PROTEINY ( = BÍLKOVINY) DNA RNA protein modifikovaný protein
|
|
- Lukáš Beran
- před 7 lety
- Počet zobrazení:
Transkript
1 PROTEINY ( = BÍLKOVINY) DNA RNA protein modifikovaný protein
2 - více než 50 % buněčné sušiny organismů -chemicky se jedná o biopolymery složené z jednoho nebo více lineárních polypeptidových řetězců, obsahujících obvykle 100 až aminokyselinových zbytků (kódovaných AK) - není obecná klasifikace; lze je rozdělovat např. podle: -specifické funkce -chemického složení -tvaru a rozpustnosti molekul -lokalizace v organismu
3 Funkce (rozmanité) -strukturní -obranná (protilátky) -transportní -zásobní -katalytickou -regulační -pohybová (myosin a aktin ve svalových vláknech)
4 Chemické složení Jednoduché Složené - polypeptidová + neproteinová část Složené: metaloproteiny fosfoproteiny glykoproteiny lipoproteiny nukleoproteiny
5 DĚLENÍ PODLE TVARU MOLEKULY -globulární - albuminy (rozp. ve vodě) -fibrilární - globuliny (rozp. v roztocích solí) -membránové DĚLENÍ PODLE LOKLAIZACE V ORGANISMU -intracelulární (vnitrobuněčné) a extracelulární (mimobuněčné) -bílkoviny krevní plasmy (též plasmové, plasmatické nebo sérové proteiny)
6 Vznik peptidové vazby Zjednodušené schema níže uvedená reakce takto neprobíhá Proč? + H 3 N CH R1 COO + + H 3 N CH COO + H 3 N CH C NH CH COO - R2 R1 O R2 Polypeptidový řetězec (peptidy, proteiny) DNA RNA protein modifikovaný protein Syntéza proteinů animace:
7 Úrovně struktur -primární struktura - pořadí zbytků aminokyselinových zbytků v lineárním polypeptidovém řetězci -sekundární struktura popisuje prostorové vztahy sousedních nebo blízkých aminokyselinových zbytků -terciární struktura - prostorové vztahy vzdálených částí řetězce a tím i celkový tvar molekuly -kvarterní struktura popisuje vzájemné uspořádání více polypeptidových řetězců; řada bílkovin není tvořena jediným řetězcem, složeným do definované terciární struktury; často jde o oligomery tvořené jedním nebo několika typy tzv. podjednotek
8 Struktury bílkovin
9
10 Primární struktura bílkovin ( + kovalentní) pořadí aminokyselinových zbytků v peptidovém řetězci (kódováno v DNA)
11 Kovalentní struktura bílkovin (primární struktura + posttranslační modifikace) 1. Propojení řetězců kovalentními vazbami 2. Odštěpení částí řetězců 3. Úpravy postranních řetězců aminokyselin 4. Připojení mastných kyselin 5. Glykosylace 6. Fosforylace (dočasné či trvalé) 7. Připojení dalších prosthetických skupin (kofaktory enzymů...) 8. Metaloproteiny (koordinační kovalentní vazby různé síly) 1-3: jednoduché bílkoviny 4-8: složené bílkoviny
12
13 Lze pohlížet jako na text >gi ref ZP_ putative Cerebroside-sulfatase [Escherichia coli TA143] MQKTLMASLIGLAVCTGNAFNPVVAAETKQPNLVIIMADDLGYGDLATYGHQIVKTP NIDRLAQEGVKFTDYYAPAPLSSPSRAGLLTGRMPFRTGIRSWIPTGKDVALGRNELT IANLLKAQGYDTAMMGKLHLNAGGDRTDQPQAKDMGFDYSLVNTAGFVTDATLDN AKERPRFGMVYPTGWLRNGQPTPRSDKMSGEYVSSEVVNWLDNKKDSKPFFLYVA FTEVHSPLASPKKYLDMYSQYMSDYQKQHPDLFYGDWADKPWRGTGEYYANISYL DAQVGKVLDKIKAMGEEDNTIVIFTSDNGPVTREARKVYELNLAGETDGLRGRKDN LWEGGIRVPAIIKYGKHLPKGMVSDTPVYGLDWMPTLANMMNFKLPTDRTFDGESL VPVLENKALKREKPLIFGIDMPFQDDPTDEWAIRDGDWKMIIDRNNKPKYLYNLKT DRFETINQIGKNPDIEKQMYGKFLKYKADIDNDSLMKARGDK PEAVTWG
14 URČOVÁNÍ CELKOVÉHO AMINOKYSELINOVÉHO SLOŽENÍ AK 1 -AK 2 -AK 3...AK n kyselá nebo bazická hydrolysa AK 1 + AK 2 + AK AK n (určit kvalitativní i kvantitativní jednotlivé aminokyseliny - chromatografické dělení)
15 Určení N-koncové a C-koncové aminokyseliny N-koncové: Sangerova metoda; reakce s DNF (viz reakce AK) C-koncové: -specifické enzymové štěpení (karboxypeptidasy) -redukce -COOH LiBH 4 na -OH, identifikace aminoalkoholu
16 Určování sekvence Edmanovo odbourávání - zbylý polypeptidový řetězec zůstane neporušen (rozdíl proti využití totální hydrolýzy při Sangerově metodě jen N-koncová AK); lze tedy opakovat a přímo číst pořadí AK; princip automatických sekvenátorů až několik desítek AK
17 Určování primární struktury Určení počtu polypeptidových řetězců v proteinu; Rozštěpení disulfidových vazeb mezi řetězci a uvnitř polypeptidových řetězců; Izolace jednotlivých řetězců; Vícenásobné specifické štěpení polypeptidových řetězců na kratší fragmenty; Určení pořadí aminokyselin v těchto fragmentech; Sestavení primární struktury polypeptidů; Určení původního propojení polypeptidových řetězců. Pozn. Možnost sekvenování peptidů pomocí hmotnostní spektrometrie
18 Určování primární stuktury
19 Prostorové uspořádání biopolymerů (obecné znaky) 1. Nativní struktuře odpovídá minimum Gibbsovy energie, dané výhodností nekovalentních interakcí. 2. Nativní struktura je zakódována v kovalentní struktuře. 3. Prostorové uspořádání závisí na mnohočetných interakcích s okolím. 4. Prostorové uspořádání je jistým způsobem hierarchické. 5. Nativní struktura je vždy do jisté míry pohyblivá (konformační dynamické systémy). 6. Nativní struktura je kooperativní (náhlý denaturační přechod).
