Seminář III. Základy logiky a matematiky. Martin Štrobl // Vojtěch Fučík ISS FSV UK
|
|
- Bohuslav Beránek
- před 8 lety
- Počet zobrazení:
Transkript
1 Seminář III. Základy logiky a matematiky Martin Štrobl // Vojtěch Fučík ISS FSV UK Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
2 Téma výroková logika Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
3 Příklad 1 Určete, zda se z hlediska klasické logiky jedná o výrok. Pokud se jedná o výrok, určete, zda se jedná o výrok atomický či složený. Také každému výroku přiřaďte odpovídající pravdivostní hodnotu. i) V předmětu Základy logiky a matematiky se naučíte základy logiky a zároveň základy matematiky. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
4 Příklad 1 Určete, zda se z hlediska klasické logiky jedná o výrok. Pokud se jedná o výrok, určete, zda se jedná o výrok atomický či složený. Také každému výroku přiřaďte odpovídající pravdivostní hodnotu. i) V předmětu Základy logiky a matematiky se naučíte základy logiky a zároveň základy matematiky. ii) Chuck Norris umí dělit nulou. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
5 Příklad 1 Určete, zda se z hlediska klasické logiky jedná o výrok. Pokud se jedná o výrok, určete, zda se jedná o výrok atomický či složený. Také každému výroku přiřaďte odpovídající pravdivostní hodnotu. i) V předmětu Základy logiky a matematiky se naučíte základy logiky a zároveň základy matematiky. ii) Chuck Norris umí dělit nulou. iii) Jestliže nevíte, co je to disjunkce, nebo nevíte, co je to implikace, pak se vám nelíbí tato věta. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
6 Příklad 1 Určete, zda se z hlediska klasické logiky jedná o výrok. Pokud se jedná o výrok, určete, zda se jedná o výrok atomický či složený. Také každému výroku přiřaďte odpovídající pravdivostní hodnotu. i) V předmětu Základy logiky a matematiky se naučíte základy logiky a zároveň základy matematiky. ii) Chuck Norris umí dělit nulou. iii) Jestliže nevíte, co je to disjunkce, nebo nevíte, co je to implikace, pak se vám nelíbí tato věta. iv) Co je smyslem života? Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
7 Příklad 1 Určete, zda se z hlediska klasické logiky jedná o výrok. Pokud se jedná o výrok, určete, zda se jedná o výrok atomický či složený. Také každému výroku přiřaďte odpovídající pravdivostní hodnotu. i) V předmětu Základy logiky a matematiky se naučíte základy logiky a zároveň základy matematiky. ii) Chuck Norris umí dělit nulou. iii) Jestliže nevíte, co je to disjunkce, nebo nevíte, co je to implikace, pak se vám nelíbí tato věta. iv) Co je smyslem života? v) Prófa, Stydlýn, Dřímal, Kejchal, Štístko, Šmudla a Rejpal. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
8 Příklad 1 Určete, zda se z hlediska klasické logiky jedná o výrok. Pokud se jedná o výrok, určete, zda se jedná o výrok atomický či složený. Také každému výroku přiřaďte odpovídající pravdivostní hodnotu. i) V předmětu Základy logiky a matematiky se naučíte základy logiky a zároveň základy matematiky. ii) Chuck Norris umí dělit nulou. iii) Jestliže nevíte, co je to disjunkce, nebo nevíte, co je to implikace, pak se vám nelíbí tato věta. iv) Co je smyslem života? v) Prófa, Stydlýn, Dřímal, Kejchal, Štístko, Šmudla a Rejpal. vi) Plzeň je město a zároveň pivo. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
9 Příklad 1 Určete, zda se z hlediska klasické logiky jedná o výrok. Pokud se jedná o výrok, určete, zda se jedná o výrok atomický či složený. Také každému výroku přiřaďte odpovídající pravdivostní hodnotu. i) V předmětu Základy logiky a matematiky se naučíte základy logiky a zároveň základy matematiky. ii) Chuck Norris umí dělit nulou. iii) Jestliže nevíte, co je to disjunkce, nebo nevíte, co je to implikace, pak se vám nelíbí tato věta. iv) Co je smyslem života? v) Prófa, Stydlýn, Dřímal, Kejchal, Štístko, Šmudla a Rejpal. vi) Plzeň je město a zároveň pivo. vii) Jestli se rozzlobíme, budeme zlí. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
