2019/03/31 17:38 1/2 Klasifikační a regresní stromy
|
|
- Vladimíra Nováková
- před 6 lety
- Počet zobrazení:
Transkript
1 2019/03/31 17:38 1/2 Klasifikační a regresní stromy Table of Contents Klasifikační a regresní stromy... 1 rpart (library rpart)... 1 draw.tree (library maptree)... 3 plotcp a rsq.rpart (library rpart)... 4 prune (library rpart)... 6 Rozšiřující informace... 7 Cvičení Analysis of community ecology data in R -
2 Last update: 2017/10/11 20:36 cs:cart Printed on 2019/03/31 17:38
3 2019/03/31 17:38 1/8 Klasifikační a regresní stromy Česká verze stránek není od roku 2013 aktualizována. Klasifikační a regresní stromy Metoda klasifikačních a regresních stromů (Classification and regression trees, CART) je obdobou mnohonásobné regrese - vysvětlovaná proměnná je jen jedna, vysvětlujících je několik. Výhodou této metody (oproti regrese) je méně požadavků na kvalitu vysvětlujících proměnných. V ekologii se metoda používá především pro explorativní analýzu - pro popis vztahů mezi vysvětlovanou a vysvětlujícími proměnnými. Pokud je vysvětlovaná proměnná kvantitativní, počítá se regresní strom, pokud je kvalitativní, jde o klasifikační strom. rpart (library rpart) Vypočteme regresní strom závislosti počtu druhů na faktorech prostředí (použijeme datový soubor Vltava a jako faktory prostředí použijeme vypočtené Ellenbergovy indikační hodnoty 1) ): vltava.spe <- read.delim (' row.names = 1) vltava.env <- read.delim (' env <- vltava.env[, 20:25] Počet druhů vypočteme pomocí funkce specnumber z knihovny vegan: library (vegan) S <- specnumber (vltava.spe) Následuje vlastní model pro výpočet regresního stromu, pro který je použita funkce rpart ze stejnojmenné knihovny. Pokud chcete získat stejný strom jako v této úloze, použijte funkci set.seed a stejnou numerickou hodnotu, která nastaví výchozí hodnotu pro generátor pseudonáhodných čísel na vašem počítači. library (rpart) # set.seed (1234) # pokud chcete získat stejný strom jako v této úloze, odkomentujte tuto funkci tree.1 <- rpart (S ~., env) tree.1 Funkce vrací textovou podobu regresního stromu s čísly jednotlivých uzlů a terminálních lístků (ty jsou označeny hvězdičkou): n= 97 Analysis of community ecology data in R -
4 Last update: 2017/10/11 20:36 cs:cart node), split, n, deviance, yval * denotes terminal node 1) root ) ELL.MOIST< ) ELL.REACT< ) ELL.REACT< * 9) ELL.REACT>= ) ELL.MOIST>= * 19) ELL.MOIST< * 5) ELL.REACT>= ) ELL.NUTR>= * 11) ELL.NUTR< ) ELL.NUTR>= * 23) ELL.NUTR< * 3) ELL.MOIST>= ) ELL.NUTR>= * 7) ELL.NUTR< * Strom můžeme nakreslit takto: plot (tree.1) text (tree.1) Printed on 2019/03/31 17:38
5 2019/03/31 17:38 3/8 Klasifikační a regresní stromy draw.tree (library maptree) Lepší grafické zobrazení regresních a klasifikačních stromů nabízí funkce draw.tree z knihovny maptree: library (maptree) draw.tree (tree.1, nodeinfo = T, digits = 1) Argument nodeinfo ovlivňuje množství informací, které se v obrázku vykreslí - konkrétně ke každému uzlu přidá detailní informaci o množství vysvětlené variability. Argument digits ovlivňuje počet desetinných míst, který se zobrazuje u jednotlivých hodnot závislé proměnné (počet druhů v tomto případě) - pokud ho nezadáte, zobrazí se průměrné počty druhů v nodech s přesností na nesmysleně vysoký počet desetinných míst). Analysis of community ecology data in R -
6 Last update: 2017/10/11 20:36 cs:cart plotcp a rsq.rpart (library rpart) Algoritmus klasifikačních a regresních stromů má tendenci vytvářet komplikované struktury - stromy s mnoha koncovými větvemi. Je proto vhodné stromy nějakým způsobem zjednodušit. Míra zjednodušení bude záležet na tom, co od stromu očekávám. Pokud mi jde o zobecnitelný popis situace, pak je na místě strom prořezat pořádně, aby se dobře interpretoval a zároveň aby v něm byla určitá míra zobecnění. Pokud je naopak účelem vytvořit strom pro predikci z nových dat, může být složitější, aby dosáhl přesnějších výsledků. Rozhodnutí o komplexnosti stromu bývá založené na tzv. krosvalidaci, křížovém zhodnocení. Datový soubor se rozdělí např. na 10 skupin vzorků, náhodně se vybere 9 a na nich se vytvoří nový strom. Nepoužité vzorky z desáté skupiny se pak použijí k predikci a vyhodnotí se kvalita této predikce. Pak Printed on 2019/03/31 17:38
7 2019/03/31 17:38 5/8 Klasifikační a regresní stromy se odřízne poslední větvička, znovu se vyhodnotí kvalita predikce, a v prořezávání se pokračuje až na pařez. Toto se zopakuje pro všechny kombinace 9 podskupin vzorků. Následující funkce slouží k zobrazení výsledků krosvalidace daného (tu provádí už funkce rpart). Funkce plotcp kreslí vztah mezi složitostí stromu (vodorovná osa) a hodnoty chyb v predikci modelem pro danou velikost (svislá osa). Křivka na začátku strmě klesá, tzn. že složitost modelu je vyvážena lepší predikcí. Jakmile začne růst, znamená to že složitější model jde na úkor kvality predikce. Jedno z možných pravidel při rozhodnutí o velikosti stromu říká vybrat takové dělení, které se jako první vyskytuje pod horizontální čárou. plotcp (tree.1) Podobný obrázek zobrazuje i funkce rsq.rpart - ta kreslí obrázky dva za sebou, je ale dobré si je zobrazit vvedle sebe, proto funkce par s argumentem mfrow. Druhý obrázek je identický s předchozím výstupem funkce plotcp, ale bez dalších informací. První obrázek ukazuje, jak stoupá koeficient determinace (vysvětlená vvariabilita) modelu s jeho složitostí. Plná čára (apparent) ukazuje Analysis of community ecology data in R -
8 Last update: 2017/10/11 20:36 cs:cart zjevnou vysvětlenou variabilitu, tedy tu kkterou vysvětlí strom o dané velikosti na všech datech. Přerušovaná čára ukazuje na krosvalidovaný odhad koeficientu determinace pro nová data. V našem případě roste kvalita předpovědi modelem na nových datech (z krosvalidace) do velikosti stromu 2, pak opět klesne. par (mfrow = c(1,2)) rsq.rpart (tree.1) Interpretace výsledků krosvalidace není jednoznačná - vypadá to, že bychom mohli vybrat jak velmi jednoduchý strom s dvěmi větvemi, tak i celý strom se sedmi větvemi. Výsledek se navíc v každé analýze bude měnit - zkuste analýzu příkazem rpart několikrát zopakovat, pokaždé dostanete mírně jiný výsledek (je to způsobeno právě krosvalidací, resp. tím, že dělení do 10 podskupin je pokaždé provedeno jinak). prune (library rpart) Pokud se rozhodneme rozsáhlý strom, který vrátila předchozí analýza, zjednodušit (prořezat) podle výsledků krosvalidace, použijeme k tomu příkaz prune z knihovny rpart. Argument cp v této funkci představuje copmplexity parameter, vyjadřující složitost stromu který se má zachovat - najdete ho na horizontální ose v obrázku vygenerovaném funkcí plotcp 2) : tree.2 <- prune (tree.1, cp = 0.085) draw.tree (tree.2, nodeinfo = T, digits = 1) Printed on 2019/03/31 17:38
9 2019/03/31 17:38 7/8 Klasifikační a regresní stromy Rozšiřující informace Podrobný popis, jak spočítat regresní a klasifikační stromy v R, najdete ve skriptech Petra Šmilauera Moderní regresní metody v kapitole 7 (pdf). Velmi detailní rozbor problematiky rozhodovacích stromů s teorií týkající se i dalších metod najdete ve skriptech Kláry Komprdové Rozhodovací stromy a lesy (pdf). Cvičení 1 Vypočtěte klasifikační strom, ve kterém bude vysvětlovaná proměnná zařazení vegetačních snímků do vegetačního typy, a vysvětlující proměnné budou abundance jednotlivých druhů v druhové matici. Použijte soubor dat z údolí Vltavy. Klasifikace jednotlivých snímku do vegetačních typů je obsažena v proměnné GROUP v datovém rámcí vltava.env. Druhová data před použitím odmocněte. Nakreslete Analysis of community ecology data in R -
10 Last update: 2017/10/11 20:36 cs:cart klasifikační strom pomocí funkce draw.tree. Nápověda: použijte funkci rpart. Na levé straně rovnice bude proměnná vltava.env$group - pozor ale, proměnnou je třeba zadat jako faktor, tedy obalit funkcí as.factor, jinak bude použita jako proměnná kvantitativní a výsledný strom bude regresní, ne klasifikační. Řešení cvičení 1) Průměrné Ellenbergovy indikační hodnoty jsou vypočtené ze stejných dat, jako počty druhů, které budou v následující analýze použity jako závislá proměnná. Tím, že vysvětlující (průměrné Ell. hodnoty) i závislá proměnná na sobě nejsou nezávislé dává následující analýza příliš optimistické výsledky - rozumněj příliš vysoké hodnoty vysvětlené variability. Pokud nám jde jen o popis vztahu, pak to nejspíš nevadí. Není ale možné v analýze průměrné EIH míchat s jinými, měřenými faktory prostředí, protože průměrné EIH se právě díky nezávislosti budou tvářit jako lepší proměnné a budou umístěny výše ve stromu. Více k této problematice zde a zde. 2) jinak škálovanou hodnotu CP najdete také ve výpisu funkce summary - pro příkaz prune je ale třeba používat hodnoty z grafu From: - Analysis of community ecology data in R Permanent link: Last update: 2017/10/11 20:36 Printed on 2019/03/31 17:38
ELLENBERGOVY INDIKAČNÍ HODNOTY. David Zelený Zpracování dat v ekologii společenstev
3 2 6 6 5 2 ELLENBERGOVY INDIKAČNÍ HODNOTY ELLENBERGOVY INDIKAČNÍ HODNOTY (EIH) optima druhů rostlin na gradientu živin, vlhkosti, půdní reakce, kontinentality, teploty, světla a salinity (salinita se
ELLENBERGOVY INDIKAČNÍ HODNOTY. David Zelený Zpracování dat v ekologii společenstev
3 2 6 6 5 2 ELLENBERGOVY INDIKAČNÍ HODNOTY ELLENBERGOVY INDIKAČNÍ HODNOTY (EIH) optima druhů rostlin na gradientu ţivin, vlhkosti, půdní reakce, kontinentality, teploty, světla a salinity (salinita se
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
10. Předpovídání - aplikace regresní úlohy
10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu
Pokročilé neparametrické metody. Klára Kubošová
Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.
Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena
Pracovní text a úkoly ke cvičením MF002
Pracovní text a úkoly ke cvičením MF002 Ondřej Pokora, PřF MU, Brno 11. března 2013 1 Brownův pohyb (Wienerův proces) Základním stavebním kamenem simulací náhodných procesů popsaných pomocí stochastických
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
Informatika 8. třída/6
Rekurze Jedním z důležitých principů pro návrh procedur je tzv. rekurze. Nejlépe uvidíme tento princip na příkladech dvou velmi jednoduchých procedur (hvězdička označuje násobení). Rekurze vlastně označuje
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Chyby nepřímých měření
nepřímé měření: Chyby nepřímých měření chceme určit veličinu z hodnot jiných veličin na základě funkční vztahu máme změřené veličiny pomocí přímých měření (viz. dříve) včetně chyb: x±σ x, y±σ y,... známe
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)
Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:
Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst
Připomeň: Shluková analýza
Připomeň: Shluková analýza Data Návrh kategorií X Y= 1, 2,..., K resp. i jejich počet K = co je s čím blízké + jak moc Neposkytne pravidlo pro zařazování Připomeň: Klasifikace Data (X,Y) X... prediktory
ALGORITMIZACE Příklady ze života, větvení, cykly
ALGORITMIZACE Příklady ze života, větvení, cykly Cíl kapitoly: Uvedení do problematiky algoritmizace Klíčové pojmy: Algoritmus, Vlastnosti správného algoritmu, Možnosti zápisu algoritmu, Vývojový diagram,
Rozhodovací stromy a lesy
Rozhodovací stromy a lesy Klára Komprdová Leden 2012 Příprava a vydání této publikace byly podporovány projektem ESF č. CZ.1.07/2.2.00/07.0318 Víceoborová inovace studia Matematické biologie a státním
Fyzikální korespondenční seminář MFF UK
Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná
Téma 9: Vícenásobná regrese
Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
KEA 2007/2008-6. A. Analýza dovedností a tematických částí - ČJ
Analýza dovedností a tematických částí - ČJ třída 6. A ZŠ 1 9 8 7 69 71 64 66 67 průměrný percentil 6 5 4 58 3 2 1 46 45 46 42 46 44 Celek Mluvnice Sloh a literatura Znalost Porozumění Aplikace Poznámka:
Excel mini úvod do kontingenčních tabulek
UK FHS Řízení a supervize v sociálních a zdravotnických organizacích (ZS 2005+) Kvantitativní metody výzkumu v praxi Excel mini úvod do kontingenčních tabulek (nepovinnáčást pro KMVP) Jiří Šafr jiri.safratseznam.cz
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
Kreslení grafů v Matlabu
Kreslení grafů v Matlabu Pavel Provinský 3. října 2013 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a naprogramujte příklad podobný. Tím se ujistíte, že příkladu
Kapitola Hlavička. 3.2 Teoretický základ měření
23 Kapitola 3 Protokol o měření Protokol o měření musí obsahovat všechny potřebné údaje o provedeném měření, tak aby bylo možné podle něj měření kdykoliv zopakovat. Proto protokol musí obsahovat všechny
Optimalizace 2007/2008-9. B
Analýza částí - NJ třída 9. B ZŠ 1 9 94 89 93 82 83 8 7 71 průměrný percentil 6 5 4 3 2 1 48 45 42 45 46 46 Celek Poslech Konverzace Čtení a porozumění Komplexní cvičení Slovní zásoba a gramatika Poznámka:
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Univerzita Pardubice 8. licenční studium chemometrie
Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Metody s latentními proměnnými a klasifikační metody Ing. Jan Balcárek, Ph.D. vedoucí
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MODELOVÁNÍ MATLABEM
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MODELOVÁNÍ MATLABEM Jméno: Petr Thür Os. číslo: A04236 E-mail: petr.thur@post.cz Zadání: 8-D Datum vypracování: 7. 5. 2005 Zadání: Sestavte program (funkční M-soubor) pro vykreslení
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =
Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
NEXIS 32 rel. 3.50. Generátor fází výstavby TDA mikro
SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS
Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Vytváření grafů v aplikaci Helios Red
Vytváření grafů v aplikaci Helios Red Grafy jsou v Helios Red součástí generátoru sestav a jsou tedy dostupné ve všech modulech a výstupech, kde je k dispozici generátor sestav. Největší použití mají v
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice
VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt
VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
Popis metod CLIDATA-GIS. Martin Stříž
Popis metod CLIDATA-GIS Martin Stříž Říjen 2008 Obsah 1CLIDATA-SIMPLE...3 2CLIDATA-DEM...3 2.1Metodika výpočtu...3 2.1.1Výpočet regresních koeficientů...3 2.1.2 nalezených koeficientu...5 2.1.3Výpočet
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0
MODEL TVÁŘECÍHO PROCESU
MODEL TVÁŘECÍHO PROCESU Zkouška tlakem na válcových vzorcích 2 Vyhodnocení tlakové zkoušky Síla F způsobí změnu výšky H a průměru D válce. V každém okamžiku při stlačování je přetvárný odpor definován
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik
Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Ondřej Pavlačka Praha, 18. ledna 2011 Cíle projektu Vytvořit matematický model pro oceňování přijímaného
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Hodnocení soutěžních úloh
Terč Koeficient 1 soutěžních úloh Kategorie žáci Soutěž v programování 25. ročník Krajské kolo 2010/2011 15. až 16. dubna 2011 Napište program, který zobrazí střelecký terč dle vzorového obrázku. Jak má
Iterační výpočty. Dokumentace k projektu č. 2 do IZP. 24. listopadu 2004
Dokumentace k projektu č. 2 do IZP Iterační výpočty 24. listopadu 2004 Autor: Kamil Dudka, xdudka00@stud.fit.vutbr.cz Fakulta Informačních Technologií Vysoké Učení Technické v Brně Obsah 1. Úvod...3 2.
Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 6. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28.
Zdokonalování gramotnosti v oblasti ICT Kurz MS Excel kurz 6 1 Obsah Kontingenční tabulky... 3 Zdroj dat... 3 Příprava dat... 3 Vytvoření kontingenční tabulky... 3 Možnosti v poli Hodnoty... 7 Aktualizace
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 6: Multikolinearita, umělé proměnné LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Otevřete si data z
MATLAB PRO PODPORU VÝUKY KOMUNIKAČNÍCH SYSTÉMŮ
MATLAB PRO PODPORU VÝUKY KOMUNIKAČNÍCH SYSTÉMŮ Aneta Coufalíková, Markéta Smejkalová Mazálková Univerzita obrany Katedra Komunikačních a informačních systémů Matlab ve výuce V rámci modernizace výuky byl
Průměrné percentily - OSP
ZŠ Průměrné percentily - OSP GYM ZŠ 1 9 8 7 průměrný percentil 6 5 4 3 2 1 31 33 46 9. A 9. B 9. C Poznámka: Graf znázorňuje průměrné celkové percentily všech tříd vaší školy. Zároveň je zde pro porovnání
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
StatSoft Jak poznat vliv faktorů vizuálně
StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení
Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner
Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Zákony hromadění chyb.
Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
Cvičení ze statistiky - 3. Filip Děchtěrenko
Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Smíšené regresní modely a možnosti jejich využití. Karel Drápela
Smíšené regresní modely a možnosti jejich využití Karel Drápela Regresní modely Základní úloha regresní analýzy nalezení vhodného modelu studované závislosti vyjádření reálného tvaru závislosti minimalizace
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
Metoda backward výběru proměnných v lineární regresi a její vlastnosti
Metoda backward výběru proměnných v lineární regresi a její vlastnosti Aktuárský seminář, 13. dubna 2018 Milan Bašta 1 / 30 1 Metody výběru proměnných do modelu 2 Monte Carlo simulace, backward metoda
Výsledný graf ukazuje následující obrázek.
Úvod do problematiky GRAFY - SPOJNICOVÝ GRAF A XY A. Spojnicový graf Spojnicový graf používáme především v případě, kdy chceme graficky znázornit trend některé veličiny ve zvoleném časovém intervalu. V
4ST201 STATISTIKA CVIČENÍ Č. 10
4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Změkčování hranic v klasifikačních stromech
Změkčování hranic v klasifikačních stromech Jakub Dvořák Seminář strojového učení a modelování 24.5.2012 Obsah Klasifikační stromy Změkčování hran Ranking, ROC křivka a AUC Metody změkčování Experiment
řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky
řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující
Prostorová variabilita
Prostorová variabilita prostorová závislost (autokorelace) reprezentuje korelaci mezi hodnotami určité náhodné proměnné v místě i a hodnotami téže proměnné v jiném místě j; prostorová heterogenita je strukturální
vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291
Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených
SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404
SOLVER UŽIVATELSKÁ PŘÍRUČKA Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 1. Solver Program Solver slouží pro vyhodnocení experimentálně naměřených dat. Základem
Přenos pasivního dvojbranu RC
Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Zadání soutěžních úloh
16. až 18. dubna 2015 Krajské kolo 2014/2015 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Za každou úlohu můžete dostat maximálně 10 bodů, z nichž je většinou 9 bodů
Kreslení elipsy Andrej Podzimek 22. prosince 2005
Kreslení elipsy Andrej Podzimek 22. prosince 2005 Kreslení elipsy v obecné poloze O co půjde Ukázat přesný matematický model elipsy Odvodit vzorce pro výpočet souřadnic důležitých bodů Nalézt algoritmus
Statistické metody v marketingu. Ing. Michael Rost, Ph.D.
Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Úvodem Modelování vztahů mezi vysvětlující a vysvětlovanou (závisle) proměnnou patří mezi základní aktivity,
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá
STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá 1) Lineární i nelineární regrese prostá, korelace Naeditujeme data viz obr. 1. Obr. 1 V menu Statistika zvolíme submenu Pokročilé lineární/nelineární
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Experimentální realizace Buquoyovy úlohy
Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o
Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody
Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10
Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TABELACE FUNKCE LINEÁRNÍ INTERPOLACE TABELACE FUNKCE Tabelace funkce se v minulosti často využívala z důvodu usnadnění
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
Vytyčení polohy bodu polární metodou
Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5