GEOGEBRA A OK GEOMETRY
|
|
- Filip Prokop
- před 8 lety
- Počet zobrazení:
Transkript
1 GEOGEBRA A OK GEOMETRY JAKO POMOCNÍCI PŘI DOKAZOVÁNÍ Irena Štrausová Jihočeská Univerzita v Českých Budějovicích Abstrakt. Matematické důkazy jsou nepochybně důležitou součástí budování systému matematických znalostí. Avšak mnoho žáků středních škol je často považuje za zbytečné a především také za velice složité. V tomto příspěvku je ukázáno, jak je možné využít dvou freeware programů - GeoGebra a OK Geometry k vizualizaci a tvorbě matematických důkazů a zprostředkovat tak žákům jiný pohled na tuto problematiku. Klíčová slova: OK Geometry, GeoGebra, důkaz, vizualizace, matematika. GEOGEBRA AND OK GEOMETRY AS PROVING ASSISTANTS Abstract. Mathematical proofs are, undoubtedly, a very important part of building the system of mathematical knowledge. However, a lot of secondary school students consider them pointless and far too complicated. This paper shows how to use freeware such as GeoGebra and OK Geometry to visualize and create mathematical proofs and present a different approach to this issue to students. Key words: OK Geometry, GeoGebra, proof, visualization, matematics. 1 Úvod Matematické důkazy jsou nedílnou součástí výstavby matematiky. Proto mají zajisté své nezastupitelné místo i při její výuce. Pro mnoho žáků středních škol jsou ale důkazy látkou velice složitou a neoblíbenou. Je tedy otázkou, jak by bylo možné tuto oblast matematiky žákům přiblížit tak, aby byla pro ně lépe přijatelná. Jednou z možností může být využití větší pestrosti při volbě typu důkazu, nebo využití některého z matematických softwarů, či využití důkazu k odvození nové matematické znalosti, nikoli pouze k ověření správnosti daného tvrzení. 350
2 2 Důkazy na střední škole Zatím co úloha důkazů při výuce matematiky na základní škole je diskutabilní, do středoškolské matematiky důkazy zajisté patří. Toto si uvědomují nejen učitelé, ale i odborníci na vzdělávání a vládní činitelé, a proto také techniky argumentace a dokazování jsou zakotveny v Rámcovém vzdělávacím programu pro gymnázia [5], kde je například v obecné části u kompetencí k řešení problémů uvedeno: Žák kriticky interpretuje získané poznatky a zjištění a ověřuje je, pro svá tvrzení nachází argumenty a důkazy, formuluje a obhajuje podložené závěry. V části věnované vzdělávací oblasti matematika a její aplikace v sekci nazvané Argumentace a ověřování, ve které jsou očekávány tyto výstupy: Žák čte a zapisuje tvrzení v symbolickém jazyce matematiky, užívá správně logické spojky a kvantifikátory, rozliší definici a větu, rozliší předpoklad a závěr věty, rozliší správný a nesprávný úsudek, vytváří hypotézy, zdůvodňuje jejich pravdivost a nepravdivost, vyvrací nesprávná tvrzení, zdůvodňuje svůj postup a ověřuje správnost řešení problému. Jak je zřejmé, požadavky od autorit na zařazení matematických důkazů do kurikula zde jsou, avšak postoj mnoha učitelů i žáků k nim je většinou negativní. Někteří učitelé považují dokazování za časově náročné a bez většího efektu na znalosti žáků a většina žáků považuje důkazy za příliš složité, zbytečné a někteří i za nudné. Otázkou je, jak by bylo možné tento jejich postoj alespoň částečně změnit. Možností je zajisté více. Jednou z nich je ukázat učitelům různé možnosti přístupu k dokazování a u žáků je důležité je nějakým způsobem motivovat. 