METABOLISMUS SACHARIDŮ
|
|
- Radek Čermák
- před 8 lety
- Počet zobrazení:
Transkript
1 METABLISMUS SAHARIDŮ
2 GLUKNEGENEZE
3 GLUKNEGENEZE entrální úloha glukosy Palivo Prekursor strukturních sacharidů a jiných molekul Syntéza glukosy z necukerných prekurzorů Laktát Aminokyseliny (uhlíkatý řetězec glukogenních aminokyselin při hladovění, hlavní zastoupení přitom mají alanin a glutamin) Meziprodukty citrátového cyklu Glycerol Prekursory pro biosyntézu glukosy nemohou být AK, které nelze převést na oxalacetát (leucin, lysin) Mastné kyseliny u živočichů (u rostlin tzv. glyoxalátový cyklus produkce oxalacetátu z acetyl-oa)
4 GLUKNEGENEZE Hlavním místem glukoneogeneze jsou játra, malé množství v ledvinách, něco málo v mozku, kosterních svalech a srdečním svalu Denní spotřeba glukosy mozkem u dospělého člověka je 120 g, což je většina spotřeby těla (160 g). V tělních tekutinách je 20 g glukosy a zásoba ve formě glykogenu je 190 g. Kapacita jater na uskladnění glykogenu umožňuje zásobování mozku glukosou asi na půlden elkově je v těle zásoba glukosy asi na jeden den
5 Glukoneogeneze není zvratem glykolýzy Ireversibilní kroky glykolýzy Glukoneogeneze využívá enzymy glykolysy s vyjímkou 3 enzymů Tři kroky jsou kritické (ireversibilní) při glykolýze: a) Hexokinasa (DG = - 33 kj/mol) b) Fosfofruktokinasa (D G = -22 kj/mol) c) Pyruvátkinasa (D G = - 17 kj/mol) Enzymy specifické pouze pro glukoneogenezi se syntetizují ve chvíli, kdy jsou potřeba. Jedná se tedy o inducibilní enzymy. Jejich syntézu aktivují například glukagon, nebo kortisol.
6 Srovnání glykolýzy a glukoneogeneze I Glukosa P i Glukosa-6-fosfatasa H 2 Glukosa-6-fosfát ATP Hexokinasa ADP P i Fruktosabisfosfatasa Fosfoglukosaisomerasa Fruktosa-6-fosfát ATP H ADP 2 Fruktosa-1,6-bisfosfát Aldolasa Fosfofruktokinasa Dihydroxyacetonfosfát Triosafosfátisomerasa Glyceraldehyd-3-fosfát
7 Srovnání glykolýzy a glukoneogeneze II Dihydroxyacetonfosfát Triosafosfátisomerasa Glyceraldehyd-3-fosfát NAD + + P i NAD + + P i Glyceraldehyd-3-fosfátdehydrogenasa NADH + H + NADH + H + 1,3-Bisfosfoglycerát ADP ATP Fosfoglycerátkinasa ATP ADP 3-Fosfoglycerát Fosfoglycerátmutasa 2-Fosfoglycerát Enolasa 2 + GDP Fosfoenolpyruvátkarboxykinasa GTP Fosfoenolpyruvát ADP Pyruvátkinasa ATP xaloacetát Pyruvát P i + ADP ATP + 2 Pyruvátkarboxylasa
8 Srovnání glykolýzy a glukoneogeneze
9 Tři klíčové kroky glykolýzy a glukoneogeneze s vyznačením změn Gibbsovy energie v kj.mol -1
10 Karboxylace pyruvátu Překonání prvního ireversibilního kroku Anaplerotická (doplňující) reakce pro cyklus trikarboxylových kyselin Probíhá v matrix mitochondrie probíhá v cytosolu P 3 2- H 3 - Pyruvátkarboxylasa - H 2 - PEPK H 2 - Pyruvát H ATP ADP + P GTP i GDP + xaloacetát 2 Fosfoenolpyruvát Pyruvátkarboxylasa a fosfoenolpyruvátkarboxykinasa (PEPK) Pyruvátkarboxylasa je mitochondriální enzym, zatímco ostatní enzymy glukoneogeneze jsou cytoplasmatické. PEPK lokalizace je druhově specifická Játra myší a krys cytosol Játra holuba a králíka mitochondrie Morče a člověk rovnoměrně v cytosolu a v mitochondriích (PEP)
11 Karboxylace pyruvátu Karboxybiotinylpyruvátkarboxylasa Biotin jako prosthetická skupina, tetramerní enzym, dva reakční kroky Biotin je vázán na koncovou aminoskupinu Lys pyruvátkarboxylasy - N NH S (H 2 ) 4 Karboxybiotinyl-enzym NH (H 2 ) 4 H NH Biotin - přenašeč 2 Postranní řetězec lysinu
12 1. Mechanismus tvorby karboxybiotinu reakcí hydrogenuhličitanu s ATP Adenosin P P P H ADP H P - - ATP Karboxyfosfát P i Biotinyl-enzym - N NH + HN NH S (H 2 ) 4 NH (H 2 ) 4 E S (H 2 ) 4 NH (H 2 ) 4 E Karboxybiotinyl-enzym Biotinyl-enzym
13 2. Reakce karboxybiotinu s pyruvátem za tvorby oxaloacetátu přes enolformu pyruvátu jako meziproduktu (matrix) - - H 2 + N H Pyruvát NH - H 2 + H N - NH Biotinyl-enzym HN NH - - Enolforma pyruvátu + H 2 - H 2 Karboxybiotinyl-enzym - xaloacetát
14 Reakce oxaloacetátu s GTP za katalýzy fosfoenolpyruvátkarboxykinasy P H P P - P - Guanosin - GDP + 2 PEPK H 2 - xaloacetát GTP Fosfoenolpyruvát (PEP) Reakce probíhá jen za přítomnosti acetyloa, který se na pyruvátkarboxylasu váže AcetyloA allostericky aktivuje pyruvátkarboxylasu - signalizace zvýšené potřeby oxalacetátu
15 Transport metabolitů mezi mitochondrií a cytosolem Malát - aspartátový člunek (shutle) - srdeční sval a játra Univerzální člunek - směr toku elektronů závisí na NADH / NAD + H - H ytosol Vnitřní mitochondrionální membrána Mitochondrion H - H H 2 - NAD + Malát Malát NAD + H 2 - Malátdehydrogenasa NADH + H + - H 2 - Aminokyselina Aspartátaminotransferasa xaloacetát Dráha 1 Dráha 2 xaloacetát Malátdehydrogenasa NADH + H + - H 2 - Aminokyselina Aspartátaminotransferasa -Ketokyselina - Aspartát Aspartát -Ketokyselina - + H 3 N H + H 3 N H H 2 - H 2 - Glukoneogeneze PEP PEP
16 Další dva ireversibilní kroky Převedení fruktosa-1,6-bisfosfátu na fruktosa-6-fosfát Fruktosa-1,6-bisfosfát + H 2 Fruktosa-6-fosfát + P i Allosterický enzym: Fruktosa-1,6-bisfosfatasa aktivován citrátem inhibován fruktosa-2,6-bisfosfátem a AMP Glukosa-6-fosfát tvorba volné glukosy Ve většině tkání končí glukoneogeneze na tomto stupni (syntéza glykogenu atd.) Tvorba volné glukosy vyžaduje regulaci enzymu glukosa-6- fosfatasy Enzym je přítomen jen ve tkáních, které udržují fyziologickou hladinu glukosy v krvi játra a částečně ledviny
17 Tvorba volné glukosy v dutinkách endoplasmatického retikula (ER) působením glukosa-6-fosfatasy T1 transportuje G-6-P do ER, T2 a T3 transportují Pi a glukosu zpět do cytosolu Glukosa-6-fosfatasa je stabilizována a 2+ -vazebným proteinem (SP)
18 Glukoneogeneze z glycerolu Glycerol získaný při hydrolýze triacylglycerolů se může použít jako substrát pro glukoneogenezi Prvním krokem je jeho fosforylace na glycerol-3-p pomocí glycerolkinasy. Následuje jeho dehydrogenace na dihydroxyaceton-p katalyzovaná glyceraldehyd-3-fosfátdehydrogenasou, čímž vzniká meziprodukt glukoneogeneze. H H 2 H H Glycerolkinasa H H 2 H H Glycerol-3-fosfátdehydrogenasa H 2 H H 2 H ATP ADP H 2 P 3 2- NAD + NADH + H + H 2 P 3 2- Glycerol Glycerol-3-fosfát Dihydroxyacetonfosfát
19 Glycerol-3-fosfátový člunek Reoxidace NADH z glykolýzy za aerobních podmínek. Typické pro intenzivně pracující sval a nervové buňky Enzym je cytosolární glycerol-3-fosfátdehydrogenasa Dochází k přenosu vodíkových atomů z NADH + H+ na FAD za tvorby FADH 2, vstupuje do dýchacího řetězce místo NADH NADH + H + NAD + H 2 H ytosolická glycerol-3-fosfát dehydrogenasa H 2 H H H H 2 P 3 2- H 2 P 3 2- Dihydroxyacetonfosfát Glycerol-3-fosfát ytosol Mitochondrionální glycerol-3-fosfát dehydrogenasa E-FADH 2 E-FAD QH 2 Q Matrix
20 Glykolýza x glukoneogenese
21 Glykolýza x glukoneogenese
22 Porovnání energetické náročnosti glykolýzy a glukoneogenese Glykolýza glukosa + 2NAD + + 2ADP + 2P i 2pyruvát + 2NADH + 4 H + + 2ATP + 2H 2 Glukoneogenéze 2pyruvát + 2NADH + 4 H + + 4ATP + 2GTP + 6H 2 glukosa + 2NAD + + 4ADP + 2GDP + 6P i Na syntézu glukosy je spotřebováno 6 nukleosidtrifosfátů Energeticky nevýhodnou (endergonní) reakci pohání hydrolýza ATP a GTP
23 Reciproká regulace glykolýzy a glukoneogeneze Glukoneogeneze a glykolýza jsou dva protichůdné pochody ideální regulace = jeden pochod aktivní a druhý neaktivní Množství a aktivity různých enzymů obou drah jsou pod kontrolou a proto nejsou obě dráhy současně vysoce aktivní regulace dle potřeb organismu rychlost glykolýzy je také dána koncentrací glukosy rychlost glukoneogeneze koncentrací laktátu a dalších prekurzorů glukosy
24 Rovnováha mezi glykolýzou a glukoneogenezí v játrech vliv hladiny glukosy v krvi. Vysoká hladina glukosy syntéza glykogenu a aktivace glykolýzy a pyruvátdehydrogenasy (katalyzuje vznik acetyl-oa) pro biosyntézu MK a ukládání tuků Nízká hladina glukosy hladovění štěpení glykogenu a zvrat glykolýzy ve směru glukoneogenéze (využití produktů degradace proteinů)
25
26 Regulace přes fruktosa-2,6-bisfosfát Fruktosa-2,6-bisfosfát aktivuje fosfofruktokinasu a inhibuje fruktosa 1,6-bisfosfatasu!!! Při nízké hladině glukosy v krvi se z fruktosa-1,6-bisfosfátu uvolňuje fosfát za tvorby fruktosa-6-fosfátu. Fruktosa-6-fosfát se neváže jako aktivátor fosfofruktokinasy (váže se jen do aktivního místa).
27 Regulace přes fruktosa-2,6-bisfosfát Jakým způsobem je kontrolována koncentrace fruktosa-2,6- bisfosfátu??? Na kontrole hladiny fruktosa-2,6-bisfosfátu se podílejí dva enzymy. Fruktosa-2,6-bisfosfát je produktem reakce katalyzované fosfofruktokinasou 2 (PFK2). dštěpení fosfátu je katalyzované enzymem fruktosabisfosfatasa 2 (FBPasa2) ba enzymy jsou součástí jednoho proteinového řetězce o délce 55 kd bifunkční enzym!!!
28 Kontrolní mechanismus syntézy a odbourání fruktosa-2,6-bisfosfátu
29 Hormonální regulace glukoneogeneze při hladovění Nízká hladina glukosy v krvi (hladovění) Zvýšená sekrece glukagonu Zvýšená hladina [camp] Zvýšená rychlost fosforylace bifunkčního enzym Fosforylace bifunkčního enzymu proteinkinasou A, což má za následek aktivaci FBPasy2 a inhibici PFK2. Snižuje se hladina F-2,6-BP a zpomaluje se glykolýza. Inhibice fosfofruktokinasy a aktivace fruktosabisfosfatasy Zvýšená glukoneogeneze
30 Reciproká regulace glykolýzy a glukoneogeneze v játrech
31 Reciproká regulace glykolýzy a glukoneogeneze Řada enzymů je kontrolována hormonálně. Hormony ovlivňují expresi genů a regulují degradaci mrna. Insulin, signál sytosti, stimuluje expresi fosfofruktokinasy, pyruvátkinasy a bifunkčního enzymu, který vede k tvorbě a degradaci fruktosa-2,6-bisfosfátu. Glukagon, signál hladovění, inhibuje expresi těchto enzymů a stimuluje tvorbu fosfoenolpyruvátkarboxykinasy a fruktosa-1,6- bisfosfatasy. Kontrola přes transkripci je pomalá.
32 Úloha hormonů v regulaci metabolismu sacharidů
33 Substrátové cykly Dvojice reakcí jako jsou fosforylace fruktosa-6-fosfátu na fruktosa- 1,6-bisfosfát a jeho hydrolýza zpět na fruktosa-6-fosfát se nazývají SUBSTRÁTVÉ YKLY. bě nebývají současně plně aktivní. Přesto dochází často současně k oběma reakcím je to nedokonalost těchto reakcí cyklují tyto cykly se také nazývají JALVÉ (futile cycles). Jsou biologicky zajímavé. Jednou z jejich možných funkcí je zesílení metabolických signálů. Druhou možnou funkcí je produkce tepla hydrolýzou ATP. Příkladem je čmelák, který může za potravou již při 10 o. Je schopen dosáhnout potřebnou teplotu v hrudi současnou vysokou aktivitou fosfofruktokinasy a fruktosa- 1,6-bisfosfatasy. Hydrolýza ATP vytváří teplo. Tato bisfosfatasa není inhibována AMP!! To znamená, že enzym je určen k produkci tepla. Včela, která nemá v létacích svalech bisfosfatasu, nemůže při nízkých teplotách létat. U lidí existuje onemocnění maligní hypertermie, kdy dochází ke ztrátě kontroly, oba procesy probíhají současně plně a generují TEPL.
34 oriho cyklus Zdroj energie pro sval = ATP Pomalé (červené) svaly vznik ATP oxidační fosforylací, při vysoké zátěži možnost produkce laktátu v glykolýze Rychlé (bílé) svaly vznik ATP glykolýzou za vzniku laktátu Tvořící se pyruvát ve svalech při intenzivním cvičení se nestačí odbourat aerobně a pokračování glykolýzy závisí na dostupnosti NAD +. Tvoří se laktát. Laktát je transportován krví do jater a zde je resyntetizována glukoneogenezí glukosa, která putuje do svalů.
35 Anaerobní produkce ATP ve svalech
36 Glukosa-alaninový cyklus Mezi svalovými buňkami a játry. Poté, co pyruvát vznikne ve svalových buňkách, podléhá transaminaci za vzniku alaninu. Ten se uvolňuje do krve, která jej transportuje do jater, kde se alanin transaminací zpětně přeměňuje na pyruvát, jenž se může zapojit do glukoneogeneze. Vzniklá glukóza je přenesena krví do svalů a celý cyklus se uzavírá.
37 Alanin je druhým zdrojem uhlíku pro syntézu glukosy. Ve svalech je tvořen transaminací z pyruvátu, v játrech probíhá opačný proces. Alanin tak pomáhá udržovat rovnováhu dusíku v organismu. Aminotransferasová reakce alanin pyruvát Koenzymem je pyridoxal-5-fosfát (PALP). H H 3 - Aminotransferasa H 3 - NH 3 + -Ketokyselina Aminokyselina Alanin Pyruvát
38 Vzájemná interakce glykolýzy a glukoneogeneze na úrovni tělesných orgánů
Obecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Glykolýza a neoglukogenese z řečtiny glykos sladký, lysis uvolňování sled metabolických reakcí od glukosy přes fruktosa-1,6-bisfosfát
1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu
Test pro přijímací řízení magisterské studium Biochemie 2018 1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu
Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
Propojení metabolických drah. Alice Skoumalová
Propojení metabolických drah Alice Skoumalová Metabolické stavy 1. Resorpční fáze po dobu vstřebávání živin z GIT (~ 2 h) glukóza je hlavní energetický zdroj 2. Postresorpční fáze mezi jídly (~ 2 h po
CZ.1.07/2.2.00/ Obecný metabolismu. Metabolismus glukosy, glykolýza, glukoneogeneze (3).
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismu. Metabolismus glukosy, glykolýza, glukoneogeneze (3). Prof. RNDr. Pavel Peč, CSc.
pátek, 24. července 15 GLYKOLÝZA
pátek,. července 15 GLYKLÝZ sacharosa threalosa laktosa sacharasa threlasa laktasa D-glukosa D-fruktosa T T hexokinasa T hexokinasa glykogen - škrob fosforylasa D-galaktosa UD-galaktosa UD-glukosa fruktokinasa
Glykolýza Glukoneogeneze Regulace. Alice Skoumalová
Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza
Metabolismus sacharidů
Základy biochemie KB / B Metabolismus sacharidů Inovace studia biochemie prostřednictvím e-learningu Z.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Metabolismus sacharidů
Základy biochemie KB / B Metabolismus sacharidů Inovace studia biochemie prostřednictvím e-learningu Z.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K
Test pro přijímací řízení magisterské studium Biochemie 2017 1. Napište vzorce aminokyselin Q a K Dále zakroužkujte správné tvrzení (pouze jedna správná odpověď) 2. Enzym tyrozinkinasu řadíme do třídy
Odbourávání a syntéza glukózy
Odbourávání a syntéza glukózy Josef Fontana EB - 54 Obsah přednášky Glukóza význam glukózy pro buňku, glykémie role glukózy v metabolismu transport glukózy přes buněčné membrány enzymy fosforylující a
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy Obtížnost A Vyjmenujte kofaktory, které využívá multienzymový komplex pyruvátdehydrogenasy; které z nich řadíme mezi koenzymy
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.
Vzdělávací materiál vytvořený v projektu VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
Přehled energetického metabolismu
Přehled energetického metabolismu Josef Fontana EB 40 Obsah přednášky Důležité termíny energetického metabolismu Základní schéma energetického metabolismu Hlavní metabolické dráhy energetického metabolismu
Katabolismus - jak budeme postupovat
Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův
METABOLISMUS SACHARIDŮ
METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve
Intermediární metabolismus. Vladimíra Kvasnicová
Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,
Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech
Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.
OBECNÝ METABOLISMUS SACHARIDY I
OBECNÝ METABOLISMUS SACHARIDY I Sacharidy Heterotrofní organismy (např. savci) sacharidy jsou hlavní živiny Autotrofní organizmy (např. rostliny) fixace C vedoucí k produkci sacharidů proces fotosyntézy
Regulace metabolických drah na úrovni buňky
Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
Metabolismus krok za krokem - volitelný předmět -
Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus
CZ.1.07/2.2.00/ Obecný metabolismu. Cyklus trikarboxylových kyselin (citrátový cyklus, Krebsův cyklus) (8).
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii Z.1.07/2.2.00/28.0171 becný metabolismu. yklus trikarboxylových kyselin (citrátový cyklus, Krebsův cyklus) (8). Prof. RNDr.
Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie
Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje
sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty
sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty triviální (glukóza, fruktóza ) vědecké (α-d-glukosa) organické látky nezbytné pro život hlavní zdroj energie
ANABOLISMUS SACHARIDŮ
zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE
Citrátový cyklus. Tomáš Kučera.
itrátový cyklus Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Schéma energetického
Integrace a regulace savčího energetického metabolismu
Základy biochemie KBC / BCH Integrace a regulace savčího energetického metabolismu Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským
POZNÁMKY K METABOLISMU SACHARIDŮ
POZNÁMKY K METABOLISMU SACHARIDŮ Prof.MUDr. Stanislav Štípek, DrSc. Ústav lékařské biochemie 1.LF UK v Praze Přehled hlavních metabolických cest KATABOLISMUS Glykolysa Glykogenolysa Pentosový cyklus Oxidace
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
AMPK AMP) Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze
AMPK (KINASA AKTIVOVANÁ AMP) Tomáš Kuc era Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze 2013 AMPK PROTEINKINASA AKTIVOVANÁ AMP přítomna ve všech eukaryotních
Regulace metabolizmu lipidů
Regulace metabolizmu lipidů Principy regulace A) krátkodobé (odpověď s - min): Dostupnost substrátu Alosterické interakce Kovalentní modifikace (fosforylace/defosforylace) B) Dlouhodobé (odpověď hod -
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Citrátový a glyoxylátový cyklus Buněčná respirace I. Fáze Energeticky bohaté látky jako glukosa, mastné kyseliny a některé aminokyseliny
Metabolismus mikroorganismů
Metabolismus mikroorganismů Metabolismus organismů Souvisí s metabolismem polysacharidů, bílkovin, nukleových kyselin a lipidů Cytoplazma, mitochondrie (matrix, membrána) H 3 PO 4 Polysacharidy Pentózový
Didaktické testy z biochemie 2
Didaktické testy z biochemie 2 Metabolismus Milada Roštejnská Helena Klímová br. 1. Schéma metabolismu Zažívací trubice Sacharidy Bílkoviny Lipidy Ukládány jako glykogen v játrech Ukládány Ukládány jako
Biochemie jater. Eva Samcová
Biochemie jater Eva Samcová Orgánová specializace Hlavní metabolické dráhy pro glukosu, mastné kyseliny a aminokyseliny jsou soustředěné okolo pyruvátu a acetyl-coa. Glukosa je primárním palivem pro mozek
Odbourávání lipidů, ketolátky
dbourávání lipidů, ketolátky Josef Fontana EB - 56 bsah přednášky Energetický význam TAG Jednotlivé dráhy metabolismu lipidů lipidy jako zdroj energie degradace TAG v buňkách, β-oxidace MK tvorba a využití
CZ.1.07/2.2.00/ Obecný metabolismus. Energetický metabolismus (obecně) (1).
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 becný metabolismus Energetický metabolismus (obecně) (1). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,
Bp1252 Biochemie. #8 Metabolismus živin
Bp1252 Biochemie #8 Metabolismus živin Chemické reakce probíhající v organismu Katabolické reakce přeměna složitějších látek na jednoduché, jsou většinou exergonické. Anabolické reakce syntéza složitějších
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Metabolismus aminokyselin 2. Vladimíra Kvasnicová
Metabolismus aminokyselin 2 Vladimíra Kvasnicová Odbourávání AMK 1) odstranění aminodusíku z molekuly AMK 2) detoxikace uvolněné aminoskupiny 3) metabolismus uhlíkaté kostry AMK 7 produktů 7 degradačních
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová Vyberte esenciální aminokyseliny a) Asp, Glu b) Val, Leu, Ile c) Ala, Ser, Gly d) Phe, Trp Vyberte esenciální aminokyseliny a) Asp,
Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
Stanovení vybraných enzymů. Roman Kanďár
Stanovení vybraných enzymů Roman Kanďár Takže prvně malé opakování ENZYM Protein (RNA) s katalytickou aktivitou Protein (RNA) kofaktor (prosthetická skupina, koenzym) Jaký je vlastně rozdíl mezi prosthetickou
Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová
Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba
Integrace metabolických drah v organismu. Zdeňka Klusáčková
Integrace metabolických drah v organismu Zdeňka Klusáčková Hydrolýza a resorpce základních složek potravy Přehled hlavních metabolických drah Biochemie výživy A) resorpční fáze (přísun živin) glukóza hlavní
Metabolismus sacharidů
Metabolismus sacharidů Glukosa obsažená v celulose, škrobu a oligosacharidech nebo volná je nejrozšířenější organickou sloučeninou v přírodě. Pro chemotrofní organismy jsou sacharidy hlavní živinou, přičemž
CYKLUS TRIKARBOXYLOVÝCH KYSELIN A GLYOXYLÁTOVÝ CYKLUS
YKLUS TRIKARBXYLVÝ KYSELIN A GLYXYLÁTVÝ YKLUS BSA Základní charakteristika istorie Pyruvátdehydrogenasový komplex itátový cyklus dílčí reakce itátový cyklus výtěžek itátový cyklus regulace Anapleroticé
Štěpení lipidů. - potravou přijaté lipidy štěpí lipázy gastrointestinálního traktu
METABOLISMUS LIPIDŮ ODBOURÁVÁNÍ LIPIDŮ - z potravy nebo z tukových rezerv - hydrolytické štěpení esterových vazeb - vznik glycerolu a mastných kyselin - hydrolytické štěpení LIPÁZY (karboxylesterázy) -
Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa
8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika
11. Metabolismus lipidů
11. Metabolismus lipidů Obtížnost A Následující procesy a metabolické reakce, vedoucí ke zkrácení řetězce mastné kyseliny, vázané v triacylglycerolu, a vzniku acetyl-coa, seřaďte ve správném pořadí: a)
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Metabolismus lipidů - odbourávání. VY_32_INOVACE_Ch0212
Vzdělávací materiál vytvořený v projektu P VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie
fce jater: (chem. továrna, jako 1. dostává všechny látky vstřebané GIT) METABOLICKÁ (jsou metabolicky nejaktivnější tkání v těle)
JÁTRA ústřední orgán intermed. metabolismu, vysoká schopnost regenerace krevní oběh játry: (protéká 20% veškeré krve, 10-30% okysl.tep.krve, která zajišťuje výživu buněk, zbytek-portální krev) 1. funkční
Pentosový cyklus. osudy glykogenu. Eva Benešová
Pentosový cyklus a osudy glykogenu Eva Benešová Pentosový cyklus pentosafosfátová cesta, fosfoglukonátová cesta nebo hexosamonofosfátový zkrat Funkce: 1) výroba NADPH 2) výroba ribosa 5-fosfátu 3) zpracování
Repetitorium chemie 2016/2017. Metabolické dráhy František Škanta
Repetitorium chemie 2016/2017 Metabolické dráhy František Škanta Metabolické dráhy Primární metabolismus-trávení Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů
33.Krebsův cyklus. AZ Smart Marie Poštová
33.Krebsův cyklus AZ Smart Marie Poštová m.postova@gmail.com Metabolismus Metabolismus je souhrn chemických reakcí v organismu. Základní metabolické děje jsou: a) katabolické odbourávací (složité látky
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - katabolismus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - katabolismus Trávení, aktivace a transport tuků Oxidace mastných kyselin Ketonové látky Úvod Oxidace MK je centrální
Úvod do buněčného metabolismu Citrátový cyklus. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK
Úvod do buněčného metabolismu Citrátový cyklus Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1. LF UK METABOLISMUS = přeměna látek v organismu - má stránku chemickou (látkovou) - reakce anabolické
Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD
Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - anabolismus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - anabolismus LIPIDY Zásobárna energie Hlavní složka buněčných membrán Pigmenty (retinal, karoten), kofaktory (vitamin
Biosyntéza a metabolismus bílkovin
Bílkoviny Biosyntéza a metabolismus bílkovin lavní stavební materiál buněk a tkání Prakticky jediný zdroj dusíku pro heterotrofní organismy eexistují zásobní bílkoviny nutný dostatečný přísun v potravě
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Transport elektronů a oxidativní fosforylace Oxidativní fosforylace vs. fotofosforylace vyvrcholení katabolismu Všechny oxidační degradace
Diabetes mellitus. úplavice cukrová - heterogenní onemocnění působení inzulínu. Metabolismus glukosy. Insulin (5733 kda)
Diabetes mellitus úplavice cukrová - heterogenní onemocnění působení inzulínu ~ nedostatečná sekrece ~ chybějící odpověď buněk periferních tkání Metabolismus glukosy ze střeva jako játra 50 % glykogen
Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa
Konsultační hodina základy biochemie pro 1. ročník Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Přírodní látky 1 Co to je? Cukry (Sacharidy) Organické látky,
Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
Metabolismus lipidů. (pozn. o nerozpustnosti)
Metabolismus lipidů (pozn. o nerozpustnosti) Trávení lipidů Lipidy v potravě - většinou v hydrolyzovatelné podobě, především jako triacylglayceroly (TAG), fosfatidáty a sfingolipidy. V trávicím traktu
REGULACE ENZYMOVÉ AKTIVITY
REGULACE ENZYMOVÉ AKTIVITY Proč je nutno regulovat enzymovou aktivitu? (homeostasa) Řada úrovní: regulace množství přítomného enzymu (exprese = proteosynthesa, odbourávání) synthesa vhodného enzymu (isoenzymy)
Dýchací řetězec (DŘ)
Dýchací řetězec (DŘ) Vladimíra Kvasnicová animace na internetu: http://vcell.ndsu.nodak.edu/animations/etc/index.htm http://vcell.ndsu.nodak.edu/animations/atpgradient/index.htm http://www.wiley.com/college/pratt/0471393878/student/animations/oxidative_phosphorylation/index.html
Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Intermediární metabolizmus a energetická homeostáza
1 Intermediární metabolizmus a energetická homeostáza Biologické oxidace Dýchací řetězec a oxidativní fosforylace Krebsův cyklus Přehled intermediárního metabolizmu studuje změny energie provázející chemické
Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3
Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující
Tomáš Kuˇ. cera. Ústav lékaˇrské chemie a klinické biochemie 2. lékaˇrská fakulta, Univerzita Karlova v Praze.
BIOCHEMIE SVALU Tomáš Kuˇ cera tomas.kucera@lfmotol.cuni.cz Ústav lékaˇrské chemie a klinické biochemie 2. lékaˇrská fakulta, Univerzita Karlova v Praze 2014 STRUKTURA KOSTERNÍHO SVALU svazky svalových
METABOLISMUS MONOSACHARIDŮ
METABOLISMUS MONOSACHARIDŮ Metabolismus monosacharidů (zejména jejich katabolismus) je prakticky metabolismem glukosy. Ostatní monosacharidy z ní v případě potřeby vznikají, nebo jsou na ni několika reakcemi
Buněčný metabolismus. J. Vondráček
Buněčný metabolismus J. Vondráček Téma přednášky BUNĚČNÝ METABOLISMUS základní dráhy energetického metabolismu buňky a dynamická podstata jejich regulací glykolýza, citrátový cyklus a oxidativní fosforylace,
10. Metabolismus sacharidů
10. Metabolismus sacharidů Obtížnost A Vysvětlete rozdíly v následujících dvojicích pojmů: aldosa/ketosa; redukující/neredukující sacharid; škrob/glykogen; homopolysacharid/heteropolysacharid; amylosa/amylopektin.
Biosyntéza sacharidů 1
Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)
Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku?
Repetitorium chemie X. 2011/2012 Metabolické dráhy František Škanta Metabolické dráhy xidativní fosforylace xidace mastných kyselin 1. fosforylace 2. štěpení hexosy na dvě vzájemně převoditelné triosy
glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*
Prezentace navazuje na základní znalosti Biochemie, stavby a transportu přes y Doplňující prezentace: Proteiny, Sacharidy, Stavba, Membránový transport, Symboly označující animaci resp. video (dynamická
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních
- metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy a jejich životním prostředím
Otázka: Obecné rysy metabolismu Předmět: Chemie Přidal(a): Bára V. ZÁKLADY LÁTKOVÉHO A ENERGETICKÉHO METABOLISMU - metabolismus soubor chemických reakcí probíhajících v živých organismech a mezi organismy
B4, 2007/2008, I. Literák
B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované
DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal
DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,
Metabolismus. Source:
Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -
Energetika a metabolismus buňky
Předmět: KBB/BB1P Energetika a metabolismus buňky Cíl přednášky: seznámit posluchače s tím, jak buňky získávají energii k životu a jak s ní hospodaří Klíčová slova: energetika buňky, volná energie, enzymy,
Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy
Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba
Obecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 becný metabolismus. Metabolismus glykogenu (4). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie, Přírodovědecká
METABOLISMUS SACHARIDŮ
METABOLISMUS SACHARIDŮ GLUKOSA V KRVI Jedna z hlavních priorit metabolické regulace: Hladina glukosy v krvi nesmí poklesnout pod 3 mmol/l Hormonální regulace: insulin glukagon adrenalin kortisol ( snižuje
Metabolismus pentóz, glykogenu, fruktózy a galaktózy. Alice Skoumalová
Metabolismus pentóz, glykogenu, fruktózy a galaktózy Alice Skoumalová 1. Pentóza fosfátová dráha Přehledné schéma: Pentóza fosfátová dráha (PPP): Probíhá v cytozolu Všechny buňky Dvě části: 1) Oxidační
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus dusíkatých látek
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolismus dusíkatých látek Oxidace aminokyselin Podíl AK na metabolické E se silně liší dle organismu a jeho momentálních potřeb, např.
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
Efektivní adaptace začínajících učitelů na požadavky školské praxe
Mezipředmětová integrace tělesná výchova biologie chemie Biochemie pro učitele tělesné výchovy III.: aerobní metabolismus (průvodce studiem) Filip Neuls, Ph.D. Průvodce studiem Z pohledu tělesného zatížení
Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu
Metabolismus Obecné znaky metabolismu Získání a využití energie - bioenergetika Buněčné dýchání (glykolysa + CKC + oxidativní fosforylace) Biosynthesa sacharidů + fotosynthesa Metabolismus lipidů Metabolismus
Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz)
Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz) Biochemie Napsal uživatel Marie Havlová dne 8. Únor 2012-0:00. Sylabus předmětu Biochemie, Všeobecné lékařství, 2.
Vztahy v intermediárním
Vztahy v intermediárním metabolismu Eva Samcová Starve feed cycle Nejlepší způsob jak porozumět vztahům mezi jednotlivými metabolickými drahami a pochopit změny, které probíhají v časovém období po najedení,
Sylabus pro předmět Biochemie pro jakost
Sylabus pro předmět Biochemie pro jakost Kód předmětu: BCHJ Název v jazyce výuky: Biochemie pro Jakost Název česky: Biochemie pro Jakost Název anglicky: Biochemistry Počet přidělených ECTS kreditů: 6 Forma
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
9. Dýchací řetězec a oxidativní fosforylace. mitochondriální syntéza ATP a fotosyntéza
9. Dýchací řetězec a oxidativní fosforylace mitochondriální syntéza ATP a fotosyntéza CHEMIOSMOTICKÁ TEORIE SYNTÉZY ATP Heterotrofní organismy získávají hlavní podíl energie (cca 90%) uložené ve struktuře
Metabolismus aminokyselin. Vladimíra Kvasnicová
Metabolismus aminokyselin Vladimíra Kvasnicová Aminokyseliny aminokyseliny přijímáme v potravě ve formě proteinů: důležitá forma organicky vázaného dusíku, který tak může být v těle využit k syntéze dalších
Biochemie jater. Vladimíra Kvasnicová
Biochemie jater Vladimíra Kvasnicová Obrázek převzat z http://faculty.washington.edu/kepeter/119/images/liver_lobule_figure.jpg (duben 2007) Obrázek převzat z http://connection.lww.com/products/porth7e/documents/ch40/jpg/40_003.jpg