nano a mikrosystémů na začátku semestru. b) Do protokolu zaznamenejte detailní nastavení impedančního analyzátoru (především v menu MEAS, SWEEP, SOURCE a TRIGGER), které jste použili pro měření Úkolů -7. c) Zpracujte graficky, případně formou tabulek výstupy získané při řešení jednotlivých úkolů. d) Sledujte odchylky od ideálního chování při měření impedance reálných rezistorů, cívek a kondenzátorů za vyšších frekvencí měřicího signálu. e) Vyhodnoťte rezonanční frekvence sériového i paralelního R-L-C článku. f) Nakreslete schéma typu náhradního obvodu, který jste se vybrali z nabídky možností přístroje pro modelování paralelního R-L-C článku. Uveďte přístrojem vypočtené hodnoty parametrů tohoto náhradního obvodu a porovnejte je s hodnotami odporu, indukčnosti a kapacity skutečných součástek, ze kterých je článek sestavený. g) Nakreslete schéma typu náhradního obvodu, kterým jste se rozhodli modelovat chování krystalového rezonátoru. Uveďte přístrojem vypočtené hodnoty parametrů tohoto náhradního obvodu a podle vztahu (0) určený činitel jakosti. h) Přiložte grafické znázornění skutečné a simulované frekvenční charakteristiky krystalového rezonátoru. 7 Reference Hofmann J., Urbanová M.: Fyzika I - skriptum VŠCHT Praha, 3. vydání (20) Agilent Technologies Impedance Measurement Handbook, (2003) Agilent Technologies Co. Ltd 4
W1- Měření impedančního chování reálných elektronických součástek
Návod na laboratorní úlohu Laboratoře oboru I W1- Měření impedančního chování reálných elektronických součástek Úloha W1 1 / 6 1. Úvod Impedance Z popisuje úhrnný "zdánlivý odpor" prvků obvodu při průchodu
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů. Měření elektrofyzikálních parametrů krystalových rezonátorů
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Měření elektrofyzikálních parametrů krystalových rezonátorů . Úvod Krystalový rezonátor (krystal) je
3. Kmitočtové charakteristiky
3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny
Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.
FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických
Měření pilového a sinusového průběhu pomocí digitálního osciloskopu
Měření pilového a sinusového průběhu pomocí digitálního osciloskopu Úkol : 1. Změřte za pomoci digitálního osciloskopu průběh pilového signálu a zaznamenejte do protokolu : - čas t, po který trvá sestupná
3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.
Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost
Název: Měření paralelního rezonančního LC obvodu
Název: Měření paralelního rezonančního LC obvodu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:
Obvod střídavého proudu s kapacitou
Obvod střídavého proudu s kapacitou Na obrázku můžete vidět zapojení obvodu střídavého proudu s kapacitou. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte daná
13 Měření na sériovém rezonančním obvodu
13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do
Teoretický úvod: [%] (1)
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku
Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1
Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. Zadání. Naučte se pracovat s generátorem signálů Agilent 3320A, osciloskopem Keysight a střídavým voltmetrem Agilent 34405A. 2. Zobrazte
Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání
Elektrická měření pro I. ročník (Laboratorní cvičení)
Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
Obvod střídavého proudu s indukčností
Obvod střídavého proudu s indukčností Na obrázku můžete vidět zapojení obvodu střídavého proudu s indukčností. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.7/1.5./34.521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tematická sada:
1. Měření parametrů koaxiálních napáječů
. Měření parametrů koaxiálních napáječů. Úvod Napáječ je vedení, které spojuje zdroj a zátěž. Vlastnosti napáječe popisujeme charakteristickou impedancí Z [], měrnou fází [rad/m] a měrným útlumem [/m].
Fyzikální praktikum...
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při
Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.
Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou
E L E K T R I C K Á M Ě Ř E N Í
Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace E L E K T R I C K Á M Ě Ř E N Í R O Č N Í K MĚŘENÍ ZÁKLDNÍCH ELEKTRICKÝCH ELIČIN Ing. Bouchala Petr Jméno a příjmení Třída Školní
ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku
Laboratorní měření 2 Seznam použitých přístrojů 1. Laboratorní zdroj stejnosměrného napětí Vývojové laboratoře Poděbrady 2. Generátor funkcí Instek GFG-8210 3. Číslicový multimetr Agilent, 34401A 4. Digitální
Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika
Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy
b) Vypočtěte frekvenci f pro všechny měřené signály použitím vztahu
1. Měření napětí a frekvence elektrických signálů osciloskopem Cíl úlohy: Naučit se manipulaci s osciloskopem a používat jej pro měření napětí a frekvence střídavých elektrických signálů. Dvoukanálový
elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech
Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.7/1.5./34.521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).
Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12
Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)
Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úloha č. 6 Název: Měření účiníku Pracoval: Jakub Michálek stud. skup. 12 dne: 16.října 2009 Odevzdal dne: Možný počet
Teorie elektronických
Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 1 návod k měření Zpětná vazba a kompenzace Změřte modulovou kmitočtovou charakteristiku invertujícího zesilovače v zapojení s operačním zesilovačem
Operační zesilovač, jeho vlastnosti a využití:
Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost
pracovní list studenta RC obvody Měření kapacity kondenzátoru Vojtěch Beneš
Výstup RVP: Klíčová slova: pracovní list studenta RC obvody Vojtěch Beneš žák porovná účinky elektrického pole na vodič a izolant kondenzátor, kapacita kondenzátoru, nestacionární děj, nabíjení, časová
Rezonance v obvodu RLC
99 Pomůcky: Systém ISES, moduly: voltmetr, ampérmetr, dva kondenzátory na destičkách (černý a stříbrný), dvě cívky na uzavřeném jádře s pohyblivým jhem, rezistor 100 Ω, 7 spojovacích vodičů, 2 krokosvorky,
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,
Přenos pasivního dvojbranu RC
Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání
Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika
Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická
Harmonický průběh napětí a proudu v obvodu
Harmonický průběh napětí a proudu v obvodu Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Veličiny elektrických obvodů napětí u(t) okamžitá hodnota,
Studium tranzistorového zesilovače
Studium tranzistorového zesilovače Úkol : 1. Sestavte tranzistorový zesilovač. 2. Sestavte frekvenční amplitudovou charakteristiku. 3. Porovnejte naměřená zesílení s hodnotou vypočtenou. Pomůcky : - Generátor
C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity
RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400
Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku
Laboratorní měření Seznam použitých přístrojů 1. 2. 3. 4. 5. 6. Laboratorní zdroj DIAMETRAL, model P230R51D Generátor funkcí Protek B803 Číslicový multimetr Agilent, 34401A Číslicový multimetr UT70A Analogový
1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:
1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor
STŘÍDAVÝ PROUD POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D17_Z_OPAK_E_Stridavy_proud_T Člověk a příroda Fyzika Střídavý proud Opakování
Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz
. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete
Základy elektrotechniky 2 (21ZEL2) Přednáška 1
Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na
Elektromagnetický oscilátor
Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický
FYZIKA 2. ROČNÍK. Příklady na obvody střídavého proudu. A1. Určete induktanci cívky o indukčnosti 500 mh v obvodu střídavého proudu o frekvenci 50 Hz.
FYZKA. OČNÍK Příklady na obvody střídavého proudu A. rčete induktanci cívky o indukčnosti 500 H v obvodu střídavého proudu o frekvenci 50 Hz. = 500 0 3 H =?. = ω = π f = 57 Ω ívka á induktanci o velikosti
Základy elektrotechniky (ZELE)
Základy elektrotechniky (ZELE) Studijní program Technologie pro obranu a bezpečnost, 3 leté Bc. studium (civ). Výuka v 1. a 2. semestru, dotace celkem 72h (24+48). V obou semestrech zkouška, zápočet zrušen.
Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor
Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?
TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název
1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.
v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet
DIGITÁLNÍ UČEBNÍ MATERIÁL
DIGITÁLNÍ UČEBNÍ MATERIÁL škola Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 číslo projektu číslo učebního materiálu předmět, tematický celek ročník CZ.1.07/1.5.00/34.1037 VY_32_INOVACE_ZIL_VEL_123_12
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tematická sada:
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Měření plynem indukovaných změn voltampérových charakteristik chemických vodivostních senzorů 1. Úvod
3.5 Ověření frekvenční závislosti kapacitance a induktance
3.5 Ověření frekvenční závislosti kapacitance a induktance Online: http://www.sclpx.eu/lab3r.php?exp=10 I tento experiment patří mezi další původní experimenty autora práce. Stejně jako v předešlém experimentu
Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:
Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky
Měření na nízkofrekvenčním zesilovači. Schéma zapojení:
Číslo úlohy: Název úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Měření na nízkofrekvenčním zesilovači Spolupracovali ve skupině Zadání úlohy: Na zadaném Nf zesilovači proveďte následující měření
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Pavel Brožek stud.
Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství
Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený
PŘECHODOVÝ JEV V RC OBVODU
PŘEHODOVÝ JEV V OBVOD Pracovní úkoly:. Odvoďte vztah popisující časovou závislost elektrického napětí na kondenzátoru při vybíjení. 2. Měřením určete nabíjecí a vybíjecí křivku kondenzátoru. 3. rčete nabíjecí
Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u
Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008
Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.
Oscilátory Návod k přípravku pro laboratorní cvičení v předmětu EO. Měření se skládá ze dvou základních úkolů: (a) měření vlastností oscilátoru 1 s Wienovým členem (můstkový oscilátor s operačním zesilovačem)
1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem
Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový
U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu
DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran
Datum měření: , skupina: 9. v pondělí 13:30, klasifikace: Abstrakt
Fyzikální praktikum 3. Měření Měření rezonanční křivky paralelního a vázaného rezonančního obvodu Tomáš Odstrčil, Tomáš Markovič Datum měření: 20. 4. 2009, skupina: 9. v pondělí 13:30, klasifikace: Abstrakt
6 Měření transformátoru naprázdno
6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod
1.1 Měření parametrů transformátorů
1.1 Měření parametrů transformátorů Cíle kapitoly: Jedním z cílů úlohy je stanovit základní parametry dvou rozdílných třífázových transformátorů. Dvojice transformátorů tak bude podrobena měření naprázdno
1 Zadání. 2 Teoretický úvod. 4. Generátory obdélníkového signálu a MKO
1 4. Generátory obdélníkového signálu a MKO 1 Zadání 1. Sestavte generátor s derivačními články a hradly NAND s uvedenými hodnotami rezistorů a kapacitorů. Zobrazte časové průběhy v důležitých uzlech.
Měření vlastností lineárních stabilizátorů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.
Měření vlastností lineárních stabilizátorů Návod k přípravku pro laboratorní cvičení v předmětu EOS. Cílem měření je seznámit se s funkcí a základními vlastnostmi jednoduchých lineárních stabilizátorů
FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy
FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární
Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač
Teoretický úvod Oscilátor s Wienovým článkem je poměrně jednoduchý obvod, typické zapojení oscilátoru s aktivním a pasivním prvkem. V našem případě je pasivním prvkem Wienův článek (dále jen WČ) a aktivním
5. A/Č převodník s postupnou aproximací
5. A/Č převodník s postupnou aproximací Otázky k úloze domácí příprava a) Máte sebou USB flash-disc? b) Z jakých obvodů se v principu skládá převodník s postupnou aproximací? c) Proč je v zapojení použit
Fyzikální praktikum II
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 18 Název úlohy: Přechodové jevy v RLC obvodu Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.11.2015 Datum odevzdání:... Připomínky opravujícího:
Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí
Laboratorní úloha KLS Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULTISIM.0) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť
6. Viskoelasticita materiálů
6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti
Oscilátory Oscilátory
Oscilátory. Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné bylo použito vžitých názvů, které vznikaly v různých období vývoje a za zcela odlišných podmínek):
Určeno pro posluchače bakalářských studijních programů FS
rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované
Měření vlastností jednostupňových zesilovačů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.
Měření vlastností jednostupňových zesilovačů Návod k přípravku pro laboratorní cvičení v předmětu EOS. Cílem měření je seznámit se s funkcí a základními vlastnostmi jednostupňových zesilovačů a to jak
Fyzikální praktikum 3 Operační zesilovač
Ústav fyzikální elekotroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 7. Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve
Srovnání charakteristik tónového generátoru a zvukové karty PC
Srovnání charakteristik tónového generátoru a zvukové karty PC ČENĚK KODEJŠKA LENKA MYSLIVCOVÁ FRANTIŠEK HOŠEK MATYÁŠ ROUHA Gymnázium, Komenského 77, Nový Bydžov Úvod Cílem naší práce bylo prozkoumat různé
MĚŘENÍ Laboratorní cvičení z měření. Měření parametrů operačních zesilovačů, část 3-7-5
MĚŘENÍ Laboratorní cvičení z měření Měření parametrů operačních zesilovačů, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 21 Číslo materiálu:
Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC
Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC Kondenzátor i cívka kladou střídavému proudu odpor, který nazýváme kapacitance
Rezonance v obvodu RLC
Rezonance v obvodu RLC Úkoly: 1. Prozkoumejte, jak rezonanční frekvence závisí na kapacitě kondenzátoru. 2. Prozkoumejte, jak rezonanční frekvence závisí na parametrech cívky. 3. Zjistěte, jak se při rezonanci
PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE
PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: Bi-VII-1 Srovnání síly stisku pravé a levé ruky Spolupracovník: Hodnocení: Datum měření: Úkol: 1) Porovnejte sílu pravé a levé ruky. 2) Vyhodnoťte
1 Zadání. 2 Teoretický úvod. 7. Využití laboratorních přístrojů v elektrotechnické praxi
1 7. Využití laboratorních přístrojů v elektrotechnické praxi 1 Zadání Zapojte pracoviště podle pokynů v pracovním postupu. Seznamte se s ovládáním přístrojů na pracovišti a postupně realizujte jednotlivé
- + C 2 A B V 1 V 2 - U cc
RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola
Měření výkonu jednofázového proudu
Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Detekce nízkých koncentrací plynů pomocí chemických vodivostních senzorů Úvod Chemické vodivostní senzory
Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné)
Oscilátory Oscilátory Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) mechanicky laditelní elektricky laditelné VCO (Voltage Control Oscillator) Typy oscilátorů RC většinou neharmonické
1.1 Pokyny pro měření
Elektronické součástky - laboratorní cvičení 1 Bipolární tranzistor jako zesilovač Úkol: Proměřte amplitudové kmitočtové charakteristiky bipolárního tranzistoru 1. v zapojení se společným emitorem (SE)
1 Přesnost měření efektivní hodnoty různými typy přístrojů
1 Přesnost měření efektivní hodnoty různými typy přístrojů Cíl: Cílem této laboratorní úlohy je ověření vhodnosti použití různých typů měřicích přístrojů při měření efektivních hodnot střídavých proudů
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 4, 4605 Minulá hodina: Ohmický odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.
Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou
Laboratorní úloha č. 2 - Vnitřní odpor zdroje
Laboratorní úloha č. 2 - Vnitřní odpor zdroje Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu R i zdroje včetně
LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA
LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA Transformátor Měření zatěžovací a převodní charakteristiky. Zadání. Změřte zatěžovací charakteristiku transformátoru a graficky znázorněte závislost
Účinky elektrického proudu. vzorová úloha (SŠ)
Účinky elektrického proudu vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud jako