20 Stabilizace struktury bílkovin nekovalentní interakce * Vazebná energie Typ interakce Příklad (kj/mol) vodíkové vazby: voda (led) -O-H...O= 17 peptidové vazby (můstky H O) =N-H...O=C 15 neutrální a nabitá skupina -COO -...HO-CH 2-15 elektrostatické interakce ion-ion -COO H 3 N permanentní dipól - permanentní dipól C d+ =O d-...c d+ =O d- Londonovy dispersní interakce patrové interakce mezi dvěma alifatickými atomy C mezi dvěma aromatickými kruhy Phe 2 0,11 6 hydrofobní interakce mezi dvěma methylovými skupinami 1,2 mezi dvěma postranními 6
21 Hydrofobní interakce
22 Sekundární struktura - popisuje prostorové uspořádání sousedních nebo blízkých částí polypeptidového řetězce
23 konformace polypeptidového řetězce je definována torzními úhly vazby Cα-N (φ) a vazby Cα- C (ψ) - hodnota těchto úhlů je definována jako 180 v případě, že je řetězec v rovinné, plně rozvinuté konformaci a klesá až k hodnotě 180 (přetočení na druhou stranu ). Volná rotace je omezena sterickými zábranami mezi atomy vlastní kostry polypeptidového řetězce a sterickou náročností postranních řetězců aminokyselin; rotační úhly mohou tedy nabývat jen určitých hodnot
24
25 stereotypní opakování struktury NH-CHR-CO- => tendence k tvorbě periodických prostorových struktur Základní typy: α-šroubovice β-struktury α-šroubovice charakterizovány parametry: výškou závitu, směrem otáčení (levotočivé a pravotočivé) a počtem aminokyselinových zbytků nebo počtem atomů na jednu otáčku šroubovice.
26 Sekundární struktury bílkovin V proteinech časo - pravotočivá šroubovice označovaná jako α- helix, která je charakterizována výškou závitu 0,54 nm a 3,6 aminokyselinového zbytku (resp. 11 atomy) na jeden závit - stabilizován vnitrořetězcovými vodíkovými můstky, které se vytvářejí podél osy šroubovice mezi nad sebou ležícími CO a NH skupinami.
27 β-struktura - další časté periodické uspořádání polypeptidového řetězce -bývá stabilizována propojením s antiparalelně (častěji) či paralelně probíhajícím polypeptidovým řetězcem stejné konformace, s nímž je spojen maximálním možným počtem meziřetězcových vodíkových můstků. Tak vznikají struktury zvané β-skládaný list (angl. β-pleated sheet). Jejich plocha bývá různým způsobem zakřivena (tzv. twisted sheet) nebo může tvořit válec (tzv. β-barrel) Antiparalelní β-struktura polypeptidového řetězce
28 Periodické sekundární struktury zastoupeny v proteinech různou měrou, od několika procent až po desítky procent z celkové struktury. Mezi těmito útvary se řetězec otáčí zpět, někdy až o 180º. Tyto ostré změny směru, umožněné určitými sekvencemi aminokyselin, bývají označovány jako β-ohyby, (angl. β-bend nebo β-turn), protože často propojují β-struktury. Jsou tvořeny čtyřmi aminokyselinovými zbytky, často se v nich vyskytuje prolin a glycin. Jsou charakteristické pro globulární bílkoviny, zajišťují jejich sférický tvar. Supersekundární struktury např.: Zn-prst, Leu Zip
29 Alfa helixy v hemoglobinu
30 Terciární struktura proteinů -popisuje uspořádání celého polypeptidového řetězce a tedy i celkový tvar molekuly. Terciární struktura myoglobinu
31 Kvarterní struktura
32 Příklady bílkovin s kvarterní strukturou Bílkovina Rel.mol.hm. oligomeru Počet podjednotek Charakter, funkce hemoglobin (lidský) podjednotky dvou typů (a 2 b 2 tetramer), přenos kyslíku α-amylasa (lidská) identické podjednotky, enzym (hydrolytické štěpení škrobu) alkoholdehydrogenasa (kvasinky) identické podj., enzym (katalysuje redukci acetaldehydu na ethanol) ferritin (lidský) skladování železitých iontů (až 4300 Fe 3+ ) glutaminsynthetasa (E.coli) pyruvátdekarboxylasa (E.coli) enzym (synthesa Gln z Glu), kulovité identické podj. tvoří 2 šestiúhelníky umístěné nad sebou enzymový komplex, podjednotky 3 typů, každá katalysuje jednu dílčí reakci (odd. 9.2) hemocyanin (plži) metalloprotein obsahující Cu 2+ ; přenos O 2 ; dutý válec 40x40 nm virus tabákové mozaiky helikálně uspořádané identické podj. (M r ) tvořící komplex s RNA
33 Svinování proteinů (folding) - neprobíhá náhodným způsobem - probíhá postupně - při skládání některých proteinů, zejména bílkovin s kvarterní strukturou, asistují v buňkách bílkoviny označované jako chaperony a) malé dočasné periodické struktury b) supersekundární struktury c) strukturní domény a "roztavená" glubule d) závěrečné úpravy za účasti enzymů
34 Vlastnosti proteinů Nábojové vlastnosti Rozpustnost - v závislosti na ph, iontové síle Denaturace - ztráta nativní konformace Kooperativita (denaturační přechod) Optické
35 Rozpustnost proteinů - v závislosti iontové síle
36 Kooperativita -důsledky pro vlastnosti biopolymerů Molekula reaguje na podněty z vnějšího prostředí jako celek; to znamená, že konformační impuls, vyvolaný v jedné části molekuly, může vyvolat celý řetězec následků, jež končí konformační změnou v jiné, prostorově vzdálené části molekuly Sigmoidní charakter - náhlý přechod mezi nativním a denaturovaným stavem je důsledkem kooperativity nativní struktury -př. fosforylace enzymů
37 OPTICKÉ VLASTNOSTI Absorpce UV záření: -peptidová vazba ( nm) -aromatické (především Tyr a Trp) u 280 nm ( pro srov. DNA cca 260 nm) Abs. spektra lidského sérového albuminu (1), lidského imunoglobulinu G (2) a DNA (3) v ultrafialové oblasti. Koncentrace obou bílkovin je 1 mg/ml, koncentrace DNA 0,1 mg/ml
38 Vztah struktury a funkce vybraných proteinů Keratiny (ř. keras roh) - významná skupina fibrilárních bílkovin; podílejí se na výstavbě intermediárních filament cytoskeletu vlasů, chlupů, nehtů, rohů a peří; nerozpustné ve vodě a odolné vůči fyzikálním i chemickým vlivům. Hlavní skupina - α-keratiny - struktura je tvořena α -helixem; dvě tyto šroubovice se pak stáčejí do levotočivého kabelu (tzv. coiled-coil), jejichž dvojice vytváří protofilamentum a osmice intermediární filamentum cytoskeletu
39 Imunoglobuliny (Ig) - globulární glykoproteiny krevního séra. Molekula připomíná tvarem písmeno Y; na jeho horních ramenech jsou lokalizovány oblasti, které nekovalentně váží antigeny; pro svojí velkou strukturní různorodost se označují jako variabilní.
40 Svalové kontrakce - aktin, myosin a tropomyosin
41 Membránové proteiny
42 Hemoglobin
43
44 Kovalentní modifikace proteinů aneb translací to nekončí
45 translací to nekončí DNA RNA protein modifikovaný protein Mají modifikace podstatný význam pro funkci proteinů? Ano. Nejedná se jen o kosmetické změny Známo více než 200 typů kovalentních modifikací (in vivo)
46 Čím jsou determinovány možné kovalentní modifikace? typem, pořadím a prostorovou lokalizací aminokyselinových zbytků aparátem enzymů realizujících modifikace
47 KOVALENTNÍ MODIFIKACE (enzymové i neenzymové) IN VIVO IN VITRO VRATNÉ NEVRATNÉ PŘIROZENÉ UMĚLÉ
48 1. Posttranslační modifikace role v řadě různých buněčných procesů svinování proteinů stabilizace prostorové struktury proteinů lokalizace proteinů v buňce přenos signálu exprese genů regulace aktivity enzymů mezibuněčné interakce
49 Příklady posttranslačních modifikací Fosforylace vratná modifikace (kinasy / fosfatasy) obvykle na OH skupinách zbytků serinu, threoninu, tyrosinu významný regulační prvek: aktivita řady enzymů aktivita glykogen fosforylasy je regulována fosforylací na zbytku serinu v pozici 14 regulace transkripce role při přenosu signálu
50
51 Regulace transkripce fosforylací CREB (camp - responsive element binding protein) transkripční faktor fosforylace na serin 133 asociace s CBP; (CREB binding protein) CREB CBP komplex aktivuje CREB dependentní transkripci mj. i remodelací chromatinu acetylací histonů
52 Glykosylace připojení sacharidů na proteiny - typické pro extracelulární a membránové proteiny role glykosylace: často nutná pro správné svinutí proteinu stabilizace proteinu regulace rozpoznávání molekulové mezibuněčné obrovská variabilita řada míst glykosylace a každé z nich může být glykosylováno mnoha způsoby
53 Místa připojení sacharidů na protein (N) přes asparagin; endoplasmatické retikulum (kotranslační); proteiny krevní plasmy, imunoglobuliny, řada enzymů (O) přes serin /threonin; Golgi aparát; muciny, kolageny (C) (přes tryptofan) (P) (fosfothreonin, fosfoserin)
54 Mechanismus glykosylace na asparagin dolichol
55 Regulace transkripce glykosylací glykosylace CREBu brzda transkripce - působí opačně než fosforylace modifikován serin a threonin N- acetylglukosaminem
56 Lipidace - usnadňuje připojení proteinů na membrány, vzájemné interakce proteinů Prenylace - připojení farnesyl, dolichol nebo geranylgeranyl zbytků; farnesylace u některých G proteinů farnesylace Acylace připojení mastných kyselin (myristová, palmitová) přes ester, thioester nebo amid; rhodopsin palmitoylovaný na zbytku cysteinu