3 Motivace žáků Jednou z možností, jak žáky motivovat k dokazování může být to, že jim ukážeme, že ani v matematice není vše tak, jak se zdá. Můžeme k tomu využít třeba příkladů s jasným řešením. Jsou to takové typy úloh, u kterých se zdá řešení na první pohled zřejmé, ale ve skutečnosti je výsledek jiný. Pěknou ukázkou takového příkladu je třeba Eulerův polynom P (x) = x 2 +x+41, který pro celá čísla x zdánlivě generuje prvočísla: P (0) = 41, P (1) = 43, P (2) = 47, P (3) = 53, P (4) = 61,... Ale jak známo, toto zdání je mylné, protože P (40) = 1681 = 41 41, což je číslo složené. Další příklad můžeme uvést nejen jako motivaci k dokazování, ale také jako ukázku toho, jak jsou v matematice důležité přesné formulace. Neúplné zadání totiž může vést k různým interpretacím a tím i k rozdílným výsledkům. Příklad 1. Které číslo bude následovat? 1, 2, 4, 8, 16,... Jestliže zadáme tento úkol žákům, zřejmě po se po chvíli shodnou na tom, že hledaným číslem je 32, protože každé z čísel je vždy dvojnásobkem toho předchozího. To je samozřejmě jedna z možných odpovědí. Můžeme se pak tedy zeptat, zda by je napadlo ještě jiné řešení. Pak jim ukážeme, že dalším řešením může být číslo 31, což vyplývá z následujícího příkladu. 351
3 Příklad 2. Zvolte na kružnici n bodů. Navzájem je spojte tak, aby se v jednom bodě protínaly nejvýše dvě tětivy. Na kolik částí je rozdělen kruh ohraničený touto kružnicí (v závislosti na n)? Jestliže zvolíme pouze jeden bod, nelze sestrojit tětivu, proto dostáváme pouze 1 část - celý kruh. Pro dva body máme jednu tětivu, která nám rozdělí kruh na 2 části, tři body - tři tětivy - 4 části, čtyři body - šest tětiv - 8 částí, pět bodů - deset tětiv - 16 částí a pro šest bodů - patnáct tětiv - dostaneme částí 31, nikoli 32, jak by mohl někdo očekávat (viz obrázek 1). Obrázek 1: Tětivy [1] Další možnou motivací může být využití různých typů důkazů. Kromě důkazů algebraických používat také například důkazy vizuální. Správně bychom asi měli napsat, že to jsou vizualizace důkazů, protože mezi odbornou veřejností se často diskutuje o tom, zda lze vizuální důkazy považovat za matematické důkazy. S vědomím této diskuse je v tomto článku pro jednoduchost používán název vizuální důkazy. V učebnicích se většinou setkáváme s důkazy algebraickými, ale občas také s důkazy geometrickými. Ty jsou jakousi podskupinou vizuálních důkazů, kam patří navíc i různé obrázky a diagramy. Zatímco geometrické důkazy se používají především pro dokazování matematických vět týkajících se geometrie, vizuální důkazy existují pro věty z mnoha matematických oblastí, jak ukazují například publikace [2, 3]. 4 Ukázkový příklad Na jednoduché větě s elementární geometrie si ukážeme několik různých způsobů důkazu, které jsou využitelné i na středoškolské úrovni. Vivianiho věta: Je dán rovnostranný trojúhelník a libovolný bod ležící uvnitř úhelníku nebo na jeho hranici. Pak součet vzdáleností tohoto bodu od stran trojúhelníku je konstantní a je roven délce výšky trojúhelníku. Algebraický důkaz této věty nalezneme například v [8], kde je navíc také uveden důkaz počítačový, využívající jeden z programů CAS (Computer Algebra Systems). My se zde však zaměříme na vizuální důkazy. 352
4 4.1 Statické vizuální důkazy Vizuálním důkazům se také někdy říká důkazy beze slov, při jejich využití ve výuce je ale důležité s žáky nad těmito důkazy diskutovat. Protože daný obrázek znázorňuje většinou pouze výsledek viz obr. 2, ale na čtenáři (či spíše pozorovateli) je, aby sám nalezl posloupnost myšlenek, která vede k samotnému důkazu, což bývá v některých případech docela složité. Jednou z možností je, rozložit vizuální důkaz do více obrázků a tím ulehčit pochopení myšlenky důkazu, jak je ukázáno například na obr. 3. Obrázek 2: Vivianiho věta [2] Obrázek 3: Vivianiho věta [4] 353