10 Příklad 1 Určete, zda se z hlediska klasické logiky jedná o výrok. Pokud se jedná o výrok, určete, zda se jedná o výrok atomický či složený. Také každému výroku přiřaďte odpovídající pravdivostní hodnotu. i) V předmětu Základy logiky a matematiky se naučíte základy logiky a zároveň základy matematiky. ii) Chuck Norris umí dělit nulou. iii) Jestliže nevíte, co je to disjunkce, nebo nevíte, co je to implikace, pak se vám nelíbí tato věta. iv) Co je smyslem života? v) Prófa, Stydlýn, Dřímal, Kejchal, Štístko, Šmudla a Rejpal. vi) Plzeň je město a zároveň pivo. vii) Jestli se rozzlobíme, budeme zlí. viii) Reklamy se v systému AdWords zobrazí návštěvníkovi právě tehdy, když hledá klíčové slovo, na který inzerent cílí. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
11 Příklad 1 Určete, zda se z hlediska klasické logiky jedná o výrok. Pokud se jedná o výrok, určete, zda se jedná o výrok atomický či složený. Také každému výroku přiřaďte odpovídající pravdivostní hodnotu. i) V předmětu Základy logiky a matematiky se naučíte základy logiky a zároveň základy matematiky. ii) Chuck Norris umí dělit nulou. iii) Jestliže nevíte, co je to disjunkce, nebo nevíte, co je to implikace, pak se vám nelíbí tato věta. iv) Co je smyslem života? v) Prófa, Stydlýn, Dřímal, Kejchal, Štístko, Šmudla a Rejpal. vi) Plzeň je město a zároveň pivo. vii) Jestli se rozzlobíme, budeme zlí. viii) Reklamy se v systému AdWords zobrazí návštěvníkovi právě tehdy, když hledá klíčové slovo, na který inzerent cílí. ix) Tráva je modrá. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
12 Příklad 1 Určete, zda se z hlediska klasické logiky jedná o výrok. Pokud se jedná o výrok, určete, zda se jedná o výrok atomický či složený. Také každému výroku přiřaďte odpovídající pravdivostní hodnotu. i) V předmětu Základy logiky a matematiky se naučíte základy logiky a zároveň základy matematiky. ii) Chuck Norris umí dělit nulou. iii) Jestliže nevíte, co je to disjunkce, nebo nevíte, co je to implikace, pak se vám nelíbí tato věta. iv) Co je smyslem života? v) Prófa, Stydlýn, Dřímal, Kejchal, Štístko, Šmudla a Rejpal. vi) Plzeň je město a zároveň pivo. vii) Jestli se rozzlobíme, budeme zlí. viii) Reklamy se v systému AdWords zobrazí návštěvníkovi právě tehdy, když hledá klíčové slovo, na který inzerent cílí. ix) Tráva je modrá. x) Nebude-li pršet, nezmoknem. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
13 Příklad 2 U následujících výroků určete, zda se jedná o výrok atomický nebo složený. V případě složených výroků určete, jaké (všechny) logické spojky obsahuje. a) Praha je hlavní město ČR. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
14 Příklad 2 U následujících výroků určete, zda se jedná o výrok atomický nebo složený. V případě složených výroků určete, jaké (všechny) logické spojky obsahuje. a) Praha je hlavní město ČR. b) Jestliže venku prší, pak jsou ulice mokré. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
15 Příklad 2 U následujících výroků určete, zda se jedná o výrok atomický nebo složený. V případě složených výroků určete, jaké (všechny) logické spojky obsahuje. a) Praha je hlavní město ČR. b) Jestliže venku prší, pak jsou ulice mokré. c) Nosím čepici právě tehdy, když je zima. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
16 Příklad 2 U následujících výroků určete, zda se jedná o výrok atomický nebo složený. V případě složených výroků určete, jaké (všechny) logické spojky obsahuje. a) Praha je hlavní město ČR. b) Jestliže venku prší, pak jsou ulice mokré. c) Nosím čepici právě tehdy, když je zima. d) Jestliže venku prší a mrzne, pak není na silnicích bezpečno. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
17 Příklad 2 U následujících výroků určete, zda se jedná o výrok atomický nebo složený. V případě složených výroků určete, jaké (všechny) logické spojky obsahuje. a) Praha je hlavní město ČR. b) Jestliže venku prší, pak jsou ulice mokré. c) Nosím čepici právě tehdy, když je zima. d) Jestliže venku prší a mrzne, pak není na silnicích bezpečno. e) Uchazeč umí anglicky a německy. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
18 Příklad 3 Určete, kdy je formule (p q) ( p q) pravdivá. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
19 Příklad 4 Ukažte, že [ q (p q)] p je tautologie. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
20 Příklad 5 Mějme dvojici výroků: (1) Netvoří se náledí nebo je kluzko. (2) Jestliže mrzne, pak se tvoří náledí. Určete, který z následujících výroků vyplývá (je logicky korektní ho odvodit) z výše uvedených výroků: a) Jestliže se netvoří náledí, pak není kluzko. b) Jestliže nemrzne, pak není kluzko. c) Jestliže není kluzko, pak nemrzne. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
21 Příklad 6 Tři slečny ze stejného ročníku jedné nejmenované střední školy chtějí jít na večírek. Slečny se ovšem nemají moc rády a kladou si podmínky, za kterých na večírek půjdou. Jejich jména jsou Adolfína, Gertruda a Květuše. Pravidla jsou následující: a) Pokud půjde Adolfína, půjde také Gertruda. b) Na párty přijde Květuše nebo, pokud tam přijde Adolfína, tak tam nepřijde Gertruda. c) Květuše přijde právě tehdy, když nepřijde Adolfína nebo nepřijde Gertruda. Mohou na večírek dorazit všechny tři slečny? Pokud ne, kdo se na večírek může podívat a neporušit žádné pravidlo? Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
22 Příklad 7 Mějme následující výroky: i) Líbí se mi muži nebo se mi líbí ženy. ii) Jestliže se mi libí ženy, koupím dva lístky do kina. iii) Jestliže se mi líbí muži, koupím dva lístky do kina. Pomocí logického vyplývání dokažte, že koupím dva lístky do kina. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
23 DÚ: Příklad 1 Uvažujte, že: Z h = Honza zlobí G h = Honza hraje počítačovou hru S m = Honzova máma je šťastná R m = Honzova máma si čte román Pomocí výrokové logiky formalizujte následující věty: i) Honzova máma si nečte román a Honza nehraje počítačovou hru. ii) Honzova máma je šťastná, když Honza nezlobí, nebo když (Honzova máma) čte román. iii) Honza nezlobí pouze tehdy, když hraje počítačovou hru. iv) Jestliže Honzova máma čte román, pak Honza zlobí. Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
24 DÚ: Příklad 2 Vypočítejte pravdivostní tabulku následující formule. (F G) (F G) Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
25 DÚ: Příklad 3 Když jste si hráli s kamarády na pískovišti, vykopali jste dvě truhly: truhlu A a truhlu B. Z hollywoodských filmů víte, že v každé z nich může být buď poklad, nebo výbušnina. Na truhle A je napsáno: Alespoň v jedné ze dvou truhel je poklad. Na truhle B je napsáno: V truhle A je výbušnina. Víte-li, že buď oba nápisy lžou, nebo jsou oba pravdivé, můžete otevřít jednu z truhel s jistotou, že v ní bude poklad? Pokud tomu tak opravdu je, kterou truhlu otevřete? Základy logiky a matematiky (ISS FSV UK) Seminář III / 12
Kapitola Výroky
1 Kapitola 1 Výroková logika 1.1 Výroky 1.1.1 Příklad Rozhodněte, zda následující posloupnosti symbolú jsou výrokové formule. Jde-li o formuli, pak sestrojte její strom, určete její hloubku a uved te všechny
SLOŽENÉ VÝROKY. Konjunkce. Motivační příklad společné zadání pro další příklady:
ARNP 1 2015 Př. 1 SLOŽENÉ VÝROKY Motivační příklad společné zadání pro další příklady: Byly vysloveny následující výroky (vhledem k budoucímu času se jedná o hypotézy) : b: Na přednášku přijde Barbora.