57 Modifikace proteinu jiným proteinem - proteiny mohou být navázány (např. přes svůj C-konec) ke zbytkům lysinu jiného proteinu Ubiquitinylace - nejznámější modifikací tohoto typu signál pro degradaci proteinu (např. chybně svinutý protein) SUMOylace (SUMO: Small Ubiquitin-like Modifier) - role v řadě buněčných procesů: transport mezi jádrem a cytosolem, regulace transkripce, apoptosa, stabilizace proteinu, odpověď na stres
58 Acetylace - obvyklá na N koncích některých proteinů nebo zbytcích lysinu; N-terminální serin histonu H4 acetylován Hydroxylace - konverze prolinu na hydroxyprolin v kolagenu katalyzovaná prolyl-4-hydroxylasou acetylace Jodace - thyroglobulin jodován (na Tyr) při syntéze thyroxinu Karboxylace - karboxylace prothrombinu (srážení krve) na zbytek Glu (účast vitaminu K) Methylace - methylací mohou být modifikovány například histony; lysine 20 histonu H4 může být mono- nebo dimethylován methylace
59 Nukleotidylace - připojení mononukleotidu reguluje aktivitu některých enzymů; utilizace dusíku v E. coli: glutamin synthetasa specificky adenylována (kovalentní připojení AMP) na zbytku tyrosinu; adenylovaná forma je inaktivní; stupeň adenylace je řízen regulačním proteinem PII schopnost proteinu PII regulovat adenylaci glutamin synthetasy je řízena jeho uridinylací (kovalentní připojení UMP) na zbytku Sulfatace různé typy (O-, S-, N-); na Tyr (protein protein interakce) Připojení prostetických skupin - hem (globin a cytochrom), FAD, biotin Vytvoření disulfidových vazeb - typické pro extracelulární proteiny; formace disulfidových můstků - po svinutí proteinu do (téměř) finální podoby Aktivace zymogenů - odštěpením sekvence, která kryje jejich aktivní centrum - proteasy (chymotrypsin, trypsin, trombin)
60 2. Enzymová modifikace (in vitro) Defosforylace kaseinů ve zrajících sýrech (fosfatasa) vliv na štěpení a následně chuťové vlastnosti sýrů; vstřebávání vápníku možnost ovlivnění procesu (přídavek fosfatasy)
61 3. Neenzymové modifikace (in vivo i in Oxidativní poškození vitro) působením volných radikálů ROS (reactive oxygen species) vodíku (H 2 O 2 ), peroxid vodíku, hydroxyl etc.; mohou vznikat produkty buněčného metabolismu např. superoxid z mitochondrie 2 O 2. oxid dusnatý (NO), peroxonitrát (NO 3 ; vznik: H 2 O 2 + NO 2 ONOO + H 2 O), oxidace methioninu (in vivo i in vitro) možnost enzymové opravy neenzymové modifikace enzymem methioninsulfoxidreductasou - konverze oxidovaných zbytků zpět na methionin chlorotyrosin, nitrotyrosin a bityrosin v lipoproteinech artherosklerotického plaku oxidace methioninu
62 Glykace navázání molekuly cukru (např. glukosy nebo fruktosy) na molekulu proteinu (in vitro i in vivo) na rozdíl od glykosylace není katalyzována enzymově Příklady: in vitro - při tepelné úpravě pokrmů (při vyšších teplotách) obsahujících jak proteiny, tak sacharidy in vivo - glykace hemoglobinu - valin na N-konci; diagnostická aplikace
63 4. Umělé modifikace proteinů Kvantifikace proteinů s využitím kovalentních značek ICAT (Isotope Coded Afinity Tags), kvantifikace/studium Cys itraq (Isobaric Tags for Relative and Absolute Quantification) Kovalentní imobilizace enzymů možnost opakovaného použití stabilizace enzymu vyloučení kontaminace enzymem příp. jeho autokatalytickými produkty (proteasy)
64 Eupergit C kopolymer vážící proteiny přes oxiranové skupiny reakcí s -NH 2 s volnými skupinami zbytků lysinu více bodové kovalentní připojení stabilizace vysoká stabilita při ph 1 až 12 penicilin amidasa na Eupergitu C - 60% původní aktivity po 800 cyklech
65 Význam kovalentních modifikací proteinů pro funkci živých organismů (setkání s medvědem) v potravinářství (výroba sýrů) biotechnologie (kovalentní imobilizace enzymů) diagnostické metody v medicíně (glykace) proteomika (kvantifikace proteinů)
Bílkoviny (=proteiny) (vztah struktury a funkce) DNA RNA protein modifikovaný protein
Bílkoviny (=proteiny) (vztah struktury a funkce) DNA RNA protein modifikovaný protein Chemické složení Jednoduché Složené - polypeptidová + neproteinová část Složené: metaloproteiny fosfoproteiny glykoproteiny
VícePřírodní polymery proteiny
Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů
VíceBílkoviny - proteiny
Bílkoviny - proteiny Proteiny jsou složeny z 20 kódovaných aminokyselin L-enantiomery Chemická struktura aminokyselin R představuje jeden z 20 různých typů postranních řetězců R Hlavní řetězec je neměnný
VíceBiologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
VíceBÍLKOVINY = PROTEINY Polymery aminokyselin propojených peptidovou vazbou
BÍLKOVINY = PROTEINY Polymery aminokyselin propojených peptidovou vazbou 20 AK 20 18 variant pro peptid složený z 20 AK!!! Průměrná bílkovina 300 AK Relativní molekulová hmotnost (bezrozměrné číslo) Molární
VíceStruktura proteinů. - testík na procvičení. Vladimíra Kvasnicová
Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní
VíceBÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím
VíceV organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je
VíceBiopolymery. struktura syntéza
Biopolymery struktura syntéza Nukleové kyseliny Proteiny Polysacharidy Polyisopreny Ligniny.. Homopolymery Kopolymery (stat, alt, block, graft) Lineární Větvené Síťované kombinace proteiny Funkční úloha
VícePROTEINY. Biochemický ústav LF MU (H.P.)
PROTEINY Biochemický ústav LF MU 2013 - (H.P.) 1 proteiny peptidy aminokyseliny 2 Aminokyseliny 3 Charakteristika základní stavební jednotky proteinů geneticky kódované 20 základních aminokyselin 4 a-aminokyselina
VíceAminokyseliny, peptidy a bílkoviny
Aminokyseliny, peptidy a bílkoviny Dělení aminokyselin Z hlediska obsahu v živé hmotě Z hlediska významu ve výživě Z chemického hlediska Z hlediska rozpustnosti Dělení aminokyselin Z hlediska obsahu v
VíceMolekulární biofyzika
Molekulární biofyzika Molekuly v živých systémech - polymery Lipidy (mastné kyseliny, fosfolipidy, isoprenoidy, sfingolipidy ) proteiny (aminokyseliny) nukleové kyseliny (nukleotidy) polysacharidy (monosacharidy)
VíceInovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
VíceVÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
VíceBÍLKOVINY R 2. sféroproteiny (globulární bílkoviny): - rozpustné ve vodě, globulární struktura - odlišné funkce (zásobní, protilátky, enzymy,...
BÍLKVIY - látky peptidické povahy tvořené více než 100 aminokyselinami - aminokyseliny jsou poutány...: R 1 2 + R 2 R 1 R 2 2 2. Dělení bílkovin - vznikají proteosyntézou Struktura bílkovin primární sekundární
VíceAminokyseliny, struktura a vlastnosti bílkovin. doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie
Aminokyseliny, struktura a vlastnosti bílkovin doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie 1. 20 aminokyselin, kódovány standardním genetickým kódem, proteinogenní, stavebními
VíceTestové úlohy aminokyseliny, proteiny. post test
Testové úlohy aminokyseliny, proteiny post test 1. Které aminokyseliny byste hledali na povrchu proteinů umístěných uvnitř fosfolipidových membrán a které na povrchu proteinů vyskytujících se ve vodném
VíceBÍLKOVINY = PROTEINY Polymery aminokyselin propojených peptidovou vazbou
BÍLKOVINY = PROTEINY Polymery aminokyselin propojených peptidovou vazbou 20 AK 20 18 variant pro peptid složený z 20 AK!!! Průměrná bílkovina 300 AK Relativní molekulová hmotnost (bezrozměrné číslo) Molární
VíceBílkoviny. Charakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny
Bílkoviny harakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny 1) harakteristika a význam Makromolekulární látky složené z velkého počtu aminokyselinových zbytků V tkáních
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I V E S T I E D Z V J E V Z D Ě L Á V Á Í AMIKYSELIY PEPTIDY AMIKYSELIY = substituční/funkční deriváty karboxylových kyselin = základní jednotky proteinů (α-aminokyseliny) becný vzorec 2-aminokyselin (α-aminokyselin):
VíceBílkoviny. Bílkoviny. Bílkoviny Jsou
Bílkoviny Bílkoviny Úkol: Vyberte zdroje bílkovin: Citróny Tvrdý sýr Tvaroh Jablka Hovězí maso Luštěniny Med Obilí Vepřové sádlo Hroznové víno Bramborové hlízy Řepa cukrovka Bílkoviny Základními stavebními
VíceBiologie buňky. proteiny, nukleové kyseliny, procesy genom, architekura (membrána), funkce mitoza, buněčná smrt, kmenové buňky, diferenciace
Biologie buňky Molecules of life Struktura buňky Buněčný cyklus proteiny, nukleové kyseliny, procesy genom, architekura (membrána), funkce mitoza, buněčná smrt, kmenové buňky, diferenciace Biologie tkání
VíceBiologie buňky. proteiny, nukleové kyseliny, procesy genom, architekura,funkce, mitoza, buněčná smrt, kmenové buňky, diferenciace
Biologie buňky Molecules of life Struktura buňky, Buněčný cyklus proteiny, nukleové kyseliny, procesy genom, architekura,funkce, mitoza, buněčná smrt, kmenové buňky, diferenciace Buněčná membrána mezibuněčné
VíceVýukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_413 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:
VícePřírodní polymery. struktura syntéza
Přírodní polymery struktura syntéza Nukleové kyseliny Proteiny Polysacharidy Polyisopreny Ligniny.. průmyslové využití (tradiční, obnovitelný zdroj) Sruktura komplikovanější Homopolymery Kopolymery (stat?,
VíceBílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
VíceTypy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
Víceaminokyseliny a proteiny
aminokyseliny a proteiny funkce proteinů : proteiny zastávají téměř všechny biologické funkce, s výjimkou přenosu informace stavební funkce buněk a tkání biokatalyzátory-urychlují biochemické reakce -
VíceLodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání
Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání http://web.natur.cuni.cz/~zdenap/zdenateachingnf.html CHEMICKÉ SLOŽENÍ BUŇKY BUŇKA: 99 % C, H, N,
VíceÚVOD DO BIOCHEMIE. Dělení : 1)Popisná = složení org., struktura a vlastnosti látek 2)Dynamická = energetické změny
BIOCHEMIE 1 ÚVOD DO BIOCHEMIE BCH zabývá se chemickými procesy v organismu a chemickým složením živých organismů Biologie: bios = život + logos = nauka Biochemie: bios = život + chemie Dělení : Chemie
VíceSTRUKTURA PROTEINŮ
projekt GML Brno Docens DUM č. 17 v sadě 22. Ch-1 Biochemie Autor: Martin Krejčí Datum: 03.05.2014 Ročník: 6AF, 6BF Anotace DUMu: Struktura proteinů Materiály jsou určeny pro bezplatné používání pro potřeby
VíceNUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Více8. Polysacharidy, glykoproteiny a proteoglykany
Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a
VíceUSPOŘÁDEJTE HESLA PODLE PRAVDIVOSTI DO ŘÁDKŮ
Proteiny funkce Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 22.7.2012 3. ročník čtyřletého G Procvičování struktury a funkcí proteinů
VíceAminokyseliny. Peptidy. Proteiny.
Aminokyseliny. Peptidy. Proteiny. Struktura a vlastnosti aminokyselin 1. Zakreslete obecný vzorec -aminokyseliny. Která z kodovaných aminokyselin se z tohoto vzorce vymyká? 2. Které aminokyseliny mají
VíceStruktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
VíceProteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
VíceCHEMIE. Pracovní list č. 10 - žákovská verze Téma: Bílkoviny. Mgr. Lenka Horutová
www.projektsako.cz CHEMIE Pracovní list č. 10 - žákovská verze Téma: Bílkoviny Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.0075 Teorie: Název proteiny
VíceMolekulární biofyzika
Molekulární biofyzika Molecules of life Centrální dogma membrány Metody GI a MB Biofyzika buňky Biofyzika tkání proteiny, nukleové kyseliny struktura, funkce replikace, transkripce, translace struktura,
VíceAminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu
VíceStruktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
VíceGymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto SUBSTITUČNÍ DERIVÁTY KARBOXYLOVÝCH O KYSELIN R C O X karboxylových kyselin - substituce na vedlejším uhlovodíkovém řetězci aminokyseliny - hydroxykyseliny
VíceStruktura, chemické a biologické vlastnosti aminokyselin, peptidů a proteinů
Struktura, chemické a biologické vlastnosti aminokyselin, peptidů a proteinů Aminokyseliny CH COOH obsahují karboxylovou skupinu a aminovou skupinu nebarevné sloučeniny (Trp, Tyr, Phe absorbce v UV) základní
VíceMetabolismus bílkovin. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)
VíceAminokyseliny, struktura a vlastnosti bílkovin
Aminokyseliny, struktura a vlastnosti bílkovin doc. Jana Novotná Ústav lékařské chemie a klinické biochemie, 2. LF UK a FN Motol 2016 1. 20 aminokyselin, kódovány standardním genetickým kódem, proteinogenní,
VíceNukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
VíceBílkoviny příručka pro učitele. Obecné informace:
Obecné informace: Bílkoviny příručka pro učitele Téma Bílkoviny přesáhne rámec jedné vyučovací hodiny. Vyučující rozdělí téma na 2 vyučovací hodiny, zadá klasifikaci bílkovin jako samostatnou práci popř.
VícePrvní testový úkol aminokyseliny a jejich vlastnosti
První testový úkol aminokyseliny a jejich vlastnosti Vysvětlete co znamená pojem α-aminokyselina Jaký je rozdíl mezi D a L řadou aminokyselin Kolik je základních stavebních aminokyselin a z čeho jsou odvozeny
VíceAminokyseliny, proteiny, enzymologie
Aminokyseliny, proteiny, enzymologie Aminokyseliny Co to je? Organické látky karboxylové kyseliny, které mají na sousedním uhlíku navázanou aminoskupinu Jak to vypadá? K čemu je to dobré? AK jsou stavební
VíceBiochemie I 2016/2017. Makromolekuly buňky. František Škanta
Biochemie I 2016/2017 Makromolekuly buňky František Škanta Makromolekuly buňky ukry Tuky Bílkoviny ukry Jsou sladké Přehled strukturních forem sacharidů Monosacharidy Disacharidy Polysacharidy Ketotriosa
VícePEPTIDY, BÍLKOVINY. Reg. č. projektu CZ.1.07/1.1.00/14.0143
PEPTIDY, BÍLKOVINY Definice: Bílkoviny (proteiny) jsou makromolekulární látky, které vznikají spojením sto a více molekul různých aminokyselin peptidickou vazbou. Obsahují atomy uhlíku (50 až 55%), vodíku
VíceRegulace translace REGULACE TRANSLACE BÍLKOVINY A JEJICH POSTTRANSLAČNÍ MODIFIKACE. Bílkoviny - aminokyseliny. 1. Translační aparát. 2.
Regulace translace Bílkoviny - aminokyseliny 1. Translační aparát 2. Translace 3. Bílkoviny a jejich posttranslační modifikace 4. Lokalizace bílkovin v buňce a jejich degradace 5. Translace v mitochondriích
VíceToxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
Vícestrukturní (součástmi buněčných struktur) metabolická (realizují b. metabolizmus) informační (jako signály či receptory signálů)
1 Bílkoviny - představují cca. ½ suché hmotnosti buňky - molekuly bílkovin se podílí na všech základních životních procesech - součástmi buněčných struktur (stavební f-ce) Funkce bílkovin: strukturní (součástmi
VíceNázvosloví cukrů, tuků, bílkovin
Názvosloví cukrů, tuků, bílkovin SACARIDY CUKRY MNSACARIDY LIGSACARIDY PLYSACARIDY (z mnoha molekul monosacharidů) ALDSY KETSY -DISACARIDY - TRISACARIDY - TETRASACARIDY atd. -aldotriosy -aldotetrosy -aldopentosy
VíceExprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Translace, techniky práce s DNA Translace překlad z jazyka nukleotidů do jazyka aminokyselin dá se rozdělit na 5 kroků aktivace aminokyslin
VíceStruktura aminokyselin, peptidů a bílkovin.
Struktura aminokyselin, peptidů a bílkovin. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol MUDr. Bc. Matej Kohutiar, Ph.D. matej.kohutiar@lfmotol.cuni.cz Praha 2018 I. Struktura aminokyselin
VíceBp1252 Biochemie. #11 Biochemie svalů
Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické
VíceAMINOKYSELINY REAKCE
CHEMIE POTRAVIN - cvičení AMINOKYSELINY REAKCE Milena Zachariášová (milena.zachariasova@vscht.cz) Ústav chemie a analýzy potravin, VŠCHT Praha REAKCE AMINOKYSELIN část 1 ELIMINAČNÍ REAKCE DEKARBOXYLACE
VíceGenomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.
Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data
Více5. Proteiny. Peptidy. Struktura proteinů. Primární struktura proteinů. Sekundární struktura proteinů
5. Proteiny Peptidy Peptidy jsou látky, které vznikají spojením aminokyselin peptidovými vazbami do řetězce. Peptidy rozdělujeme podle délky řetězce: ligopeptidy obsahují dvě až deset aminokyselin. Můžeme
VíceAminokyseliny, Peptidy, Proteiny
Aminokyseliny, Peptidy, Proteiny Proteiny jsou nejrozšířenější biologické makromolekuly Proteiny jsou tvořeny kombinací 20 α-aminokyselin Aminokyseliny sdílejí společné základní strukturní vlastnosti α-uhlík
VíceBÍLKOVINY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 2. 2013. Ročník: devátý
BÍLKOVINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 2. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s oblastmi chemického
VíceBiosyntéza a degradace proteinů. Bruno Sopko
Biosyntéza a degradace proteinů Bruno Sopko Obsah Proteosyntéza Post-translační modifikace Degradace proteinů Proteosyntéza Tvorba aminoacyl-trna Iniciace Elongace Terminace Tvorba aminoacyl-trna Aminokyselina
VíceCentrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
VíceOpakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
VíceAutorem přednášky je Mgr. Lucie Mandelová, Ph.D. Přednáška se prochází klikáním nebo klávesou Enter.
Bílkoviny Tato přednáška pochází z informačního systému Masarykovy univerzity v Brně, kde byla zveřejněna jako studijní materiál pro studenty předmětu Výživa ve sportu. Autorem přednášky je Mgr. Lucie
Více2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
VíceHemoglobin a jemu podobní... Studijní materiál. Jan Komárek
Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických
VíceStruktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
VíceVazebné interakce protein s DNA
Vazebné interakce protein s DNA Vazebné možnosti vn jší vazba atmosféra + iont kolem nabité DNA vazba ve žlábku van der Waalsovský kontakt s lé ivem ve žlábku interkalace vmeze ení planárního aromat.
VíceRegulace translace REGULACE TRANSLACE PROTEINY A JEJICH POSTTRANSLAČNÍ MODIFIKACE. 1. Translační aparát. 2. Translace
Regulace translace 1. Translační aparát 2. Translace 3. Proteiny a jejich posttranslační modifikace 4. Lokalizace bílkovin v buňce a jejich degradace 5. Translace v mitochondriích a chloroplastech REGULACE
VíceExprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
VíceBiochemie I. Aminokyseliny a peptidy
Biochemie I Aminokyseliny a peptidy AMINOKYSELINY Když se řekne AK ( -COOH, -NH 2 nebo -NH-) prostorový vztah aminoskupiny a karboxylové skupiny: - (=2-), -(=3-)... -(= poslední) -alanin součástí koenzymu
VíceTomáš Kuˇ. cera. Ústav lékaˇrské chemie a klinické biochemie 2. lékaˇrská fakulta, Univerzita Karlova v Praze.
BIOCHEMIE SVALU Tomáš Kuˇ cera tomas.kucera@lfmotol.cuni.cz Ústav lékaˇrské chemie a klinické biochemie 2. lékaˇrská fakulta, Univerzita Karlova v Praze 2014 STRUKTURA KOSTERNÍHO SVALU svazky svalových
VíceProteiny globulární a vláknité a jejich funkce. Metabolismus aminokyselin
Proteiny globulární a vláknité a jejich funkce Metabolismus aminokyselin Funkce globulárních proteinů Skladování iontů a molekul myoglobin, ferritin Transport iontů a molekul hemoglobin, serotoninový transporter
VíceKatabolismus - jak budeme postupovat
Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův
VíceBiochemie I. Úvodní přednáška
Biochemie I Úvodní přednáška Organizace výuky etc Doc. Radovan Hynek: S 90, radovan.hynek@vscht.cz Doc. Petra Lipovová:234, Petra.Lipovova@vscht.cz Ústav biochemie: http://biomikro.vscht.cz/ Laboratoř
VíceStruktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
VíceAminokyseliny. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín. Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití
Aminokyseliny Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 18.7.2012 3. ročník čtyřletého G Určování postranních řetězců aminokyselin
VíceIntracelulární Ca 2+ signalizace
Intracelulární Ca 2+ signalizace Vytášek 2009 Ca 2+ je universální intracelulární signalizační molekula (secondary messenger), která kontroluje řadu buměčných metabolických a vývojových cest intracelulární
VíceObecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,
VíceChemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky)
Chemie nukleotidů a nukleových kyselin Centrální dogma molekulární biologie (existují vyjímky) NH 2 N N báze O N N -O P O - O H 2 C H H O H H cukr OH OH nukleosid nukleotid Nukleosidy vznikají buď syntézou
VíceAminokyseliny. Aminokyseliny. Peptidy & proteiny Enzymy Lipidy COOH H 2 N. Aminokyseliny. Aminokyseliny. Postranní řetězec
optická aktivita Peptidy & proteiny Enzymy Lipidy α-uhlík je asymetrický pouze L-aminokyseliny 2 α R rozdělení dle polarity podle počtu karboxylových skupin podle počtu bazických skupin podle polarity
VíceExprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
VíceREGULACE ENZYMOVÉ AKTIVITY
REGULACE ENZYMOVÉ AKTIVITY Proč je nutno regulovat enzymovou aktivitu? (homeostasa) Řada úrovní: regulace množství přítomného enzymu (exprese = proteosynthesa, odbourávání) synthesa vhodného enzymu (isoenzymy)
VíceTypy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
VíceOligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.
1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné
VíceEva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
VíceRychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno:
Bruno Sopko Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Z předchozí rovnice vyplývá: Pokud katalýza při 25
VíceLékařská chemie a biochemie modelový vstupní test ke zkoušce
Lékařská chemie a biochemie modelový vstupní test ke zkoušce 1. Máte pufr připravený smísením 150 ml CH3COOH o c = 0,2 mol/l a 100 ml CH3COONa o c = 0,25 mol/l. Jaké bude ph pufru, pokud přidáme 10 ml
VícePOLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN Primární struktura primární struktura bílkoviny je dána pořadím AK jejích polypeptidových řetězců
VíceTRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
Více1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu
Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
VíceIntermediární metabolismus. Vladimíra Kvasnicová
Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,
VíceMOLEKULOVÉ MODELOVÁNÍ - STRUKTURA. Monika Pěntáková Katedra Farmaceutické chemie
MOLEKULOVÉ MODELOVÁNÍ - STRUKTURA Monika Pěntáková Katedra Farmaceutické chemie Chemická struktura a geometrie KONFORMACE = můžeme změnit pouhým otočením kolem kovalentní vazby KONFIGURACE = při změně
VíceMolekulární biofyzika
Molekulární biofyzika Molecules of life Centrální dogma membrány Metody GI a MB Interakce proteiny, nukleové kyseliny struktura, funkce replikace, transkripce, translace struktura, funkce analýza proteinů,
Více