M - Pythagorova věta, Eukleidovy věty
|
|
- Vítězslav Šmíd
- před 6 lety
- Počet zobrazení:
Transkript
1 M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na
2 ± Pythagorova věta Pythagorova věta Věta: Obsah čtverce sestrojeného nad přeponou pravoúhlého trojúhelníka je roven součtu obsahů čtverců sestrojených nad oběma odvěsnami. Důkaz: Na základě Eukleidovy věty o odvěsně platí: a 2 = c. c a b 2 = c. c b Sečteme-li pravé i levé strany obou rovnic, dostáváme: a 2 + b 2 = c. c a + c. c b = c. (c a + c b) = c. c = c 2 Platí také věta obrácená: CBD Věta: Platí-li o stranách trojúhelníka ABC předpoklad, že c 2 = a 2 + b 2, pak jde o pravoúhlý trojúhelník s pravým úhlem při vrcholu C. Důkaz: Zvolme pravoúhlý trojúhelník A B C takový, aby při vrcholu C byl pravý úhel. Nechť jeho odvěsny jsou shodné se stranami AC a BC daného trojúhelníka ABC. Platí tedy: a = a b = b Pro přeponu trojúhelníka A B C platí Pythagorova věta: c 2 = a 2 + b 2 = a 2 + b 2 = c 2 Z toho vyplývá, že c = c Trojúhelník ABC je pak shodný s trojúhelníkem A B C (sss), proto i vnitřní úhel při vrcholu C (který je pravý) je roven vnitřnímu úhlu při vrcholu C. I ten je tedy pravý a to jsme měli dokázat. Ukázkové příklady: Příklad 1: Rozhodněte, zda trojúhelník daný třemi stranami o délkách 4 cm, 5 cm, 6 cm je pravoúhlý. Řešení: a = 4 cm b = 5 cm c = 6 cm c =? [cm] Podle Pythagorovy věty vypočteme pomocí předpokládaných odvěsen (tj. kratších stran) a, b délku pomyslné přepony c. Pokud bude platit c = c, pak je původní trojúhelník pravoúhlý. 2 c = a + b 2 = = 41 ¹ 6 Závěr tedy zní: Zadaný trojúhelník není pravoúhlý. 1 z 29
3 ± Pythagorova věta - procvičovací příklady ,4 m cm ,06 cm 7. 0,6 cm ,9 cm ,78 cm cm 2 2 z 29
4 m ± Eukleidovy věty Eukleidovy věty 1. Věta o výšce Pata výšky C rozdělí stranu c na dvě části: c a, c b. Tvrzení: Trojúhelník AC C je podobný s trojúhelníkem CC B. Důkaz je zřejmý podle věty uu, neboť oba trojúhelníky obsahují úhly alfa a beta. Pozn.: Dva úhly, které mají na sebe kolmá ramena, jsou shodné. Z podobnosti trojúhelníků vyplývá: v c b ca = v Þ v 2 = c. c a Rovněž by se dalo vyjádřit se stejným závěrem: v c a cb = v Þ v 2 = a b c. c b Vzniklý závěr nazýváme Eukleidovou větou o výšce a můžeme ji slovně vyjádřit následující větou: Obsah čtverce sestrojeného nad výškou pravoúhlého trojúhelníka je roven obsahu obdélníka, jehož stranami jsou úseky strany c. Každou větu je nutno dokázat - důkaz už byl ale vlastně proveden výše. 2. Věta o odvěsně 3 z 29
5 Trojúhelník AC C je podobný s trojúhelníkem ACB. Podobnost lze odůvodnit opět podle věty uu, neboť v obou trojúhelnících jsou opět úhly alfa i beta. Z podobnosti trojúhelníků vyplývá: c b b = Þ b 2 = cb c b c. Rovněž by se dalo vyjádřit: c a a = Þ a 2 = ca c a c. Vzniklé vzorce jsou matematickým vyjádřením Eukleidových vět o odvěsně. Protože každý pravoúhlý trojúhelník má dvě odvěsny, jsou vždy i dvě Eukleidovy věty o odvěsnách. Opět můžeme napsat matematickou větu: Obsah čtverce sestrojeného nad odvěsnou pravoúhlého trojúhelníka je roven obsahu obdélníka, jehož stranami jsou přepona a úsek přilehlý k dané odvěsně. Důkaz i této věty už byl vlastně proveden výše. Ukázkové příklady Příklad 1 - určení druhé odmocniny pomocí Eukleidovy věty o výšce: Pomocí Eukleidovy věty o výšce narýsujte úsečku o délce x = Ö10 Řešení: 1. Číslo pod odmocninou rozložíme na součin libovolných dvou činitelů - např Rovnost x = Ö10 upravíme do tvaru x 2 = 10, resp. x 2 = Zvolíme-li x = v, c a = 2, c b = 5, pak můžeme snadno použít větu o výšce. 4. Protože platí c a + c b = c, zjistíme, že přepona bude dlouhá = 7 5. Narýsujeme úsečku AB o délce Vyznačíme bod C a to tak, že je vzdálen od bodu A o délku Najdeme střed úsečky AB a uděláme půlkružnici k s tímto středem a poloměrem odpovídajícím polovině úsečky AB. 8. V bodě C vstyčíme kolmici, její průsečík s kruhovým obloukem označíme X. 9. Délka úsečky C X pak odpovídá hledané x = Ö10 Příklad 2 - určení druhé odmocniny pomocí Eukleidovy věty o odvěsně: 4 z 29
6 Pomocí Eukleidovy věty o odvěsně narýsujte úsečku o délce x = Ö10 Řešení: 1. Číslo pod odmocninou rozložíme na součin libovolných dvou činitelů - např Rovnost x = Ö10 upravíme do tvaru x 2 = 10, resp. x 2 = Zvolíme-li x = a, c a = 2, c = 5, pak můžeme snadno použít větu o odvěsně a. 4. Narýsujeme úsečku AB o délce Vyznačíme bod C a to tak, že je vzdálen od bodu B o délku Najdeme střed úsečky AB a uděláme půlkružnici k s tímto středem a poloměrem odpovídajícím polovině úsečky AB. 7. V bodě C vstyčíme kolmici, její průsečík s kruhovým obloukem označíme X. 8. Délka úsečky XB pak odpovídá hledané x = Ö10 ± Eukleidovy věty - procvičovací příklady 1. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö22. Kontrolu správnosti 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö17. Kontrolu správnosti 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö18. Kontrolu správnosti 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö19. Kontrolu správnosti 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö28. Kontrolu správnosti 5, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö13. Kontrolu správnosti 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö13. Kontrolu správnosti 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö11. Kontrolu správnosti 3, z 29
7 9. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö21. Kontrolu správnosti 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö22. Kontrolu správnosti 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö14. Kontrolu správnosti 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö11. Kontrolu správnosti 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö18. Kontrolu správnosti 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö12. Kontrolu správnosti 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö19. Kontrolu správnosti 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö10. Kontrolu správnosti 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö23. Kontrolu správnosti 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö15. Kontrolu správnosti 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö21. Kontrolu správnosti 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö8. Kontrolu správnosti 2, z 29
8 ± Střední geometrická úměrná a čtvrtá geometrická úměrná Střední geometrická úměrná Vraťme se zpět k Eukleidově větě o výšce: v 2 = c a. c b neboli v = c a. c b Výška v pravoúhlém trojúhelníku je střední geometrickou úměrnou obou úseků. Eukleidovy věty proto využíváme ke konstrukci algebraických výrazů - zejména odmocnin. Příklad 1: Je dán kruh o poloměru r. Rozdělte jej kružnicí s ním soustřednou na dvě části, jejichž obsahy se sobě rovnají. Řešení: Označme poloměr zadaného kruhu r a poloměr kledané soustředné kružnice r 1. Pak má platit: 2 2 r r 1 = 2 r r 1 =. r 2 Hledaný poloměr je tedy střední geometrickou úměrnou Čtvrtá geometrická úměrná Platí-li pro čtyři úsečky o délkách a, b, c, x vztah a = b c x pak úsečka x je čtvrtou geometrickou úměrnou úseček a, b, c v tomto pořadí. Příklad 2: Narýsujte čtvrtou geometrickou úměrnou úseček 3 cm, 5 cm, 2Ö2 cm Řešení: Ze zadání musí platit vztah: 7 z 29
9 3 = x Příklad 3: Narýsujte úsečku, která vyhovuje vztahu: x = a b 2 Řešení: Zadaný vztah přepíšeme do tvaru x = a neboli b = a a b a x ± Střední geometrická úměrná a čtvrtá geometrická úměrná - procvičovací příklady 1. Narýsujte úsečku délky x = (abc)/d 2, kde a, b, c, d jsou velikosti daných úseček Pomocná úsečka y je čtvrtou geometrickou úměrnou úseček b, a, d. Úsečka x je pak čtvrtou geometrickou úměrnou úseček y, a, d. 8 z 29
10 2. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö19. Kontrolu správnosti 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö13. Kontrolu správnosti 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö23. Kontrolu správnosti 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö18. Kontrolu správnosti 4, Nechť a, b, c jsou délky tří daných úseček. Sestrojte čtvrtou úsečku délky x, která vyhovuje rovnici x = bc/a Úsečka x je čtvrtou geometrickou úměrnou úseček a, c, b Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö8. Kontrolu správnosti 2, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö10. Kontrolu správnosti 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö11. Kontrolu správnosti 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö22. Kontrolu správnosti 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö21. Kontrolu správnosti 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö28. Kontrolu správnosti 5, ± Výpočty rovinných útvarů - jednodušší příklady Výpočty rovinných útvarů 9 z 29
11 Tato kapitola obsahuje řešení příkladů s využitím všech teoretických vlastností, se kterými jsme se seznámili v předcházejících kapitolách z planimetrie. Převážnou většinu příkladů budeme vždy řešit nejprve obecně, pak teprve dosadíme číselné hodnoty a na kalkulačce spočítáme výsledek, který vhodně zaokrouhlíme. Obecné řešení považujeme za hotové tehdy, obsahuje-li vzorec pouze proměnné, které máme v zápisu příkladu a výraz už nelze dále zjednodušit. ± Výpočty rovinných útvarů - procvičovací příklady ,8 m , cm 2 10 z 29
12 ,075 cm cm cm ,7 cm 2 11 z 29
13 cm ,18 cm krát / ,1 % m ,35 m 12 z 29
14 a = 110, b = 70, c = 60, d = 50, e = 60, f = 70, g = 60, h = ,, m 2 ; 160 m z 29
15 krát ABD řešení: 10,5 cm; 1,5 cm o = 24 cm; S = 41,6 cm obdélníků 14 z 29
16 Kč ,9 % dlaždic cm trojúhelníků ,2 m ,, 15 z 29
17 cm ,8 % v = 6,06 cm ABD řešení: 16 z 29
18 ,5 cm cm b) z 29
19 Zmenšení obsahu o 20 % Zmenšení obvodu o 11,11 % ,3 cm Ne m ,14 cm , resp z 29
20 ,, cm ,08 m 2, 800 cm cm BC = 10 cm, obsah je 54 cm Oba obsahy jsou shodné 19 z 29
21 Poloměr kružnice opsané: 4,62 cm Poloměr kružnice vepsané: 2,31 cm 60,5 % m , 2 m AF = 5 cm, BC = 1 cm z 29
22 Není zavlažováno 61,81 m 2, třetí strana pole je 33,94 m z 29
23 ,74 cm ,25 cm cm cm ,5 ha z 29
24 v = 4,33 cm ,32 cm Čtverec má větší obsah než obdélník ,8 cm ,4 m cm ,7 m cm 2 23 z 29
25 ,6 dm Tupoúhlý ,9 cm z 29
26 cm 2 26 cm m / m m 2 25 z 29
27 mm cm 2 26 z 29
28 cm cm cm m 27 z 29
29 Nemohou m 28 z 29
30 z 29
31 Obsah Pythagorova věta 1 Pythagorova věta - procvičovací příklady 2 Eukleidovy věty 3 Eukleidovy věty - procvičovací příklady 5 Střední geometrická úměrná a čtvrtá geometrická úměrná 7 Střední geometrická úměrná a čtvrtá geometrická úměrná - procvičovací příklady 8 Výpočty rovinných útvarů - jednodušší příklady 9 Výpočty rovinných útvarů - procvičovací příklady :39:51 Vytištěno v programu dosystem - EduBase (
M - Planimetrie - řešení úloh
M - Planimetrie - řešení úloh Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn
M - Příprava na 9. zápočtový test
M - Příprava na 9. zápočtový test Určeno pro studenty dálkového studia. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
M - Planimetrie pro studijní obory
M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl
M - Příprava na 2. čtvrtletní písemnou práci
M - Příprava na. čtvrtletní písemnou práci Určeno pro třídu ODK. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na
A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.
PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie
Planimetrie pro studijní obory
Variace 1 Planimetrie pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Planimetrie Planimetrie
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
Rozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
M - Příprava na 3. čtvrtletní písemnou práci
M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
Syntetická geometrie I
Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna
16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.
Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky
8 Podobná (ekviformní) zobrazení v rovině
Typeset by LATEX2ε 1 8 Podobná (ekviformní) zobrazení v rovině 8.1 Stejnolehlost (homotetie) v rovině Definice 8.1.1. Nechť jsou dány 3 různé kolineární body A, B, C. Dělicím poměrem λ = (ABC) rozumíme
M - Příprava na 1. čtvrtletku pro třídu 4ODK
M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl
Užití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
M - Řešení pravoúhlého trojúhelníka
M - Řešení pravoúhlého trojúhelníka Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument byl
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
M - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Opakování ZŠ - Matematika - část geometrie - konstrukce
Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )
Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina
Pythagorova věta
.8.19 Pythagorova věta Předpoklady: 00801 Pedagogická poznámka: Z následujícího příkladu rýsuje každý žák pouze jeden bod podle toho, v jakém sedí oddělení. Př. 1: Narýsuj pravoúhlý trojúhelník: a) ABC:
5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
M - Příprava na 12. zápočtový test
M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
9. Planimetrie 1 bod
9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ
4.3.2 Koeficient podobnosti
4.. Koeficient podobnosti Předpoklady: 04001 Př. 1: Která z následujících tvrzení jsou správná? a) Každé dvě úsečky jsou podobné. b) Každé dva pravoúhlé trojúhelníky jsou podobné. c) Každé dva rovnostranné
Syntetická geometrie I
Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní
Úlohy krajského kola kategorie C
6. ročník matematické olympiády Úlohy krajského kola kategorie C. Pro libovolná reálná čísla x, y, z taková, že x < y < z, dokažte nerovnost x 2 y 2 + z 2 > (x y + z) 2. 2. Honza má tři kartičky, na každé
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny
Úlohy domácí části I. kola kategorie C
63. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete, jaké nejmenší hodnoty může nabýt výraz V = (a b) + (b c) + (c a), splňují-li reálná čísla a, b, c dvojici podmínek a +
- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)
6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak
Test Zkušební přijímací zkoušky
Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)
Obrázek 101: Podobné útvary
14 Podobná zobrazení Obrázek 101: Podobné útvary Definice 10. [Podobné zobrazení] Geometrické zobrazení f se nazývá podobné zobrazení, jestliže existuje kladné reálné číslo k tak, že pro každé dva body
SOUŘADNICE BODU, VZDÁLENOST BODŮ
Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose
( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )
6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice
Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.
8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových
Úlohy klauzurní části školního kola kategorie A
62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník
Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky
M - Kvadratické rovnice
M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
z přímek a kružnic 35. Čtverec s danou stranou: 1. Oblouky A-B, B-A (přímka CED); 2. Oblouk E-AB (F); 3. Přímky AF, BF a vzniklé průsečíky
ČTVERCE A KOSOčTVERCE z přímek a kružnic Jednoduché čtyřúhelníkové konstrukce se dají zvládnout snadno. Abyste sestrojili kružnici opsanou čtverci nebo obdélníku, nejprve zakreslete úhlopříčky a pak narýsujte
M - Příprava na 4. čtvrtletku - třídy 1P, 1VK.
M - Příprava na 4. čtvrtletku - třídy 1P, 1VK. Učebnice určená pro přípravu na 4. čtvrtletní písemnou práci. Obsahuje učivo března až června. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a
Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů
Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst
Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l
Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Baudhayana (kolem 800 př.n.l) Pythagoras ze Sámu (asi 580 př.n.l asi 500 př.n.l) Motivace: Tato věta mě zaujala, protože se o ní
CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání
METODICKÉ LISTY Z MATEMATIKY pro gmnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:
CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 14 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST 1 bod 7x 11 1 Určete hodnotu výrazu pro x = 27. 11 7x 32 2 Aritmetický průměr
DIDAKTIKA MATEMATIKY
DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body
Syntetická geometrie I
Kruhová inverze Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Sférická inverze Autoportrét v kulovém zrcadle M.C.Escher, 1935 Pozor! jen pro ilustraci, inverze a zrcadlení se značně liší Kruhová
PLANIMETRIE úvodní pojmy
PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést
Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/6.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Nestandardní aplikační úlohy a problémy Gradovaný řetězec úloh Téma: Výrazy s proměnnou / Obsah
Syntetická geometrie II
Mnohoúhelníky Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Čtyřúhelníky Definice (Čtyřúhelník) Jsou dány čtyři body A, B, C, D v rovině, z nichž žádné tři nejsou kolineární. Čtyřúhelník ABCD
v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.
Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
p ACD = 90, AC = 7,5 cm, CD = 12,5 cm
Úloha Je dán pravoúhlý trojúhelník ACD s pravým úhlem při vrcholu C, AC = 7,5 cm, CD =,5 cm. Na přímce CD určete bod B tak, aby AB = BD Řešení: Úlohu vyřešíme nejprve geometrickou konstrukcí. a) Z rozboru
Úlohy domácí části I. kola kategorie B
6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Mezi všemi desetimístnými čísly dělitelnými jedenácti, v nichž se žádná číslice neopakuje, najděte nejmenší a největší. Řešení. Uvažovaná
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 12 19 9:02 Kontrukční úlohy Výsledkem
Úlohy krajského kola kategorie A
62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,
Úlohy klauzurní části školního kola kategorie A
63 ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1 Dokažte, že pro každé celé číslo n 3 je n-místné číslo s dekadickým zápisem druhou mocninou některého celého čísla 1 1 8
prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného
Elipsa Výklad efinice a ohniskové vlastnosti prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného řezu na rotační kuželové ploše, jestliže řezná rovina není kolmá k ose
PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.
Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ
Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1
1 of 9 20. 1. 2014 12:05 Matematická olympiáda - 48. ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7 Zadání úloh Z5 II 1 Do prostředního kroužku je možné zapsat pouze čísla 8
Obsahy. Trojúhelník = + + 2
Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční
n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram
4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme
od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem
Kružnice Kružnice je množina všech bodů roviny, které mají od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem je průměr kružnice.
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Počítání v planimetrii Michal Kenny Rolínek
Počítání v planimetrii Michal Kenny Rolínek Cílem této přednášky je obohatit vaše znalosti z planimetrie o nové metody, založené na algebraickém přístupu. Nebudeme ovšem sáhodlouze upravovat obrovskévýrazy,jakbysemohlozdát.naopaksiukážemepříklady,vnichžnástrocha
Návody k domácí části I. kola kategorie B
Návody k domácí části I. kola kategorie B 1. Najděte všechna osmimístná čísla taková, z nichž po vyškrtnutí některé čtveřice sousedních číslic dostaneme čtyřmístné číslo, které je 2 019krát menší. (Pavel
Úlohy krajského kola kategorie C
67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =
Návody k domácí části I. kola kategorie C
Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,
CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik
TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající
PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PODOBNÁ
PYTHAGOROVA VĚTA, EUKLIDOVY VĚTY
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PYTHAGOROVA
pro každé i. Proto je takových čísel m právě N ai 1 +. k k p
KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,
Úlohy domácího kola kategorie B
50. ročník Matematické olympiády Úlohy domácího kola kategorie B 1. Řešte v oboru kladných čísel soustavu rovnic 3x + y = 598,6, x + y = 73,4, v níž x a y označují po řadě čísla x a y zaokrouhlená na desítky.
PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04
PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometire Gradovaný řetězec úloh Téma: obsahy a obvody mnohoúhelníků, grafy funkcí s absolutní
Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)
Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Zajímavé matematické úlohy
Poděkování. Tento článek vznikl v rámci projektu SVV 2014-260105. Výzkum byl podpořen Grantovou agenturou Univerzity Karlovy v Praze (projekt č. 1250213). L i t e r a t u r a [1] Hejný, M. a kol.: Teória
CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické
8. ročník 6. Podobnost. Geometrické funkce v pravoúhlém trojúhelníku 6. Podobnost. Goniometrické funkce v pravoúhlém trojúhelníku
6. Podobnost. Goniometrické funkce v pravoúhlém trojúhelníku 6.1. Podobnost geometrických útvarů. Podobností ( podobným zobrazením ) nazýváme takové geometrické zobrazení, je-li každému bodu X přiřazen