5 4.2 Důkaz v OK Geometry Pro vlastní tvorbu vizualizace důkazů můžeme využít software OK Geomtery [7]. Tento volně dostupný program umí analyzovat geometrické konstrukce a dokáže v nich odhalit různé vztahy a závislosti mezi geometrickými objekty. Těmito objekty mohou být body, přímky, úhly a kružnice. Z nalezených vlastností lze vybrat jen některé, které nás zajímají, poskládat je v určitém pořadí a vytvořit z nich tzv. report, který může sloužit jako vodítko při dokazování (viz obr. 4). Je to určitý mezistupeň mezi statickým a dynamickým vizuálním důkazem. Obrázky jsou sice statické, ale jejich posloupnost naznačuje směr myšlenek, které by měly vést k samotnému důkazu. Navíc lze k jednotlivým obrázkům napsat i komentář, takže ve výsledném reportu můžeme mít vedle sebe jak algebraický důkaz, tak geometrickou reprezentaci. Což může žákům pomoci si uvědomit souvislosti mezi geometrií a algebrou. Obrázek 4: Vivianiho věta v programu OK Geometry [7] 354
6 4.3 Verifikace v GeoGebře Dalším programem, který můžeme při dokazování využít, je GeoGebra [6]. Tento program dynamické geometrie je mezi učiteli matematiky poměrně známý, ale je využíván především při výuce planimetrie nebo funkcí. GeoGebru lze však využít i při dokazování, například k verifikaci nějakého matematického tvrzení. Je ovšem důležité zdůraznit žákům, že se nejedná o důkaz a vysvětlit také jaký je rozdíl mezi verifikací a důkazem. V této souvislosti je lepší nepředkládat žákům již hotový aplet s verifikací, ale zapojit je do jeho vytváření, aby si lépe dokázali uvědomit, na jakém principu toto ověření funguje. Nejprve sestrojíme rovnostranný trojúhelník ABC, jeho výška v, bod P a kolmice z bodu P na strany trojúhelníku. Můžeme zvolit dva způsoby, jak k tvorbě bodu P přistoupit. Bud můžeme sestrojit bod P jako vázaný a upevnit jej k trojúhelníku ABC, což přesně odpovídá znění Vivianiho věty, nebo tento bod sestrojíme jako volný. Dále pak zvolíme pomocnou proměnnou, které přiřadíme hodnotu součtu velikostí úseček PK, PL, PM,. Do textového pole pak vložíme součet jednotlivých velikostí těchto úseček v rovnosti s námi zvolenou proměnnou a do druhého řádku vložíme hodnotu velikosti výšky v trojúhelníku ABC. Při pohybu bodem P můžeme sledovat, jak se měřené a vypočítané hodnoty mění. Jestliže jsme tento bod sestrojili jako volný, můžeme ho posunout i mino daný trojúhelník a pozorovat, jak tato změna umístění ovlivní hodnoty zobrazených proměnných.. Obrázek 5: Vivianiho věta - verifikace 355
7 4.4 Dynamické důkazy v GeoGebře Další možností, jak využít GeoGebru při dokazování, je tvorba dynamického vizuálního důkazu. Ty většinou vycházejí z myšlenky statických vizuálních důkazů. Díky jejich dynamice však eliminují výše zmíněnou nevýhodu statických vizuálních důkazů a mnohem lépe pomáhají zachytit posloupnost myšlenek, které mají vést k samotnému důkazu. První zde uvedený dynamický důkaz (obr. 6) vychází ze statického vizuálního důkazu na obrázku 2, druhý (obr. 7) ze statického vizuálního důkazu z obrázku 3. Obrázek 6: Dynamický vizuální důkaz Vivianiho věty [9] Obrázek 7: Dynamický vizuální důkaz Vivianiho věty [10] 356
8 Literatura [1] POLSTER, Burkard. Q.E.D.: beauty in mathematical proof. New York: Walker, 2004, vi, 58 p. ISBN [2] NELSEN, Roger B. Důkazy beze slov I. - Cvičení pro rozvoj vizuálního myšlení. Young Scientist, 2012, ISBN [3] NELSEN, Roger B. Proofs without words II: more exercises in visual thinking. Washington, DC: Mathematical Association of America, 2000, ISBN [4] ASKEW, Mike a Sheila EBBUTT. Geometrie bez (m)učení: od Pythagora k dobývání vesmíru: abeceda geometrie v každodenním životě : fascinující tvary a konstrukce. 1. vyd. Praha: Grada, 2012, 176 s. ISBN [5] Rámcový vzdělávací program pro gymnázia. [online]. Praha: Výzkumný ústav pedagogický v Praze, s. [cit ]. Dostupné na adrese [6] GeoGebra. [online]. Dostupné na adrese [7] OK Geometry. [online]. Dostupné na adrese [8] PECH, Pavel. Klasické versus počítačové metody při řešení úloh v geometrii. Jihočeská univerzita, Č. Budějovice 2005, 172 s. [9] [10] ŠTRAUSOVÁ, Irena. Dynamická vizualizace důkazu Vivianiho věty 1. [online]. Dostupné na adrese ŠTRAUSOVÁ, Irena. Dynamická vizualizace důkazu Vivianiho věty 2. [online]. Dostupné na adrese Irena Štrausová Jihočeská univerzita v Č. B. Pedagogická fakulta Jeronýmova České Budějovice strausi@ .cz 357
South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD
South Bohemia Mathematical Letters Volume 23, (2015), No. 1, 113-122. DĚLENÍ KRUHU NA OBLASTI MAREK VEJSADA ABSTRAKT. V textu se zabývám řešením následujícího problému: Zvolíme na kružnici určitý počet
JAK NA HYPERBOLU S GEOGEBROU
Trendy ve vzdělávání 015 JAK NA HYPERBOLU S GEOGEBROU KRIEG Jaroslav, CZ Resumé Článek ukazuje, jak pomocí GeoGebry snadno řešit úlohy, které vedou na konstrukci hyperboly, případně jak lehce zkonstruovat
Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy
Úvod do matematiky Mgr. Radek Horenský, Ph.D. Důkazy Matematika a matematické chápání jako takové je založeno na logické výstavbě. Základními stavebními prvky jsou definice, věty a důkazy. Definice zavádějí
Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů
Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Jaroslav Zhouf, PedF UK, Praha Úvod Pascalův trojúhelník je schéma přirozených čísel, která má své využití např. v binomické
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Shodná zobrazení v rovině osová a středová souměrnost Mgr. Martin Mach
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
3 Geometrie ve škole. krychle a její obrázek, koule a její stín, průměty trojrozměrného útvaru do roviny
3 Geometrie ve škole Geometrie by měla být od samého začátku orientována na poznávání prostoru, v němž žák žije, a na rozvíjení představivosti. Základem zde mohou být zkušenosti s dělením prostoru, s vyplňováním
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
V PROGRAMU GEOGEBRA. Software dynamické geometrie GeoGebra [6] je v současné době mezi vyučujícími
South Bohemia Mathematical Letters Volume 22, (2014), No. 1, 65 76. SPECIÁLNÍ PŘÍPAD ROUTHOVY VĚTY A JEHO DŮKAZ V PROGRAMU GEOGEBRA IRENA ŠTRAUSOVÁ Abstrakt. Matematický program dynamické geometrie GeoGebra
Pythagorova věta Pythagorova věta slovní úlohy
Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu
Fibonacciho čísla na střední škole
Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods
GEOMETRICKÁ MÍSTA BODŮ V MATEMATICE ZŠ ÚVOD
South Bohemia Mathematical Letters Volume 23, (2015), No. 1, 66-72. GEOMETRICKÁ MÍSTA BODŮ V MATEMATICE ZŠ MGR. JITKA NOVÁKOVÁ ABSTRAKT. S kvalitní výukou geometrie se musí začít již na základní škole.
Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje
M - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami
Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo užívá různé způsoby kvantitativního vyjádření vztahu celek část (procentem) řeší aplikační úlohy
(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,
1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo
Důkazy vybraných geometrických konstrukcí
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
Digitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV
GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV Mgr. Jitka Nováková SPŠ strojní a stavební Tábor Abstrakt: Grafické řešení rovnic a jejich soustav je účinná metoda, jak vysvětlit, kolik různých řešení může daný
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
pracovní listy Výrazy a mnohočleny
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Cvičení z matematiky 3 Ročník: 8. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence k učení vybírat a využívat pro efektivní
GeoGebra známá i neznámá
GeoGebra známá i neznámá MODAM 2018 Z. Morávková, P. Schreiberová, J. Volná, P. Volný MODAM 2018 GeoGebra známá i neznámá Příklad 1: Nejmenší společný násobek Zadání: Vytvoříme aplikaci, ve které se vygenerují
VYUŽITÍ E-LEARNINGU VE VÝUCE PLANIMETRIE
VYUŽITÍ E-LEARNINGU VE VÝUCE PLANIMETRIE RNDr. Kateřina Dvořáková Gymnázium, Bučovice, Součkova 500, 685 01 Bučovice Abstrakt: Příspěvek pojednává o e-learningovém kurzu s názvem Úvod do planimetrie. Kurz
MATEMATIKA. Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci
MATEMATIKA Úloha o čtverci a přímkách ŠÁRKA GERGELITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci (například podobnosti)
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Čtyři body na kružnici
Čtyři body na kružnici 10. listopadu 2015 Vojtěch Zlámal Čtyři body na kružnici 10. listopadu 2015 1 / 19 Problematika čtyř bodů na kružnici důkazové úlohy matematické soutěže nedostatečná metodika v učebnicích
Konstrukce trojúhelníku III
Tematická oblast Konstrukce trojúhelníku III Datum vytvoření 12. 12. 2012 Ročník Stručný obsah Způsob využití Autor Kód Matematika Planimetrie Třetí ročník osmiletého gymnázia Řešení konstrukčních úloh
CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Předpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
Pavel Leischner. Jihočeská univerzita v Českých Budějovicích, Pedagogická fakulta, Jeronýmova 10, České Budějovice
Spřízněné trojúhelníky Pavel Leischner Jihočeská univerzita v Českých Budějovicích, Pedagogická fakulta, Jeronýmova 10, 371 15 České Budějovice email: leischne@pf.jcu.cz Abstrakt. Věta o rovnoběžníku obsahuje
p ACD = 90, AC = 7,5 cm, CD = 12,5 cm
Úloha Je dán pravoúhlý trojúhelník ACD s pravým úhlem při vrcholu C, AC = 7,5 cm, CD =,5 cm. Na přímce CD určete bod B tak, aby AB = BD Řešení: Úlohu vyřešíme nejprve geometrickou konstrukcí. a) Z rozboru
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
Matematické důkazy Struktura matematiky a typy důkazů
Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční
PROGRAM GEOGEBRA VE VÝUCE LINEÁRNÍ ALGEBRY
PROGRAM GEOGEBRA VE VÝUCE LINEÁRNÍ ALGEBRY Veronika Havelková FZŠ Táborská Abstrakt: Příspěvek se zabývá možnostmi využití programu GeoGebra ve výuce lineární algebry. Pozornost je zaměřena na soustavy
Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:
Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PODOBNÁ
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy
Úlohy krajského kola kategorie C
67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =
2 Důkazové techniky, Indukce
Důkazové techniky, Indukce Náš hlubší úvod do matematických formalismů pro informatiku začneme základním přehledem technik matematických důkazů. Z nich pro nás asi nejdůležitější je technika důkazů matematickou
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
Ze středních příček konstruuj trojúhelník
VY_32_INOVACE_098 Matematika a její aplikace_matematika Obrácená úloha vlastnosti trojúhelníku Ze středních příček konstruuj trojúhelník Obrácená úloha konstrukce trojúhelníku ze zadaných středních příček
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Copyright 2013 Martin Kaňka; http://dalest.kenynet.cz