λογος - LOGOS slovo, smysluplná řeč )
MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho
Cvičení z logiky I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Cvičení z logiky I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský
teorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
Analytické myšlení TSP MU výroková logika II.
Analytické myšlení TSP MU výroková logika II. Lehký úvod do výrokové logiky pro všechny, kdo se hlásí na Masarykovu univerzitu Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro
Klasická výroková logika - tabulková metoda
1 Klasická výroková logika - tabulková metoda Na úrovni výrokové logiky budeme interpretací rozumět každé přiřazení pravdivostních hodnot výrokovým parametrům. (V případě přiřazení pravdivostních hodnot
LOGIKA VÝROKOVÁ LOGIKA
LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,
přednáška 2 Marie Duží
Logika v praxi přednáška 2 Marie Duží marie.duzi@vsb.cz 1 1 Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok? Výrok je tvrzení,
Výroková logika. Sémantika výrokové logiky
Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový
Matematická indukce, sumy a produkty, matematická logika
Matematická indukce, sumy a produkty, matematická logika 8.9. -.0.009 Matematická indukce Jde o následující vlastnost přirozených čísel: Předpokládejme:. Nějaké tvrzení platí pro.. Platí-li tvrzení pro
Výroková logika: splnitelnost, vyplývání, tautologie, úsudky. Splnitelnost. 1. Ověřte splnitelnost množiny formulí
Splnitelnost 1. Ověřte splnitelnost množiny formulí 1 T = {(p q) r, q r, r s, p s} Splnitelnost 1. Ověřte splnitelnost množiny formulí 1 T = {(p q) r, q r, r s, p s} 2 F = {(p q r) ((s t) ( s t)), q r,
Negace výroku. Příklad 1. Rozhodněte, zda jsou věty výroky, u výroků určete pravdivostní hodnotu:
Základní pojmy výrokové logiky Výrok je každé sdělení, o němž má smysl říci, zda je pravdivé nebo nepravdivé. Přitom může nastat pouze jedna možnost. Výroky označujeme obvykle velkými písmeny A, B, C Pravdivému
Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora
Česká zemědělská univerzita 17. října 2011 U makléře Já: Dobrý den, rád bych koupil nějaký světlý byt. Chtěl bych, aby měl dvě koupelny a aby byl v domě výtah. A neměl by být nijak extrémně drahý. Makléř:
1 Výrok a jeho negace
1 Výrok a jeho negace Výrokem se rozumí sdělení, u něhož má smysl otázka, zda je, či není pravdivé. Budeme určovat tzv. pravdivostní hodnotu výroku (PH). Příklady výroků: V Úhlopříčky čtverce jsou na sebe
Nepřijde a nedám 100 Kč měl jsem pravdu, o této
1.4.4 Implikace Předpoklady: 010403 Implikace Implikace libovolných výroků a,b je výrok, který vznikne jejich spojením slovním obratem jestliže, pak, píšeme a b a čteme jestliže a, pak b. Výroku a se říká
Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).
Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před
- existuje..., negace: pro všechny neplatí,... - pro všechna..., negace: existuje, že neplatí,...
.4.0 Formální logika shrnutí Předpoklady: 00409 Shrnutí logiky Důležité znalosti konjunkce, a b, "a", pravda, jen když jsou oba výroky pravdivé (jako průnik) disjunkce, a b, "nebo", lež, jen když jsou
Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.
Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo
VÝROKOVÁ LOGIKA. Výrok srozumitelná oznamovací věta (výraz, sdělení), která může být buď jen pravdivá nebo jen nepravdivá..
VÝROKOVÁ LOGIKA Teorie: Logika je vědní obor zabývající se studiem různých forem vyjadřování a pravidel správného posuzování. (Matematická logika je součástí tohoto vědního oboru a ve velké míře užívá
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
Spojování výroků (podmínek) logickými spojkami
Spojování výroků (podmínek) logickými spojkami Spojování výroků logickými spojkami a) Konjunkce - spojení A B; Pravdivostní tabulka konjunkce A B A B 0 0 0 0 1 0 1 0 0 1 1 1 AND; A a současně B Konjunkce
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky
Úvod do logiky (VL): 8. Negace výroků
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 8. Negace výroků doc. PhDr. Jiří Raclavský,
Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.
Výroková logika I Výroková logika se zabývá výroky. (Kdo by to byl řekl. :-)) Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. U výroku
1.4.6 Negace složených výroků I
1.4.6 Negace složených výroků I Předpoklady: 010405 Pedagogická poznámka: Dlouho jsem se v počátcích své praxe snažil probrat negace za jednu hodinu. Tvorba negací je skvělým procvičováním schopnosti dodržovat
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková
Základy informatiky. Výroková logika
Základy informatiky Výroková logika Zpracoval: Upravila: Ing. Pavel Děrgel Daniela Sztrucová Obsah přednášky Výroková logika Výroky Pravdivostní ohodnocení Logické spojky Výrokově logická analýza Aristotelés
1. Výroky a operace s nimi
1. Výroky a operace s nimi 1. Rozhodněte, zda se jedná o výrok, případně určete, zda je pravdivý či nepravdivý: a) Úhlopříčky čtverce nejsou navzájem kolmé. b) Existuje trojúhelník, který je rovnoramenný.
1.4.3 Složené výroky implikace a ekvivalence
1.4.3 Složené výroky implikace a ekvivalence Předpoklady: 1401, 1402 Pedagogická poznámka: Látka zabere spíše jeden a půl vyučovací hodiny. Buď můžete využít písemku nebo se podělit o čas s následující
1 Úvod do matematické logiky
1 Úvod do matematické logiky Logikou v běžném slova smyslu rozumíme myšlenkovou cestu, která vede k určitým závěrům. Logika je také formální věda, která zkoumá způsob vyvozování závěrů. Za zakladatele
Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
Logika. 1. Úvod, Výroková logika
Logika 1. Úvod, Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží
Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží marie.duzi@vsb.cz Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok?
Matematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
VY_42_Inovace_12_MA_2.01_ Výroky. Prezentace určena pro první ročník maturitních oborů, ve které je vysvětlení učiva výroky.
Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0394 VY_42_Inovace_12_MA_2.01_ Výroky Název školy Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tematický celek Mgr.
VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
VIII. stanoviště rozhovor s rodiči - hodnocení činností v průběhu zápisu, co dítě zvládlo a co nezvládlo
Zápis do 1. ročníku - Sněhurka a sedm trpaslíků I. stanoviště 1. přivítání dítěte, označení jmenovkou s obrázkem trpaslíka 2. aktivita: Co si dnes myslí můj otisk boty ( s pomocí rodičů dítě obkreslí svoji
Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot formule tabulkovou metodou
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 4. Zjištění průběhu pravdivostních hodnot
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky
Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická
Úvod do logiky (VL): 5. Odvození výrokových spojek z jiných
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 5. Odvození z jiných doc. PhDr. Jiří Raclavský,
Cvičení z logiky II.
Cvičení z logiky II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-mlo/lectures/
Matematická logika cvi ení 47
Matematická logika cvi ení 47 Libor B hounek www.cs.cas.cz/behounek/teaching/malog12 LS 2012/13, P F OU, 4.25. 3. 2013 Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
1. Predikátová logika jako prostedek reprezentace znalostí
1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn
1. MATEMATICKÁ LOGIKA A MNOŽINY
. MATEMATICKÁ LOGIKA A MNOŽINY Průvodce studiem V následující kapitole si připomeneme některé význačné poznatky z matematické logiky a teorie množin, tvořící základ množinově logického aparátu. S celou
platné nejsou Sokrates je smrtelný. (r) 1/??
Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice
Logika. 6. Axiomatický systém výrokové logiky
Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
KMA/MDS Matematické důkazy a jejich struktura
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 2 Výroková logika pokračování Logické vyplývání
Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží
Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce,
Výroková logika. p, q, r...
Výroková logika Výroková logika je logika, která zkoumá pravdivostní podmínky tvrzení a vztah vyplývání v úsudcích na základě vztahů mezi celými větami. Můžeme též říci, že se jedná o logiku spojek, protože
Cvičení 4. negace konjunkce disjunkce implikace ekvivalence. a) Najděte UDNF, UKNF a stanovte log. důsledky. 1) [p (p q)] [( p q) (q p)]
Cvičení 4 negace konjunkce disjunkce implikace ekvivalence a) Najděte UDNF, UKNF a stanovte log. důsledky 1) [p (p q)] [( p q) (q p)] p q p q p q q p p A B C D E UEK UED A B C D E F 0 0 1 1 0 0 0 1 p q
Lehký úvod do výrokové logiky (nejen pro ty, kteří se připravují na TSP MU) část první
Lehký úvod do výrokové logiky (nejen pro ty, kteří se připravují na TSP MU) část první PRACOVNÍ VERZE TEXTU, KTERÁ BUDE DÁLE UPRAVOVÁNA TEXT SLOUŽÍ PRO POTŘEBY ÚČASTNÍKŮ EMAILOVÉHO SEMINÁŘE RESENI-TSP.CZ
Výroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
M - Výroková logika VARIACE
M - Výroková logika Autor: Mgr. Jaromír Juřek Kopírování a další šíření povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Úvod do logiky (VL): 12. Ověřování platnosti úsudků metodou protipříkladu
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 12. Ověřování platnosti úsudků metodou protipříkladu
09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika
Logika 1 Logika Slovo logika se v češtině běžně používá ve smyslu myšlenková cesta, která vedla k daným závěrům. Logika je formální věda, zkoumající právě onen způsob vyvozování závěrů. Za zakladatele
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Marie Duží
Marie Duží marie.duzi@vsb.cz Učební texty: http://www.cs.vsb.cz/duzi Tabulka Courses, odkaz Mathematical Učební texty, Presentace přednášek kursu Matematická logika, Příklady na cvičení + doplňkové texty.
1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
Matematická logika. Rostislav Horčík. horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Predikátová logika Motivace Výroková
Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20
Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:
Úvod do logiky (PL): sémantika predikátové logiky
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): sémantika predikátové logiky doc. PhDr. Jiří
MATA Př 2. Složené výroky: Jsou dány výroky: a: Číslo 5 je prvočíslo. b: Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné.
MATA Př 2 Složené výroky: Jsou dány výroky: : Číslo 5 je prvočíslo. : Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné. Konjunkce disjunkce Konjunkce liovolných výroků, je výrok, který vznikne
Složené výroky Jsou tvořeny dvěma nebo více výroky jednoduššími. V : Číslo 8 je liché. V : 0,1 N. V : Paříž je hl. město Španělska.
Výrok a jeho negace Výrokem se rozumí sdělení u něhož má smysl otázka zda je či není pravdivé. Budeme určovat tzv. pravdivostní hodnotu výroku (PH). Příklady výroků: V : Úhlopříčky čtverce jsou na sebe
ZÁKLADY LOGIKY A METODOLOGIE
ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie
výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
Jestliže prší, pak je mokro.
Může být voda suchá? Aneb jak snadno a rychle státi se logikem začátečníkem. V logice můžeme vztah příčiny a následku symbolicky zapsat také jako příčina následek. Takovému zápisu říkáme materiální implikace
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Úvod do logiky (VL): 7. Ekvivalentní transformace
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 7. Ekvivalentní transformace doc. PhDr. Jiří
Marie Duží
Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce, zobrazení {p, q, r } {0, 1} (pravdivostní tabulka). Naopak však
Sémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
Výroková logika syntaxe a sémantika
syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být
postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy
Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných
Predikátová logika. prvního řádu
Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)
Číselné obory, množiny, výroky
11.1. Číselné obory, množiny, výroky Předpoklady: Př. 1: Vypiš číselné obory používané ve středoškolské matematice. každého oboru uveď označení a příklad toho, co pomocí daných čísel popisujeme. Každý
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
4.9.70. Logika a studijní předpoklady
4.9.70. Logika a studijní předpoklady Seminář je jednoletý, je určen pro studenty posledního ročníku čtyřletého studia, osmiletého studia a sportovní přípravy. Cílem přípravy je orientace ve formální logice,
Logika III. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika III. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Normální formy. (provizorní text)
Normální formy (provizorní text) Výrokový počet Definice. Jazyk výrokového počtu obsahuje výrokové proměnné p, q, r, s,..., spojky,,,.. a závorky (,). Výrokové proměnné jsou formule. Jestliže a jsou formule,
KMA/MDS Matematické důkazy a jejich struktura
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 1 Cílem tohoto semináře je efektivní uvedení
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy
Úvod do matematiky Mgr. Radek Horenský, Ph.D. Důkazy Matematika a matematické chápání jako takové je založeno na logické výstavbě. Základními stavebními prvky jsou definice, věty a důkazy. Definice zavádějí
Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat,
1 Matematická logika 1.1 Výroky, operace s výroky Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, měli být schopni
Úvod do teoretické informatiky
Úvod do teoretické informatiky Zdeněk Sawa Katedra informatiky, FEI, Vysoká škola báňská Technická universita Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Česká republika 11. února 2018 Z. Sawa (VŠB-TUO)
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Studijní text. Co je výroková logika. Výrokem se již od dob staré antiky rozumí věta, která je pravdivá nebo nepravdivá, tj. má pravdivostní hodnotu.
Studijní text Co je výroková logika Výrokem se již od dob staré antiky rozumí věta, která je pravdivá nebo nepravdivá, tj. má pravdivostní hodnotu. Pravdivostní hodnoty jsou dvě: pravda (označujeme také
KMA/MDS Matematické důkazy a jejich struktura
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 3 Predikátový počet Uvažujme následující úsudek.
Úvod do logiky (PL): negace a ekvivalence vět mimo logický
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): negace a ekvivalence vět mimo logický čtverec
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina
Premisa Premisa Závěr
Studijní text Argumentace Jak to v komunikaci přirozeně děláme, jak argumentujeme? Leden má 31 dní, protože je prvním měsícem roku. Vím, že nelze nekomunikovat. Tzn. každý člověk komunikuje. A Petr je
Výroková a predikátová logika - IV
Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Úvod do logiky (VL): 11. Ověřování, zda je formule tautologií metodou protipříkladu
Jiří Raclavský (214): Úvod do logiky: klasická výroková logika Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.7/2.2./28.216, OPVK) Úvod
Predikátová logika dokončení
Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen