PŘÍKLADY POUŽITÍ ORDINAČNÍCH METOD

Rozměr: px
Začít zobrazení ze stránky:

Download "PŘÍKLADY POUŽITÍ ORDINAČNÍCH METOD"

Transkript

1 PŘÍKLADY POUŽITÍ ORDINAČNÍCH METOD 1

2 PŘÍKLAD NA ROZKLAD VARIANCE SPOLEČENSTVA MĚKKÝŠŮ NA PRAMENIŠTÍCH druhové složení společenstev měkkýšů druhové složení slatiništní vegetace ph Ca cond Mg Na měřené proměnné prostředí (ve vodě) Otázka: Je druhové složení společenstev měkkýšů na slatiništích ovlivněno více druhovým složením vegetace, nebo stanovištními podmínkami? Horsák M. & Hájek M. (2003) 2

3 PŘÍKLAD NA ROZKLAD VARIANCE SPOLEČENSTVA MĚKKÝŠŮ NA PRAMENIŠTÍCH o druhové složení měkkýšů (Hellingerova transformace) -> RDA o druhové složení vegetace > DCA (krátký gradient) -> PCA o postupný výběr proměnných (RDA) na měkkýších mezi PCA osami reprezentujícími vegetaci mezi proměnnými prostředí reprezentujícími stanovištní podmínky o výsledek z vegetačních dat nejlépe vysvětlí měkkýše první dvě osy PCA z proměnných prostředí je nejlepší obsah vápníku a konduktivita slatiništní vody o rozklad variance mezi vegetaci a proměnné prostředí o test marginálních a parciálních frakcí vysvětlené variability 3

4 PŘÍKLAD NA ROZKLAD VARIANCE SPOLEČENSTVA MĚKKÝŠŮ NA PRAMENIŠTÍCH vegetace [PC1 + PC2] proměnné prostředí [Ca + conduct] 6% p < % 2% p = [d] = 72% 4

5 ROZKLAD VARIANCE MEZI PROMĚNNÉ PROSTŘEDÍ A PROMĚNNÉ POPISUJÍCÍ PROSTOROVÉ VZTAHY 5

6 ROZKLAD VARIANCE MEZI PROMĚNNÉ PROSTŘEDÍ A PROMĚNNÉ POPISUJÍCÍ PROSTOROVÉ VZTAHY spatial variables (e.g. dbmem) 6

7 DBMEM DISTANCE-BASED MORAN S EIGENVECTOR MAPS (DŘÍVE PCNM - PRINCIPAL COORDINATES OF NEIGHBOUR MATRICES) 7

8 ROZKLAD VARIANCE MEZI PROMĚNNÉ PROSTŘEDÍ A PROMĚNNÉ POPISUJÍCÍ PROSTOROVÉ VZTAHY spatial variables (e.g. dbmem) 8

9 ROZKLAD VARIANCE MEZI PROMĚNNÉ PROSTŘEDÍ A PROMĚNNÉ POPISUJÍCÍ PROSTOROVÉ VZTAHY spatial variables (e.g. dbmem) 9

10 TŘI ALTERNATIVNÍ PŘÍSTUPY K PŘÍMÉ ORDINAČNÍ ANALÝZE (a) Klasický přístup: RDA zachovává euklidovské distance, CCA chi-kvadrát distance (b) Transformace dat (tb-rda): používá distance vzniklé transformací dat (např. Hellingerova distance) (c) Přes matici nepodobností (db-rda): zachovává distance použité ve vstupní distanční matici Legendre & Legendre (2012) podle Legendre & Gallagher (2001) 10

11 ROZKLAD VARIANCE, DBRDA Rádková et al. (2014) Freshwater Biology 11

12 ROZKLAD VARIANCE, DBRDA Rádková et al. (2014) Freshwater Biology 12

13 ORDINAČNÍ DIAGRAMY KONVENCE o zobrazení vzorků body o zobrazení druhů šipky (lineární metody) body, centroidy (unimodální metody) o zobrazení ordinačních os vodorovná bývá osa vyššího řádu (např. první) orientace os je arbitrární o zobrazení proměnných prostředí šipky (kvantitativní proměnné) centroidy (kategoriální proměnné) o typ ordinačního diagramu: scatterplot - 1 typ dat (vzorky nebo druhy) biplot - 2 typy dat (např. vzorky a druhy) triplot - 3 typy dat (např. vzorky, druhy a proměnné prostředí) Lepš & Šmilauer (2003) Multivariate analysis of... 13

14 ORDINAČNÍ DIAGRAMY lineární metoda unimodální metoda nepřímá ordinace přímá ordinace Lepš & Šmilauer (2003) Multivariate analysis of... 14

15 HISTORICKÉ ORDINAČNÍ DIAGRAMY BRAY & CURTIS NEPŘÍMÁ GRADIENTOVÁ ANALÝZA Bray & Curtis (1957): An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs 27:

16 MODERNÍ ANALOGIE (DCA V KNIHOVNĚ VEGAN) 16

17 PCA PŘÍKLAD TRENDY V NÁZVECH ČLÁNKŮ V EKOLOGICKÝCH ČASOPISECH Nobis & Wohlgemuth (2004) Oikos 17

18 Nobis & Wohlgemuth (2004) Oikos 18

19 DCA PŘÍKLAD FLORISTICKÁ DATA Z NP PODYJÍ skóre pro jednotlivé kvadráty z 1. a 2. osy DCA (na základě jejich floristického složení) byly promítnuty do síťové mapy Chytrý et al. (1999) Preslia 19

20 NMDS PŘÍKLAD VLIV SUCHA NA SLOŽENÍ SPOLEČENSTEV V EXPERIMENTÁLNÍ STUDII Chase (2007) PNAS 20

21 NMDS PŘÍKLAD ZMĚNY V DRUHOVÉM SLOŽENÍ KORÁLOVÝCH ÚTESŮ ZASAŽENÝCH DISTURBANCÍ EL NINO Anderson et al. (2011) Ecology Letters 21

22 CCA PŘÍKLAD STANOVENÍ EKOLOGICKÉHO OPTIMA JEDNOTLIVÝCH DRUHŮ MĚKKÝŠŮ PODÉL EKOLOGICKÝCH GRADIENTŮ Horsák et al. (2007) Acta Oecologica 22

PCA BIPLOT ŠKÁLOVÁNÍ OS (1)

PCA BIPLOT ŠKÁLOVÁNÍ OS (1) PCA BIPLOT ŠKÁLOVÁNÍ OS (1) 1 (sites) o zaměření na odlišnosti mezi lokalitami zachovány euklidovské vzdálenosti mezi vzorky úhly mezi šipkami neodpovídají kovariancím (korelacím) proměnných variance skóre

Více

David Zelený GRADIENTOVÁ ANALÝZA

David Zelený GRADIENTOVÁ ANALÝZA David Zelený Zpracování dat v ekologii společenstev G GRADIENTOVÁ ANALÝZA HISTORIE WHITTAKER 1956 - PŘÍMÁ GRADIENTOVÁ ANALÝZA Zpracování dat v ekologii společenstev 108 Whittaker (1956): Vegetation of

Více

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV OSNOVA PŘEDNÁŠKY Příprava dat pro numerické analýzy typy sbíraných dat, čištění dat, odlehlé body, transformace, standardizace, EDA Ekologická podobnost indexy podobnosti

Více

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV OSNOVA PŘEDNÁŠKY Typy sbíraných dat kategoriální vs kvantitativní, pokryvnosti, frekvence Příprava dat pro numerické analýzy čištění dat, odlehlé body, transformace,

Více

Ordinační analýzy v programu JUICE

Ordinační analýzy v programu JUICE Ordinační analýzy v programu JUICE Martina Nejezchlebová, Blansko, 30. 8. 2011 1.1 Ordinační analýzy Jsou nedílnou součástí mnoha vegetačních a ekologických analýz. V programu JUICE (Tichý 2002) v kombinaci

Více

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV OSNOVA PŘEDNÁŠKY Příprava dat pro numerické analýzy typy sbíraných dat, čištění dat, odlehlé body, transformace, standardizace, EDA Ekologická podobnost indexy podobnosti

Více

SPECIES ATTRIBUTES IN ANALYSIS OF COMMUNITY ECOLOGY DATA

SPECIES ATTRIBUTES IN ANALYSIS OF COMMUNITY ECOLOGY DATA SPECIES ATTRIBUTES IN ANALYSIS OF COMMUNITY ECOLOGY DATA HOW TO ANALYSE RELATIONSHIP BETWEEN SAMPLE ATTRIBUTES AND SPECIES ATTRIBUTES VIA SPECIES COMPOSITION? species sample attributes samples L R 222

Více

STATISTICKÉ METODY; ZÍSKÁVÁNÍ INFORMACÍ Z DRUHOVÝCH A ENVIRONMENTÁLNÍCH DAT

STATISTICKÉ METODY; ZÍSKÁVÁNÍ INFORMACÍ Z DRUHOVÝCH A ENVIRONMENTÁLNÍCH DAT STATISTICKÉ METODY; ZÍSKÁVÁNÍ INFORMACÍ Z DRUHOVÝCH A ENVIRONMENTÁLNÍCH DAT (NE)VÝHODY STATISTIKY OTÁZKY si klást ještě před odběrem a podle nich naplánovat design, metodiku odběru (experimentální vs.

Více

EKOLOGICKÁ PODOBNOST (ECOLOGICAL RESEMBLANCE) David Zelený Zpracování dat v ekologii společenstev

EKOLOGICKÁ PODOBNOST (ECOLOGICAL RESEMBLANCE) David Zelený Zpracování dat v ekologii společenstev EKOLOGICKÁ PODOBNOST (ECOLOGICAL RESEMBLANCE) EKOLOGICKÁ PODOBNOST Q VS R ANALÝZA Vzorky Druhy druh 1 druh 2 druh 3 vzorek 1 0 1 1 vzorek 2 1 0 0 vzorek 3 0 4 4 vztahy mezi vzorky Q analýza vztahy mezi

Více

NUMERICKÁ KLASIFIKACE. David Zelený Zpracování dat v ekologii společenstev

NUMERICKÁ KLASIFIKACE. David Zelený Zpracování dat v ekologii společenstev NUMERICKÁ KLASIFIKACE http://wfc3.gsfc.nasa.gov PROČ MÁ SMYSL VĚCI KLASIFIKOVAT? vlnová délka (~ ekologický gradient) 172 http://wfc3.gsfc.nasa.gov PROČ MÁ SMYSL VĚCI KLASIFIKOVAT? vlnová délka (~ ekologický

Více

ELLENBERGOVY INDIKAČNÍ HODNOTY. David Zelený Zpracování dat v ekologii společenstev

ELLENBERGOVY INDIKAČNÍ HODNOTY. David Zelený Zpracování dat v ekologii společenstev 3 2 6 6 5 2 ELLENBERGOVY INDIKAČNÍ HODNOTY ELLENBERGOVY INDIKAČNÍ HODNOTY (EIH) optima druhů rostlin na gradientu živin, vlhkosti, půdní reakce, kontinentality, teploty, světla a salinity (salinita se

Více

REGRESE VS KALIBRACE. David Zelený Zpracování dat v ekologii společenstev

REGRESE VS KALIBRACE. David Zelený Zpracování dat v ekologii společenstev REGRESE VS KALIBRACE David Zelený METODY GRADIENTOVÉ ANALÝZY Data, která máme: počet charakteristik prostředí počet druhů Apriorní znalost vztahů mezi druhy a prostředím? Použijeme: Dostaneme: 1, n 1 ne

Více

ELLENBERGOVY INDIKAČNÍ HODNOTY. David Zelený Zpracování dat v ekologii společenstev

ELLENBERGOVY INDIKAČNÍ HODNOTY. David Zelený Zpracování dat v ekologii společenstev 3 2 6 6 5 2 ELLENBERGOVY INDIKAČNÍ HODNOTY ELLENBERGOVY INDIKAČNÍ HODNOTY (EIH) optima druhů rostlin na gradientu ţivin, vlhkosti, půdní reakce, kontinentality, teploty, světla a salinity (salinita se

Více

INDEXY DIVERZITY. David Zelený Zpracování dat v ekologii společenstev

INDEXY DIVERZITY. David Zelený Zpracování dat v ekologii společenstev INDEXY DIVERZITY Jurasinski et al. (2009) ALFA, BETA A GAMA DIVERZITA Alfa diverzita druhová bohatost vzorku Beta diverzita (species turnover) změna v druhovém složení mezi vzorky Gama diverzita celková

Více

INDEXY DIVERZITY. David Zelený Zpracování dat v ekologii společenstev

INDEXY DIVERZITY. David Zelený Zpracování dat v ekologii společenstev INDEXY DIVERZITY ALFA, BETA A GAMA DIVERZITA Alfa diverzita druhová bohatost vzorku Beta diverzita (species turnover) změna v druhovém složení mezi vzorky Gama diverzita celková druhová bohatost regionu

Více

Gradient. Gradient změna některého faktoru prostředí

Gradient. Gradient změna některého faktoru prostředí Gradientová analýza Gradient Gradient změna některého faktoru prostředí Historické zdroje Teorie vegetačního kontinua (Gleason 1917, Ramenskij 1924) Wisconsinská škola (50. léta): Curtis, McIntosh, Bray

Více

DIVERZITA. David Zelený Zpracování dat v ekologii společenstev

DIVERZITA. David Zelený Zpracování dat v ekologii společenstev DIVERZITA ALFA, BETA A GAMA DIVERZITA Alfa diverzita druhová bohatost vzorku Beta diverzita (species turnover) změna v druhovém složení mezi vzorky heterogenita druhového složení Gama diverzita celková

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Ordinační analýzy principy redukce dimenzionality Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Ordinační analýza a její cíle Cíle ordinační analýzy

Více

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV OSNOVA PŘEDNÁŠKY Typy sbíraných dat kategoriální vs kvantitativní, pokryvnosti, frekvence Příprava dat pro numerické analýzy čištění dat, odlehlé body, transformace,

Více

Hluboká říční údolí jako objekt pro modelování vztahů vegetace a proměnných prostředí?

Hluboká říční údolí jako objekt pro modelování vztahů vegetace a proměnných prostředí? David Zelený Biologická fakulta JčU v Českých Budějovicích školitel: Milan Chytrý (PřF MU Brno) Hluboká říční údolí jako objekt pro modelování vztahů vegetace a proměnných prostředí? Vltava pod Dívčím

Více

ZPRACOVÁNÍ DAT V EKOLOGII

ZPRACOVÁNÍ DAT V EKOLOGII ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV VÍT SYROVÁTKA OSNOVA PŘEDNÁŠKY o Příprava dat pro numerické analýzy typy sbíraných dat, čištění dat, odlehlé body, transformace, standardizace, EDA o Ekologická podobnost

Více

Vyhodnocení průměrných denních analýz kalcinátu ananasového typu. ( Metoda hlavních komponent )

Vyhodnocení průměrných denních analýz kalcinátu ananasového typu. ( Metoda hlavních komponent ) Vyhodnocení průměrných denních analýz kalcinátu ananasového typu. ( Metoda hlavních komponent ) Zadání : Titanová běloba (TiO ) se vyrábí ve dvou základních krystalových modifikacích - rutilové a anatasové.

Více

Metodika. Zájmová území

Metodika. Zájmová území Sociálně-ekonomické charakteristiky obcí a vybraná velkoplošná chráněná území v ČR Karel Matějka IDS, Na Komořsku 2175/2a, 143 00 Praha 4 matejka@infodatasys.cz V rámci projektu GA ČR P404/11/0354 Protected

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Zrnitostní složení půd Krkonoš Karel Matějka IDS, Na Komořsku 2175/2a, Praha 4

Zrnitostní složení půd Krkonoš Karel Matějka IDS, Na Komořsku 2175/2a, Praha 4 Zrnitostní složení půd Krkonoš Karel Matějka IDS, Na Komořsku 75/a, Praha Významnou fyzikální vlastnosti půdy, od které se odvíjejí další vlastnosti, je zrnitostní složení půdy, které je základní vlastností

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Praktické řešení v software Statistica Jiří Jarkovský, Simona Littnerová Vícerozměrné metody 1. Vstupní data pro vícerozměrné analýzy 2. Metriky podobností a vzdáleností 3. Cluster Analysis 4. Principal

Více

3.4 Určení vnitřní struktury analýzou vícerozměrných dat

3.4 Určení vnitřní struktury analýzou vícerozměrných dat 3. Určení vnitřní struktury analýzou vícerozměrných dat. Metoda hlavních komponent PCA Zadání: Byly provedeny analýzy chladící vody pro odběrové místa. Byly stanoveny parametry - ph, vodivost, celková

Více

Robust 2014, 19. - 24. ledna 2014, Jetřichovice

Robust 2014, 19. - 24. ledna 2014, Jetřichovice K. Hron 1 C. Mert 2 P. Filzmoser 2 1 Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta, Univerzita Palackého, Olomouc 2 Department of Statistics and Probability Theory Vienna University

Více

Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody

Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Podobnosti a vzdálenosti ve vícerozměrném prostoru, asociační matice II Jiří Jarkovský, Simona Littnerová Vícerozměrné statistické metody Práce s asociační maticí Vzdálenosti

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o

Více

Užití země v České republice v letech 1994 až 2012 Karel Matějka IDS, Na Komořsku 2175/2a, 143 00 Praha 4, Česká republika matejka@infodatasys.

Užití země v České republice v letech 1994 až 2012 Karel Matějka IDS, Na Komořsku 2175/2a, 143 00 Praha 4, Česká republika matejka@infodatasys. Užití země v České republice v letech 1994 až 2012 Karel Matějka IDS, Na Komořsku 2175/2a, 143 00 Praha 4, Česká republika matejka@infodatasys.cz Po roce 19 došlo k výrazné změně hospodářských poměrů v

Více

Odhalení skryté struktury a vnitřních vazeb dat vícerozměrnou statistickou analýzou pitné vody

Odhalení skryté struktury a vnitřních vazeb dat vícerozměrnou statistickou analýzou pitné vody Odhalení skryté struktury a vnitřních vazeb dat vícerozměrnou statistickou analýzou pitné vody Prof. RNDr. Milan Meloun, DrSc, Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice, milan.

Více

2019/03/31 17:38 1/2 Klasifikační a regresní stromy

2019/03/31 17:38 1/2 Klasifikační a regresní stromy 2019/03/31 17:38 1/2 Klasifikační a regresní stromy Table of Contents Klasifikační a regresní stromy... 1 rpart (library rpart)... 1 draw.tree (library maptree)... 3 plotcp a rsq.rpart (library rpart)...

Více

Vliv přístupnosti živina na vegetaci rašelinných okrajů rybníků Třeboňské pánve

Vliv přístupnosti živina na vegetaci rašelinných okrajů rybníků Třeboňské pánve Vliv přístupnosti živina na vegetaci rašelinných okrajů rybníků Třeboňské pánve Jana Navrátilová spoluřešitel: : Michal Hájek Cíle: Zjištění vlivu přístupnosti živin na jednotlivé typy vegetace rašelinných

Více

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV OSNOVA PŘEDNÁŠKY Příprava dat pro numerické analýzy čištění dat, odlehlé body, transformace, standardizace, EDA Design ekologických experimentů manipulativní experimenty

Více

Hodnocení obcí podle zastoupení druhů pozemků 1

Hodnocení obcí podle zastoupení druhů pozemků 1 Hodnocení obcí podle zastoupení druhů pozemků 1 Karel Matějka IDS, Na Komořsku 2175/2A, 143 Praha 4; matejka@infodatasys.cz Zastoupení jednotlivých druhů pozemků vypovídá o užití země (land-use) v daném

Více

Diverzita doubrav ve vztahu k produktivitě stanoviště. Irena Veselá

Diverzita doubrav ve vztahu k produktivitě stanoviště. Irena Veselá Diverzita doubrav ve vztahu k produktivitě stanoviště Irena Veselá Proč doubravy? Omezení datového souboru: výběr ploch s dominantními druhy Quercus petraea nebo Q. robur => konstantní vliv na bylinné

Více

Karel Matějka IDS, Na Komořsku 2175/2A, 143 00 Praha 4 e-mail: matejka@infodatasys.cz

Karel Matějka IDS, Na Komořsku 2175/2A, 143 00 Praha 4 e-mail: matejka@infodatasys.cz Dotazníky k sociologicko-ekonomickému průzkumu zájmových území (zpracování dat) Projekt VaV/6/3/3 Participativní management chráněných území klíč k minimalizaci konfliktů mezi ochranou biodiversity a socioekonomickým

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Diskriminační analýza Jiří Jarkovský, Simona Littnerová Typy vícerozměrných analýz y Faktorové osy SHLUKOVÁ NLÝZ x y x ORDINČNÍ METODY podobnost KLSIFIKCE y Diskriminační

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Ordinační analýzy přehled metod Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Analýza hlavních komponent jako příklad výpočtu redukce dimenzionality

Více

ZPRACOVÁNÍ DAT V EKOLOGII

ZPRACOVÁNÍ DAT V EKOLOGII ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV VÍT SYROVÁTKA OSNOVA PŘEDNÁŠKY o Příprava dat pro numerické analýzy typy sbíraných dat, čištění dat, odlehlé body, transformace, standardizace, EDA o Ekologická podobnost

Více

Mnohorozměrná analýza ekologických dat

Mnohorozměrná analýza ekologických dat Mnohorozměrná analýza ekologických dat Jan Lepš & Petr Šmilauer Překlad: Dana Vašková, s následnými korekcemi autorů Biologická fakulta Jihočeské univerzity v Českých Budějovicích České Budějovice, 2000

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KLASIFIKACE

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

Cíl Vyhodnotit současný stav migračně prostorové diferenciace území ČR a migrační tendence na základě údajů za obce ČR

Cíl Vyhodnotit současný stav migračně prostorové diferenciace území ČR a migrační tendence na základě údajů za obce ČR Cíl Vyhodnotit současný stav migračně prostorové diferenciace území ČR a migrační tendence na základě údajů za obce ČR Data Obce ČR 2011 (Veřejná databáze ČSÚ) SPSS IBM, ArcGIS Proměnné: intenzita migračního

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti. Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc Zpracovávaná data jsou

Více

Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž

Více

11.Metody molekulové spektrometrie pro kvantitativní analýzu léčiv

11.Metody molekulové spektrometrie pro kvantitativní analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 11.Metody molekulové spektrometrie pro kvantitativní analýzu léčiv Vadym Prokopec Vadym.Prokopec@vscht.cz 11.Metody molekulové spektrometrie

Více

Fakulta chemicko technologická Katedra analytické chemie

Fakulta chemicko technologická Katedra analytické chemie Fakulta chemicko technologická Katedra analytické chemie Licenční studium statistické zpracování dat Analýza vícerozměrných dat Ing. Pavel Valášek Školní rok OBSAH ÚVOD DATA EDA EXPLORATORÍ AALÝZA 4 PCA

Více

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV OSNOVA PŘEDNÁŠKY Příprava dat pro numerické analýzy čištění dat, odlehlé body, transformace, standardizace, EDA Design ekologických experimentů manipulativní experimenty

Více

Obnova, resp. tvorba druhově bohatých lučních ekosystémů na výsypkách

Obnova, resp. tvorba druhově bohatých lučních ekosystémů na výsypkách Obnova, resp. tvorba druhově bohatých lučních ekosystémů na výsypkách Bc. Anna Matoušů, PřF JČU Doc. Jan Frouz, Ústav pro životní prostředí PřF UK / ÚPB Klasické rekultivace (lesnické, zemědělské) jsou

Více

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................

Více

Pokročilé metody geostatistiky v R-projektu

Pokročilé metody geostatistiky v R-projektu ČVUT V PRAZE, Fakulta stavební, Geoinformatika Pokročilé metody geostatistiky v R-projektu Autoři: Vedoucí projektu: RNDr. Dr. Nosková Jana Studentská grantová soutěž ČVUT 2011 Praha, 2011 Geostatistika

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd

Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd Prof. RNDr. Milan Meloun, DrSc. (Univerzita Pardubice, Pardubice) 20.-24. června 2011 Tato prezentace je spolufinancována

Více

Shluková analýza dat a stanovení počtu shluků

Shluková analýza dat a stanovení počtu shluků Shluková analýza dat a stanovení počtu shluků Autor: Tomáš Löster Vysoká škola ekonomická v Praze Ostrava, červen 2017 Osnova prezentace Úvod a teorie shlukové analýzy Podrobný popis shlukování na příkladu

Více

Zpracování digitalizovaného obrazu (ZDO) - Popisy III

Zpracování digitalizovaného obrazu (ZDO) - Popisy III Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování

Více

Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy

Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy Zadání: Deponie nadložních jílových sedimentů SHP byla testována za účelem využití v cihlářské výrobě. Z deponie bylo odebráno

Více

Pokročilé neparametrické metody. Klára Kubošová

Pokročilé neparametrické metody. Klára Kubošová Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační

Více

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými

Více

Vícerozměrná analýza dat

Vícerozměrná analýza dat Jiří Jarkovský Plán n kurzu Každých 4 dní 4 vyučovací hodiny Ukončení zkouškou Písemná Zaměřená na principy a aplikace analýz Cíl kurzu Vysvětlit principy vícerozměrných analýz, jejich aplikaci v biologii

Více

(supervizovaného učení), jako je regrese a klasifikace. V takové situaci pozorujeme jak soubor vlastností

(supervizovaného učení), jako je regrese a klasifikace. V takové situaci pozorujeme jak soubor vlastností Učení bez učitele Nesupervizované versus supervizované učení: Většina tohoto kurzu je zaměřena na metody učení s učitelem (supervizovaného učení), jako je regrese a klasifikace. V takové situaci pozorujeme

Více

Přednáška 13 Redukce dimenzionality

Přednáška 13 Redukce dimenzionality Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /

Více

Matematika pro geometrickou morfometrii

Matematika pro geometrickou morfometrii Matematika pro geometrickou morfometrii Václav Krajíček Vaclav.Krajicek@mff.cuni.cz Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University Přednáška

Více

Dálkový průzkum Země. Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU

Dálkový průzkum Země. Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU Dálkový průzkum Země Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU Klasifikace obrazu Klasifikaci můžeme obecně definovat jako seskupování vzájemně si podobných prvků (entit) do

Více

F A,B = Vektory baze vyjádřete jako aritmetické vektory souřadnic vzhledem

F A,B = Vektory baze vyjádřete jako aritmetické vektory souřadnic vzhledem Přezdívka: Jméno a příjmení: výsledek 11 8 18 4 1 4 1 1 1 9 4 4 4 Určete které z vektorů B v 1 = 1 B v = 6 leží v oboru hodnot lineárního zobrazení zadaného maticí 1 1 1 5 1 15 1 6 5 Ten, který leží, můžete

Více

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV

ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV ZPRACOVÁNÍ DAT V EKOLOGII SPOLEČENSTEV OSNOVA PŘEDNÁŠKY Příprava dat pro numerické analýzy čištění dat, odlehlé body, transformace, standardizace, EDA Design ekologických experimentů manipulativní experimenty

Více

Časové řady - Cvičení

Časové řady - Cvičení Časové řady - Cvičení Příklad 2: Zobrazte měsíční časovou řadu míry nezaměstnanosti v obci Rybitví za roky 2005-2010. Příslušná data naleznete v souboru cas_rada.xlsx. Řešení: 1. Pro transformaci dat do

Více

Analýza hlavních komponent

Analýza hlavních komponent Analýza hlavních komponent Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) Analýza

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Aktuální mapy znečištění ovzduší v evropském i českém měřítku (roční charakteristiky) a vývoj v oblasti mapování

Aktuální mapy znečištění ovzduší v evropském i českém měřítku (roční charakteristiky) a vývoj v oblasti mapování Aktuální mapy znečištění ovzduší v evropském i českém měřítku (roční charakteristiky) a vývoj v oblasti mapování Jan Horálek Jana Ostatnická, Jana Schovánková, Pavel Kurfürst Peter de Smet, Leonor Tarrasón,

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Odhalte skryté vazby v kategorizovaných datech

Odhalte skryté vazby v kategorizovaných datech IBM Software IBM SPSS Categories Odhalte skryté vazby v kategorizovaných datech Využijte veškeré informace skryté ve Vašich datech. Odhalit tyto informace Vám pomohou percepční mapy, optimální škálování

Více

Faktorová analýza. PSY252 Statistická analýza dat v psychologii II

Faktorová analýza. PSY252 Statistická analýza dat v psychologii II Faktorová analýza PSY252 Statistická analýza dat v psychologii II 8.12.2010 Latentní a manifestní proměnné Perspektiva CTT: (pro)jevy, které spolu nějakým způsobem souvisejí, mají stejnou podstatu, jsou

Více

Metodologie pedagogického výzkumu II

Metodologie pedagogického výzkumu II Metodologie pedagogického výzkumu II kurz pro první ročník magisterského studia oboru pedagogiky, PedF UK rozsah kurzu: 1/1 výuka probíhá blokově: sobota 2.4. v 10:00-17:30 v R208 sobota 9.4. v 10:00-17:30

Více

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je = Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Výstupy z výukové jednotky. 2. Princip faktorové analýzy

Výstupy z výukové jednotky. 2. Princip faktorové analýzy Faktorová analýza Faktorová analýza je vícerozměrná statistická metoda, jejíž podstatou je rozbor struktury vzájemných závislostí proměnných na základě předpokladu, že jsou tyto závislosti důsledkem působení

Více

Klasifikace a rozpoznávání. Extrakce příznaků

Klasifikace a rozpoznávání. Extrakce příznaků Klasifikace a rozpoznávání Extrakce příznaků Extrakce příznaků - parametrizace Poté co jsme ze snímače obdržely data která jsou relevantní pro naši klasifikační úlohu, je potřeba je přizpůsobit potřebám

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

SLEDOVÁNÍ JARNÍCH FENOLOGICKÝCH FÁZÍ U BUKU LESNÍHO VE SMÍŠENÉM POROSTU KAMEROVÝM SYSTÉMEM

SLEDOVÁNÍ JARNÍCH FENOLOGICKÝCH FÁZÍ U BUKU LESNÍHO VE SMÍŠENÉM POROSTU KAMEROVÝM SYSTÉMEM SLEDOVÁNÍ JARNÍCH FENOLOGICKÝCH FÁZÍ U BUKU LESNÍHO VE SMÍŠENÉM POROSTU KAMEROVÝM SYSTÉMEM Bednářová, E. 1, Kučera, J. 2, Merklová, L. 3 1,3 Ústav ekologie lesa Lesnická a dřevařská fakulta, Mendelova

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Nehierarchické shlukování

Nehierarchické shlukování Základní informace Následující text je součástí učebních textů předmětu Vícerozměrné statistické metody a je určen zejména pro studenty Matematické biologie. Může být ovšem přínosný i pro další studenty

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou

Více

Interpolační funkce. Lineární interpolace

Interpolační funkce. Lineární interpolace Interpolační funkce VEKTOR RASTR Metody Globální Regrese - trend Lokální Lineární interpolace Výstupy Regrese lokální trend Inverse Distance Weighted IDW Spline Thiessenovy polygony Natural Neighbours

Více

Modely AR / velikosti Modely F / velikosti Modely Z karbon / velikosti

Modely AR / velikosti Modely F / velikosti Modely Z karbon / velikosti Modely AR / velikosti 48 51 54 56 58 61 Úhel hlavové trubky 71 72,5 73 73,5 74 74 Úhel sedlové trubky 74,5 74 73,5 73,5 73,5 73 Horní rám.trubka horizontálně 510 530 545 560 580 605 Horní rám.trubka střed-střed

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Odhalení skryté struktury a vnitřních vazeb dat metodami vícerozměrné statistické analýzy

Odhalení skryté struktury a vnitřních vazeb dat metodami vícerozměrné statistické analýzy Odhalení skryté struktury a vnitřních vazeb dat metodami vícerozměrné statistické analýzy Prof. RNDr. Milan Meloun, DrSc, Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice, milan. meloun@upce.

Více

Infračervená spektroskopie - alternativní instrumentální technika při kontrole výroby bioethanolu

Infračervená spektroskopie - alternativní instrumentální technika při kontrole výroby bioethanolu Infračervená spektroskopie - alternativní instrumentální technika při kontrole výroby bioethanolu Ing. Ladislav Tenkl, Ing. Karel Šec, RNDr. František Kesner Ph.D. Nicolet CZ s.r.o., Nad Trnkovem 1667/11,

Více

Eva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci.

Eva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci. Ortogonální regrese pro 3-složkové kompoziční data využitím lineárních modelů Eva Fišerová a Karel Hron Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Multivariátní porovnání dat - klastrová (shluková) analýza

Multivariátní porovnání dat - klastrová (shluková) analýza Multivariátní porovnání dat - klastrová (shluková) analýza - bez apriorních předpokladů Shluková analýza Shluková analýza - cluster analysis úvod - definice princip algoritmy výsledky Shluková analýza

Více

TWINNING PROJEKT CZ01/IB-EN-01

TWINNING PROJEKT CZ01/IB-EN-01 Projekt / Komponent TWINNING CZ/01 IB-EN-01 Environmentální monitoring Autoři Konecny, Weber, Hunt Ze dne / Verze 29. října 02/2.0 Směrný dokument Info Fáze 2 Reference / Strana EM strategický směrný dokument

Více

Prostorová variabilita

Prostorová variabilita Prostorová variabilita prostorová závislost (autokorelace) reprezentuje korelaci mezi hodnotami určité náhodné proměnné v místě i a hodnotami téže proměnné v jiném místě j; prostorová heterogenita je strukturální

Více

Moderní aplikace statistické fyziky II - TMF050

Moderní aplikace statistické fyziky II - TMF050 Moderní aplikace statistické fyziky II - TMF050 Body 2, E-Kredity 3, 2/0 Zk - LS Miroslav Kotrla a František Slanina kotrla@fzu.cz slanina@fzu fzu.cz kmenově: externě: ÚTF UK FZÚ AV ČR, v.v.i. oddělení

Více

Příklad 2: Obsah PCB v játrech zemřelých lidí. Zadání: Data: Program:

Příklad 2: Obsah PCB v játrech zemřelých lidí. Zadání: Data: Program: Příklad 2: Obsah PCB v játrech zemřelých lidí Zadání: V rámci Monitoringu zdraví byly měřeny koncentrace polychlorovaných bifenylů vjátrech lidí zemřelých náhodnou smrtí ve věku 40 let a více. Sedm vybraných

Více

Analýza dat v GIS. Dotazy na databáze. Překrytí Overlay Mapová algebra Vzdálenostní funkce. Funkce souvislosti Interpolační funkce Topografické funkce

Analýza dat v GIS. Dotazy na databáze. Překrytí Overlay Mapová algebra Vzdálenostní funkce. Funkce souvislosti Interpolační funkce Topografické funkce Analýza dat v GIS Dotazy na databáze Prostorové Atributové Překrytí Overlay Mapová algebra Vzdálenostní funkce Euklidovské vzdálenosti Oceněné vzdálenosti Funkce souvislosti Interpolační funkce Topografické

Více

Faktorová analýza příklad. Obrázek 1 Ukázka části vstupních dat

Faktorová analýza příklad. Obrázek 1 Ukázka části vstupních dat Faktorová analýza příklad Obrázek 1 Ukázka části vstupních dat Maticový graf vybraných proměnných: Fueltank Passengers Length Wheelbase Width U Turn Space Rear seat Luggage Weight Horsepower Engine Size

Více