Copyright 2013 Martin Kaňka; http://dalest.kenynet.cz Popis aplikace Tato aplikace je koncipována jako hra, může být použita k demonstraci důkazu. Může žáky učit, jak manipulovat s dynamickými objekty,
Matematika prostřednictvím projektově orientovaného studia pro 3. ročník gymnázia
Plán volitelného předmětu Matematika prostřednictvím projektově orientovaného studia pro 3. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět matematika, který je realizován prostřednictvím
Výuka geometrie na 2. stupni ZŠ
Výuka geometrie na 2. stupni ZŠ Úspěšnost žáků v geometrii, vytváření vědomostí, zdokonalování dovedností žáků i rozvíjení jejich schopností úzce souvisí s vytvářením postojů žáků k vyučování geometrii,
SHODNÁ ZOBRAZENÍ V ROVINĚ
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol SHODNÁ
TEMATICKÝ,časový PLÁN vyučovací předmět : matematika ročník: 5. Školní rok_2014/2015 vyučující: Lenka Šťovíčková. Zařazená průřezová témata OSV OSV
Školní rok_2014/2015 vyučující: Lenka Šťovíčková Září Opakuje početní výkony a uplatňuje komutativní, asociativní a distributivní zákon v praxi. G.:narýsuje přímku, polopřímku, kolmici, rovnoběžky, různoběžky.
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
- vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika a její aplikace
5.4.2. MATEMATIKA - 2. stupeň Charakteristika vyučovacího předmětu: - vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika
MATEMATIKA - 4. ROČNÍK
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA - 4. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky Opakování ze
Užití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám
Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační
Od Stewartovy věty k Pythagorově větě
Primárne matematické vzdelávanie - teória, výskum a prax Tále 017 Od Stewartovy věty k Pythagorově větě From Stewart s theorem to Pythagoras` theorem Jaroslav Beránek MESC: G10 Abstract The article is
Příklad z učebnice matematiky pro základní školu:
Příklad z učebnice matematiky pro základní školu: Součet trojnásobku neznámého čísla zvětšeného o dva a dvojnásobku neznámého čísla zmenšeného o pět se rovná čtyřnásobku neznámého čísla zvětšeného o jedna.
Cvičení z matematiky jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
55. ročník matematické olympiády
. ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě
Extremální úlohy v geometrii
Extremální úlohy v geometrii Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava 30.4. 2013 Petr
Matematika. 8. ročník. Číslo a proměnná druhá mocnina a odmocnina (využití LEGO EV3) mocniny s přirozeným mocnitelem. výrazy s proměnnou
list 1 / 7 M časová dotace: 4 hod / týden Matematika 8. ročník M 9 1 01 provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu Číslo a proměnná druhá
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Podmínky pro hodnocení žáka v předmětu matematika
Podmínky pro hodnocení žáka v předmětu matematika Společné ustanovení pro všechny třídy čtyřletého studia a 5. až 8. ročníku osmiletého studia: Žákům bude vyučujícími umožněno doplnit chybějící klasifikaci
vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ
Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky 4. ročník OPAKOVÁNÍ UČIVA 3. ROČNÍKU Rozvíjí dovednosti s danými
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
PYTHAGOROVA VĚTA, EUKLIDOVY VĚTY
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PYTHAGOROVA
1. Matematika a její aplikace
1. Matematika a její aplikace 1.1 Matematika Charakteristika vyučovacího předmětu Matematika Obsahové, časové a organizační vymezení předmětu Vzdělávací oblast Matematika a její aplikace je v základním
Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů
Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst
Matematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
Reálná čísla a výrazy. Početní operace s reálnými čísly. Složitější úlohy se závorkami. Slovní úlohy. Číselné výrazy. Výrazy a mnohočleny
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Cvičení z matematiky 3 Ročník: 9. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence k učení učí se vybírat a využívat vhodné
Název projektu Příprava nového volitelného předmětu Repetitorium matematiky Řešitel PaedDr. Anna Stopenová, Ph.D. Pracoviště PdF UP OLomouc
Výsledky řešení projektu FRVŠ Název projektu Příprava nového volitelného předmětu Repetitorium matematiky Řešitel PaedDr. Anna Stopenová, Ph.D. Pracoviště PdF UP OLomouc Cíle řešení: Studijní obor Učitelství
Vlasta Moravcová. Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3. Letní škola geometrie 2018,
KONSTRUKČNÍ ÚLOHY Katedra didaktiky matematiky Gymnázium Na Pražačce Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3 Letní škola geometrie 2018, 4. července 2018, Česká
s dosud sestrojenými přímkami a kružnicemi. Abychom obrázky nezaplnili
Dělení úsečky ŠÁRKA GRGLITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha V tomto článku se budeme zabývat sadou geometrických úloh, které jsou tematicky podobné. Liší se jen hodnotou jednoho
INDIVIDUÁLNÍ PÉČE - M. Charakteristika vzdělávacího oboru
INDIVIDUÁLNÍ PÉČE - M Charakteristika vzdělávacího oboru Individuální péče - matematika a) Obsahové vymezení: Individuální péče-matematika vychází z obsahového zaměření oboru Matematika a její aplikace
Úlohy domácí části I. kola kategorie C
63. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete, jaké nejmenší hodnoty může nabýt výraz V = (a b) + (b c) + (c a), splňují-li reálná čísla a, b, c dvojici podmínek a +
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
Osmileté gymnázium GEOMETRIE. Charakteristika vyučovacího předmětu
1 z 8 Osmileté gymnázium GEOMETRIE Charakteristika vyučovacího předmětu Obsahové vymezení: Vyučovací předmět geometrie pokrývá spolu s předmětem algebra (má samostatné osnovy) a s předmětem matematika
Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.
5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z
5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky
5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky Ročník 2. Hodinová dotace Matematika 3 3 3 2 Cvičení z matematiky 0 0 R (2) R (2) Vyučovací předmět Matematika
SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie
SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie
Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
Charakteristika vzdělávacího oboru Seminář z matematiky
Obsahové, organizační a časové vymezení Charakteristika vzdělávacího oboru Seminář z matematiky a) Obsahové vymezení Předmět seminář z matematiky je volitelný předmět, který úzce navazuje na vzdělávací
Matematika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia
Plán volitelného předmětu Matematika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět matematika, který je realizován prostřednictvím
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
MATE MATIKA. učebnice pro 2. stupeň ZŠ a víceletá gymnázia
MATE MATIKA učebnice pro. stupeň ZŠ a víceletá gymnázia OBSAH Zlomky 5 Rovnice Množiny 7 Jazyk písmen II 7 Rodina Mnohoúhelníky 50 Trojúhelník I Prvočísla I 5 Záporná čísla 7 Mocniny 55 Dělitelnost 0
Úlohy klauzurní části školního kola kategorie A
63 ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1 Dokažte, že pro každé celé číslo n 3 je n-místné číslo s dekadickým zápisem druhou mocninou některého celého čísla 1 1 8
INTERAKTIVNÍ TABULE A MATEMATICKÝ SOFTWARE GEOGEBRA PŘI VÝUCE MATEMATIKY V ANGLICKÉM JAZYCE
INTERAKTIVNÍ TABULE A MATEMATICKÝ SOFTWARE GEOGEBRA PŘI VÝUCE MATEMATIKY V ANGLICKÉM JAZYCE Olga Komínková Základní škola Velká Bíteš kominkova.olga@zsbites.cz Abstrakt: Příspěvek se zabývá možnostmi využití
MNOŽINY BODŮ. Základní informace o materiálu
MNOŽINY BODŮ S množinami bodů se žáci středních škol poprvé setkávají v tematickém celku Planimetrie. Pro potřeby konstrukční geometrie se zpravidla učí postup vlastní konstrukce dané množiny, aniž přesně
1.4.7 Trojúhelník. Předpoklady:
1.4.7 Trojúhelník Předpoklady: 010406 Př. 1: Narýsuj tři body,,, které neleží na přímce. Narýsuj všechny úsečky určené těmito třemi body. Jaký útvar vznikne? Získali jsme trojúhelník. Jak přišel trojúhelník
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí
1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad
1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky