Odbourávání lipidů, ketolátky
|
|
- Iveta Moravcová
- před 8 lety
- Počet zobrazení:
Transkript
1 dbourávání lipidů, ketolátky Josef Fontana EB - 56
2 bsah přednášky Energetický význam TAG Jednotlivé dráhy metabolismu lipidů lipidy jako zdroj energie degradace TAG v buňkách, β-oxidace MK tvorba a využití ketolátek
3 Energetický význam TAG
4 Triacylglyceroly (TAG) Skladují velké množství chemické energie Výhodné pro skladování - 1g bezvodého TAG má 6 x více energie než 1g hydratovaného glykogenu Kompletní oxidací 1g MK se získá 38 kj, zatímco z 1g sacharidů či proteinů jen 17 kj
5 Triacylglyceroly (TAG) 70kg muž má kj v TAG, kj v proteinech (svaly), kj v glykogenu a 170 kj v glukóze (celková hmotnost TAG je kolem 11kg) Zásoby glykogenu a glukózy vystačí na jeden den, TAG na týdny Hlavní místo akumulace je cytoplasma adipocytů
6 Jednotlivé dráhy metabolismu lipidů Lipidy jako zdroj energie degradace TAG v buňkách, β-oxidace MK
7 Lipidy jako zdroj energie Využití lipidů probíhá ve třech stupních: 1) Mobilizace lipidů hydrolýza TAG na MK a glycerol a transport krví 2) Aktivace MK v cytosolu a jejich transport do matrix mitochondrií 3) β-oxidace: odbourávání MK na acetyl~oa, jenž vstupuje do Krebsova cyklu
8 Mobilizace lipidů Hormon senzitivní lipáza TAG 3 MK + glycerol MK se váží na sérový albumin Glycerol se využije v játrech Insulin inhibuje Aktivuje adrenalin, noradrenalin, glukagon
9 Přeměna glycerolu na meziprodukty glykolýzy H H 2 H H Glycerolkinasa H H 2 H H G H 2 H ATP ADP H 2 P 3 2- Glycerol L-Glycerol-3-fosfát H H 2 H H Glycerol-3-fosfátdehydrogenasa H 2 H H 2 P 3 2- NAD + NADH + H + H 2 P 3 2- L-Glycerol-3-fosfát Dihydroxyacetonfosfát
10 Průnik MK do buněk MK s krátkým řetězcem ( 12) - prostá difúze MK s delším řetězcem - různé transportní systémy v membráně usnadněná difúze: FATP (fatty acid transport protein) FAT/D36 (fatty acid translocase)
11 Aktivace mastných kyselin ytosol Zapojení MK do metabolismu Stálý koncentrační gradient MK Esterové navázání MK na HSoA: Acyl-oAsynthetasa (thiokinasa MK) MK + ATP + HS-oA acyl-oa + AMP + 2 P i
12 xidace mastných kyselin β-oxidace v matrix mitochondrie má majoritní význam Na membránách ER se vyskytují enzymy katalyzující ω- a α- oxidaci Řecká písmena určují uhlíkový atom, na kterém probíhají reakce
13 Vstup MK do matrix Acyl-oA prochází vnější mitochondriální membránou, ale ne vnitřní membránou MK opustí oa karnitin Karnitin Karnitin esterifikovaný MK Karnitinacyltransferasy (AT) - přenos MK mezi oa a karnitinem
14 Tvorba acylkarnitinu - AT I ytosolová strana vnější mitochondriální membrány Přenos acyl z HSoA na karnitin H 3 H H 3 + N H 2 H H 2 H 3 H 3 H 3 + N H 2 H H 2 H 3 carnitine R fatty acyl carnitine + R SoA arnitine Palmitoyl Transferase + HSoA
15 Karnitin acylkarnitin translokasa Karnitin Acyl-oA oa Acylkarnitin Vnitřní mitochondriální ytosol membrána Translokasa Matrix Výměna karnitinu za acylkarnitin Karnitin Acylkarnitin Acyl-oA oa
16 Karnitinacyltransferasa II Matrix mitochondrie Přenos MK z acylkarnitinu na HSoA Volný karnitin opouští matrix pomocí translokázy výměnou za nový acylkarnitin Acyl-oA je v matrix mitochondrie β-oxidace
17
18 Průběh β-oxidace MK Acyl~oA dehydrogenasa (prostetickou skupinou je FAD) tvorba trans-d 2 -enoyl oa Enoyl~oA hydratasa L-3-hydroxyacyl~oA dehydrogenasa (koenzymem je NAD + ) β-ketothiolasa
19 Acyl-oA dehydrogenasa R R H 2 H 2 FAD FADH 2 H 2 H H 2 Acyl-oA H S XIDAE S Trans- 2 -Enoyl-oA oa oa Vznik dvojné vazby mezi 2. (α) a 3. (β) uhlíkem Stereospecifická reakce - vzniká trans-enoyl-oa FAD - akceptor elektronů Různé dehydrogenázy pro: krátké MK (4-6 ) střední MK (6-10 ) dlouhé MK (12-18 )
20 Enoyl-oA hydratasa Hydratace trans dvojné vazby vytvořené v 1. kroku Vzniká hydroxylová skupina L-3- hydroxyacyl-oa R R H 2 H H 2 H H 2 H H H H HYDRATAE S Trans- 2 -Enoyl-oA S L-3-Hydroxyacyl-oA oa oa
21 Hydroxyacyl-oA dehydrogenasa xidace hydroxylové skupiny na třetím (β) na ketoskupinu R H H oa S H 2 H H L-3-Hydroxyacyl-oA NAD + H + + NADH XIDAE NAD + - akceptor elektronů R H 2 H H S oa 3-Ketoacyl-oA
22 β-ketothiolasa R HS H 2 S H H 3-Ketoacyl-oA oa THILÝZA oa Thiolytické štěpení SH skupina HSoA atakuje β-keto uhlík R H 2 Acyl-oA (zkrácený o 2 uhlíkové atomy) S oa + H H S H Acetyl-oA oa Vzniká Ac~oA a o dva uhlíky kratší acyl~oa
23 Jedna otočka β-oxidace β-oxidace je cyklický proces: acyl-oa + FAD + NAD + + HS-oA acyl-oa (o 2 kratší) + FADH 2 + NADH + H + + Ac-oA Meziprodukt (acyl-oa o 2 kratší) vstupuje do dalšího kola β-oxidace Většina MK má sudý počet - poslední otočka přemění butyryl-oa na 2 Ac-oA
24 Výtěžek kompletní oxidace palmitátu Palmitoyl~oA + 7 FAD + 7 NAD HSoA + 7 H 2 8 acetyl oa + 7 FADH NADH + 7 H + V dýchacím řetězci se získá z jednoho NADH 2,5 (3) ATP a z jednoho FADH 2 1,5 (2) ATP Sečteno: 7 x FADH 2 = 10, 5 (14) ATP 7 x NADH = 17, 5 (21) ATP xidace 8 AcoA v Krebsově cyklu = 80 (96) ATP Součet : 108 (131) ATP Spotřeba na aktivaci mastné kyseliny: 2 ATP Konečný součet : 106 (129) ATP
25 Regulace β-oxidace MK Při vstupu MK do MIT - na úrovni AT I Inhibuje malonyl~oa (meziprodukt tvorby MK) Princip: 1) syntéza MK probíhá v cytosolu, stejně jako reakce AT I 2) malonyl~oa vzniká při 1. reakci tvorby MK 3) cross regulace brání současnému průběhu syntézy i degradace MK
26 Mastné kyseliny s lichým počtem Vzniká propionyl-oa převeden na sukcinyl-oa zapojení do K Přeměna na AA glukoneogeneze i z MK se dá nasyntetizovat Glc MK s lichým počtem je v těle velmi málo
27 dbourávání nenasycených MK Většina nenasycených MK má cis konfiguraci dvojných vazeb Enoyl-oA-hydratasa vyžaduje jen trans izomery - převedení cis izomeru na trans pomocí isomerasy Pro oxidaci nenasycených MK jsou potřeba další enzymy: isomeráza a reduktáza
28 xidace MK s velmi dlouhým řetězcem Peroxisomy (obsahují katalasu) První stupeň katalyzuje flavoproteinová dehydrogenasa přenos elektronů na 2 H 2 2 Dráhu indukuje dieta s vysokým obsahem tuku a hypolipiemické léky klofibrát xidace končí u oktanoyl-oa odstraněn z peroxisomů ve vazbě na karnitin β-oxidace
29 xidace MK s velmi dlouhým řetězcem FADH 2 z 1. kroku se nereoxiduje v DŘ, ale reakcí s 2 : FADH FAD + H 2 2 Peroxisomální katalasa rozkládá H 2 2 : 2 H H Reakce nevedou k tvorbě ATP
30 Ω-oxidace MK Endoplazmatické retikulum Dlouhé MK minoritní dráha
31 Živočichové nedovedou převést mastné kyseliny na glukosu MK jsou bohatým zdrojem energie pro glukoneogenezi, ale z jejich se netvoří glukóza (AVE! MK s lichým počtem ) Nelze převést acetyl-oa na pyruvát či AA, (oba uhlíky se během K odštěpí jako 2 ) Pyruvátdehydrogenázová reakce je nevratná Rostliny mají další 2 enzymy v glyoxylátovém cyklu schopné převést AcoA na AA
32 Jednotlivé dráhy metabolismu lipidů Tvorba a využití ketolátek
33 Tvorba a funkce ketolátek Acetoacetát, β-hydroxybutyrát a aceton Hlavní místo tvorby ketolátek: jaterní mitochondrie Ketolátky jsou ve vodě rozpustnou transportní formou acetylů
34 Tvorba a funkce ketolátek Vstup AcoA do K závisí na dostupnosti oxaloacetátu AA vzniká karboxylací pyruvátu Při hladovění či DM je AA spotřebováván na glukoneogenezi Nedostatek sacharidů snížení AA zpomalení K TUKY HŘÍ V HNI SAHARIDŮ
35 Tvorba a funkce ketolátek lipolýza (HSL) MK β-oxidace MK nadbytek AcoA ketogeneze Kondenzace 2 AcoA acetoacetyl~oa Reakce s dalším AcoA 3-hydroxy-3- methylglutaryl~oa (HMG~oA) Štěpení HMG-oA AcoA a acetoacetát
36 β-ketothiolasa Poslední krok β-oxidace při tvorbě ketolátek se reakce obrátí 2 AcoA acetoacetyl~oa H 3 S oa + H 3 S oa 1 H 3 H 2 S oa Acetyl-oA Acetyl-oA oa Acetoacetyl-oA
37 3-hydroxy-3-methylglutaryl-oA synthasa H 3 H 2 S oa + H 3 S oa 2 - H H 3 H 2 H 2 S oa Acetoacetyl-oA Acetyl-oA H 2 oa 3-Hydroxy-3-methylglutaryl-oA Katalyzuje kondenzaci na 3. uhlíku v AcAcoA
38 3-hydroxy-3-methylglutaryl-oA lyasa - H H 3 H 2 H 2 S oa 3 - H 2 H 3 3-Hydroxy-3-methylglutaryl-oA Acetoacetát H 3 S oa Štěpí HMG-oA acetoacetát + AcoA
39 β-hydroxybutyrátdehydrogenasa Vzájemná reverzibilní přeměna ketolátek: acetoacetátu a β hydroxybutyrátu Při masivní tvorbě ketolátek je β- hydroxybutyrát kvantitativně nejvýznamnější ketolátkou v krvi Acetoacetát spontánně dekarboxyluje na aceton
40 β-hydroxybutyrátdehydrogenasa - H 2 H H H 2 H H 3 Acetoacetát H + + NADH NAD + D-3-Hydroxybutyrát 2 H 3 Aceton H 3
41 Aktivace ketolátek Extrahepatálně: zpětná přeměna na AcoA vstup do K Acetoacetát aktivován přenosem oa ze Suc~oA Štěpení thiolasou na 2 AcoA V játrech transferasa není! Acetoacetát Sukcinyl-oA oa-transferasa Sukcinát Acetoacetyl-oA oa Thiolasa 2 Acetyl-oA
42 Role acetoacetátu Srdeční sval a kůra ledvin preferují acetoacetát před glukosou Mozek se za hladovění adaptuje na acetoacetát (při dlouhodobém hladovění až 50% energie z acetoacetátu) Regulační role: vysoká hladina acetoacetátu v krvi signál přítomnosti velkého množství AcoA pokles lipolýzy
43 Regulace ketogeneze ve 4 krocích 1) HSL lipolýza v tukové tkáni 2) AT I vstup MK do MIT (βoxidace) 3) Směřování AcoA z β-oxidace do ketogeneze a ne do K 4) Mitochondriální HMG-oA synthasa
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - katabolismus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - katabolismus Trávení, aktivace a transport tuků Oxidace mastných kyselin Ketonové látky Úvod Oxidace MK je centrální
Přehled energetického metabolismu
Přehled energetického metabolismu Josef Fontana EB 40 Obsah přednášky Důležité termíny energetického metabolismu Základní schéma energetického metabolismu Hlavní metabolické dráhy energetického metabolismu
Syntéza a degradace mastných kyselin. Martina Srbová
Syntéza a degradace mastných kyselin Martina Srbová Mastné kyseliny (fatty acids, FA) většinou sudý počet atomů uhlíku a lineární řetězec v esterifikované formě jako součást lipidů v neesterifikované formě
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Metabolismus lipidů - odbourávání. VY_32_INOVACE_Ch0212
Vzdělávací materiál vytvořený v projektu P VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
Regulace metabolických drah na úrovni buňky
Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace
Diabetes mellitus. úplavice cukrová - heterogenní onemocnění působení inzulínu. Metabolismus glukosy. Insulin (5733 kda)
Diabetes mellitus úplavice cukrová - heterogenní onemocnění působení inzulínu ~ nedostatečná sekrece ~ chybějící odpověď buněk periferních tkání Metabolismus glukosy ze střeva jako játra 50 % glykogen
Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku?
Repetitorium chemie X. 2011/2012 Metabolické dráhy František Škanta Metabolické dráhy xidativní fosforylace xidace mastných kyselin 1. fosforylace 2. štěpení hexosy na dvě vzájemně převoditelné triosy
Metabolismus krok za krokem - volitelný předmět -
Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus
Štěpení lipidů. - potravou přijaté lipidy štěpí lipázy gastrointestinálního traktu
METABOLISMUS LIPIDŮ ODBOURÁVÁNÍ LIPIDŮ - z potravy nebo z tukových rezerv - hydrolytické štěpení esterových vazeb - vznik glycerolu a mastných kyselin - hydrolytické štěpení LIPÁZY (karboxylesterázy) -
Ukládání energie v buňkách
Ukládání energie v buňkách Josef Fontana EB - 58 Obsah přednášky Úvod do problematiky zásobních látek lidského organismu Přehled zásobních látek v těle Metabolismus glykogenu Struktura glykogenu Syntéza
Metabolismus lipidů. (pozn. o nerozpustnosti)
Metabolismus lipidů (pozn. o nerozpustnosti) Trávení lipidů Lipidy v potravě - většinou v hydrolyzovatelné podobě, především jako triacylglayceroly (TAG), fosfatidáty a sfingolipidy. V trávicím traktu
Intermediární metabolismus. Vladimíra Kvasnicová
Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,
11. Metabolismus lipidů
11. Metabolismus lipidů Obtížnost A Následující procesy a metabolické reakce, vedoucí ke zkrácení řetězce mastné kyseliny, vázané v triacylglycerolu, a vzniku acetyl-coa, seřaďte ve správném pořadí: a)
Regulace metabolizmu lipidů
Regulace metabolizmu lipidů Principy regulace A) krátkodobé (odpověď s - min): Dostupnost substrátu Alosterické interakce Kovalentní modifikace (fosforylace/defosforylace) B) Dlouhodobé (odpověď hod -
MASTNÉ KYSELINY, LIPIDY (DEGRADACE)
MASTNÉ KYSELINY, LIPIDY (DEGRADAE) BSAH Rozdělení lipidů Mastné kyseliny, membránové lipidy (fosfolipidy, glykolipidy a cholesterol) Triacylglyceroly Vstup mastných kyselin do matrix mitochondrie a b-oxidace
1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu
Test pro přijímací řízení magisterské studium Biochemie 2018 1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
12. Metabolismus lipidů a glycerolu. funkce karnitinu a β-oxidace
12. Metabolismus lipidů a glycerolu funkce karnitinu a β-oxidace LIPOPROTEINY Řadí se mezi složené lipidy Vznikají spojením (hydrofobními interakcemi nepolárních oblastí obou složek) lipidů se specifickými
Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech
Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.
Metabolismus lipidů. Vladimíra Kvasnicová. doporučené animace:
Metabolismus lipidů Vladimíra Kvasnicová doporučené animace: http://www.wiley.com/college/fob/anim/ - Chapter 19 http://ull.chemistry.uakron.edu/pathways/index.html http://www.wiley.com/legacy/college/boyer/0470003790/animations/animations.htm
Propojení metabolických drah. Alice Skoumalová
Propojení metabolických drah Alice Skoumalová Metabolické stavy 1. Resorpční fáze po dobu vstřebávání živin z GIT (~ 2 h) glukóza je hlavní energetický zdroj 2. Postresorpční fáze mezi jídly (~ 2 h po
1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu
Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
Odbourávání a syntéza glukózy
Odbourávání a syntéza glukózy Josef Fontana EB - 54 Obsah přednášky Glukóza význam glukózy pro buňku, glykémie role glukózy v metabolismu transport glukózy přes buněčné membrány enzymy fosforylující a
METABOLISMUS SACHARIDŮ
METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve
Katabolismus - jak budeme postupovat
Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův
Metabolismus lipidů. Mastné kyseliny, cholesterol, lipoproteiny. Josef Tomandl
Metabolismus lipidů Mastné kyseliny, cholesterol, lipoproteiny Josef Tomandl 1 Hlavní typy lipidů Lipidy Mastné kyseliny Steroidy Cholesterol Žlučové kyseliny Steroidní hormony Estery / amidy 2 Typy lipidů
Bp1252 Biochemie. #8 Metabolismus živin
Bp1252 Biochemie #8 Metabolismus živin Chemické reakce probíhající v organismu Katabolické reakce přeměna složitějších látek na jednoduché, jsou většinou exergonické. Anabolické reakce syntéza složitějších
sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty
sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty triviální (glukóza, fruktóza ) vědecké (α-d-glukosa) organické látky nezbytné pro život hlavní zdroj energie
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy
9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy Obtížnost A Vyjmenujte kofaktory, které využívá multienzymový komplex pyruvátdehydrogenasy; které z nich řadíme mezi koenzymy
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
Obecný metabolismus.
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,
Glykolýza Glukoneogeneze Regulace. Alice Skoumalová
Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza
AMPK AMP) Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze
AMPK (KINASA AKTIVOVANÁ AMP) Tomáš Kuc era Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze 2013 AMPK PROTEINKINASA AKTIVOVANÁ AMP přítomna ve všech eukaryotních
Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie
Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje
Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K
Test pro přijímací řízení magisterské studium Biochemie 2017 1. Napište vzorce aminokyselin Q a K Dále zakroužkujte správné tvrzení (pouze jedna správná odpověď) 2. Enzym tyrozinkinasu řadíme do třídy
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Glykolýza a neoglukogenese z řečtiny glykos sladký, lysis uvolňování sled metabolických reakcí od glukosy přes fruktosa-1,6-bisfosfát
Základy biochemie KBC / BCH. Metabolismus lipidů. Inovace studia biochemie prostřednictvím e-learningu CZ / /0407
Základy biochemie KB / B Metabolismus lipidů Inovace studia biochemie prostřednictvím e-learningu Z.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Lipidy. Nesourodá skupina látek Látky nerozpustné v polárních rozpouštědlech Složky: MK, alkoholy, N látky, sacharidy, kyselina fosforečná
Lipidy Nesourodá skupina látek Látky nerozpustné v polárních rozpouštědlech Složky: MK, alkoholy, N látky, sacharidy, kyselina fosforečná Rozdělení: 1. neutrální lipidy (tuky, triacylglyceroly) 2. Vosky
Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová
Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba
Citrátový cyklus. Tomáš Kučera.
itrátový cyklus Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Schéma energetického
METABOLISMUS SACHARIDŮ
METABLISMUS SAHARIDŮ GLUKNEGENEZE GLUKNEGENEZE entrální úloha glukosy Palivo Prekursor strukturních sacharidů a jiných molekul Syntéza glukosy z necukerných prekurzorů Laktát Aminokyseliny (uhlíkatý řetězec
Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Intermediární metabolizmus a energetická homeostáza
1 Intermediární metabolizmus a energetická homeostáza Biologické oxidace Dýchací řetězec a oxidativní fosforylace Krebsův cyklus Přehled intermediárního metabolizmu studuje změny energie provázející chemické
Biochemie II 2009/10. Metabolismus. František Škanta
Biochemie II 2009/10 Metabolismus František Škanta Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus xidativní fosforylace Metabolismus lipidů xidace mastných kyselin
Biochemie jater. Eva Samcová
Biochemie jater Eva Samcová Orgánová specializace Hlavní metabolické dráhy pro glukosu, mastné kyseliny a aminokyseliny jsou soustředěné okolo pyruvátu a acetyl-coa. Glukosa je primárním palivem pro mozek
Metabolismus lipidů. lipoproteiny. Josef Tomandl, 2013
Metabolismus lipidů Mastné kyseliny, cholesterol, lipoproteiny Josef Tomandl, 2013 1 Typy lipidů triacylglyceroly fosfolipidy steroidy prostanoidy leukotrieny glycerofosfolipidy sfingofosfolipidy 2 Lipidy
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Repetitorium chemie 2016/2017. Metabolické dráhy František Škanta
Repetitorium chemie 2016/2017 Metabolické dráhy František Škanta Metabolické dráhy Primární metabolismus-trávení Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - anabolismus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - anabolismus LIPIDY Zásobárna energie Hlavní složka buněčných membrán Pigmenty (retinal, karoten), kofaktory (vitamin
Metabolismus cholesterolu a lipoproteinů. EB Josef Fontana
Metabolismus cholesterolu a lipoproteinů EB Josef Fontana bsah přednášky 1) Význam cholesterolu pro lidské tělo 2) Tvorba a degradace cholesterolu 3) Transport lipidů v plazmě - metabolismus lipoproteinů
Lipidy, Izoprenoidy, polyketidy a jejich metabolismus
Lipidy, Izoprenoidy, polyketidy a jejich metabolismus Lipidy = estery alkoholů + karboxylových kyselin Jsou nerozpustné v H 2 O, ale rozpustné v organických rozpouštědlech Nejčastější alkoholy v lipidech:
CZ.1.07/2.2.00/ Obecný metabolismu. Cyklus trikarboxylových kyselin (citrátový cyklus, Krebsův cyklus) (8).
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii Z.1.07/2.2.00/28.0171 becný metabolismu. yklus trikarboxylových kyselin (citrátový cyklus, Krebsův cyklus) (8). Prof. RNDr.
Intermediární metabolismus CYKLUS SYTOST-HLAD. Vladimíra Kvasnicová
Intermediární metabolismus CYKLUS SYTOST-HLAD Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP
Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal
DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,
Sacharidy a polysacharidy (struktura a metabolismus)
Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana
Integrace a regulace savčího energetického metabolismu
Základy biochemie KBC / BCH Integrace a regulace savčího energetického metabolismu Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským
Regulace metabolických drah na úrovni buňky. SBT 116 Josef Fontana
Regulace metabolických drah na úrovni buňky SBT 116 Josef Fontana Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky Regulace zajištěná kompartmentací metabolických dějů Změna
Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
Integrace metabolických drah v organismu. Zdeňka Klusáčková
Integrace metabolických drah v organismu Zdeňka Klusáčková Hydrolýza a resorpce základních složek potravy Přehled hlavních metabolických drah Biochemie výživy A) resorpční fáze (přísun živin) glukóza hlavní
Efektivní adaptace začínajících učitelů na požadavky školské praxe
Mezipředmětová integrace tělesná výchova biologie chemie Biochemie pro učitele tělesné výchovy IV.: metabolismus tuků a bílkovin (průvodce studiem) Filip Neuls, Ph.D. Průvodce studiem Pohybový výkon má
fce jater: (chem. továrna, jako 1. dostává všechny látky vstřebané GIT) METABOLICKÁ (jsou metabolicky nejaktivnější tkání v těle)
JÁTRA ústřední orgán intermed. metabolismu, vysoká schopnost regenerace krevní oběh játry: (protéká 20% veškeré krve, 10-30% okysl.tep.krve, která zajišťuje výživu buněk, zbytek-portální krev) 1. funkční
Energetika a metabolismus buňky
Předmět: KBB/BB1P Energetika a metabolismus buňky Cíl přednášky: seznámit posluchače s tím, jak buňky získávají energii k životu a jak s ní hospodaří Klíčová slova: energetika buňky, volná energie, enzymy,
METABOLISMUS LIPIDU. triacylglycerol. pankreatická lipasa. 2-monoacylglycerol. mastné kyseliny COOH CH 2 CH O O C O COOH
METABLISMUS LIPIDU Syntéza a odbourání mastných kyselin, ketogeneze. Syntéza triacylglycerolů. Přehled metabolismu fosfolipidů, glykolipidů. Ikosanoidy. Syntéza a přeměny Lipoproteiny a jejich přeměny.
Didaktické testy z biochemie 2
Didaktické testy z biochemie 2 Metabolismus Milada Roštejnská Helena Klímová br. 1. Schéma metabolismu Zažívací trubice Sacharidy Bílkoviny Lipidy Ukládány jako glykogen v játrech Ukládány Ukládány jako
Repetitorium chemie 2015/2016. Metabolické dráhy František Škanta
Repetitorium chemie 2015/2016 Metabolické dráhy František Škanta Metabolické dráhy Primární metabolismus Metabolismus sacharidů Glykolýza Krebsův cyklus Oxidativní fosforylace Metabolismus lipidů Oxidace
glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*
Prezentace navazuje na základní znalosti Biochemie, stavby a transportu přes y Doplňující prezentace: Proteiny, Sacharidy, Stavba, Membránový transport, Symboly označující animaci resp. video (dynamická
METABOLISMUS SACHARIDŮ
METABOLISMUS SACHARIDŮ GLUKOSA V KRVI Jedna z hlavních priorit metabolické regulace: Hladina glukosy v krvi nesmí poklesnout pod 3 mmol/l Hormonální regulace: insulin glukagon adrenalin kortisol ( snižuje
Základy biochemie KBC / BCH. Metabolismus lipidů. Inovace studia biochemie prostřednictvím e-learningu CZ / /0407
Základy biochemie KB / B Metabolismus lipidů Inovace studia biochemie prostřednictvím e-learningu Z.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.
Vzdělávací materiál vytvořený v projektu VK Název školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
CYKLUS TRIKARBOXYLOVÝCH KYSELIN A GLYOXYLÁTOVÝ CYKLUS
YKLUS TRIKARBXYLVÝ KYSELIN A GLYXYLÁTVÝ YKLUS BSA Základní charakteristika istorie Pyruvátdehydrogenasový komplex itátový cyklus dílčí reakce itátový cyklus výtěžek itátový cyklus regulace Anapleroticé
Dýchací řetězec (DŘ)
Dýchací řetězec (DŘ) Vladimíra Kvasnicová animace na internetu: http://vcell.ndsu.nodak.edu/animations/etc/index.htm http://vcell.ndsu.nodak.edu/animations/atpgradient/index.htm http://www.wiley.com/college/pratt/0471393878/student/animations/oxidative_phosphorylation/index.html
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
Lékařská chemie -přednáška č. 8
Lékařská chemie -přednáška č. 8 Lipidy, izoprenoidya steroidy Václav Babuška Vaclav.Babuska@lfp.cuni.cz Lipidy heterogenní skupina látek špatně rozpustné ve vodě, dobře rozpustné v organických rozpouštědlech
Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3
Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující
Ivana FELLNEROVÁ 2008/11. *Ivana FELLNEROVÁ, PřF UP Olomouc*
Ivana FELLNEROVÁ 2008/11 SACHARIDY Organické látky Obecný vzorec (CH 2 O) n glyceraldehyd polyhydroxyaldehydy polyhydroxyketony dihydroxyaceton Převážně rostlinný původ Vznik fotosyntetickou asimilací
Metabolismus sacharidů
Metabolismus sacharidů Glukosa obsažená v celulose, škrobu a oligosacharidech nebo volná je nejrozšířenější organickou sloučeninou v přírodě. Pro chemotrofní organismy jsou sacharidy hlavní živinou, přičemž
Metabolismus lipidů. Biochemický ústav LF MU (J.S.) 2016
Metabolismus lipidů Biochemický ústav LF MU (J.S.) 2016 1 Charakteristické vlastnosti hydrofobní (nepolární, lipofilní) charakter nerozpustné ve vodě rozpustné v nepolárních rozpouštědlech (např. chloroform,
ANABOLISMUS SACHARIDŮ
zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE
Biochemie jater. Vladimíra Kvasnicová
Biochemie jater Vladimíra Kvasnicová Obrázek převzat z http://faculty.washington.edu/kepeter/119/images/liver_lobule_figure.jpg (duben 2007) Obrázek převzat z http://connection.lww.com/products/porth7e/documents/ch40/jpg/40_003.jpg
Metabolismus pentóz, glykogenu, fruktózy a galaktózy. Alice Skoumalová
Metabolismus pentóz, glykogenu, fruktózy a galaktózy Alice Skoumalová 1. Pentóza fosfátová dráha Přehledné schéma: Pentóza fosfátová dráha (PPP): Probíhá v cytozolu Všechny buňky Dvě části: 1) Oxidační
Metabolismus lipidů. Biosyntéza mastných kyselin a triacylglycerolů. Lenka Fialová kařské biochemie 1. LF UK. Hlavní rysy biosyntézy mastných kyselin
Metabolismus lipidů Biosyntéza mastných kyselin a triacylglycerolů Lenka Fialová Ústav lékal kařské biochemie 1. LF UK Hlavní rysy biosyntézy mastných kyselin syntéza MK může probíhat ve většině živočišných
MitoSeminář II: Trochu výpočtů v bioenergetice. Souhrn. MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK
MitoSeminář II: Trochu výpočtů v bioenergetice MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK (se zahrnutím cenných připomínek, kterými přispěl prof. MUDr. Jiří Kraml, DrSc.) 1 Dýchacířet etězec
Složky stravy - lipidy. Mgr.Markéta Vojtová VOŠZ a SZŠ Hradec Králové
Složky stravy - lipidy Mgr.Markéta Vojtová VOŠZ a SZŠ Hradec Králové Lipidy 1 = organické látky orgány těla využívají jako zdroj energie pro svoji činnost. Sloučenina glycerolu a mastných kyselin (MK)
Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?
Sacharidy a jejich metabolismus Co to je? Cukry (Sacharidy) Organické látky, které obsahují karbonylovou skupinu (C=O) a hydroxylové skupiny (-O) vázané na uhlících Aldosy: karbonylová skupina na konci
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová Vyberte esenciální aminokyseliny a) Asp, Glu b) Val, Leu, Ile c) Ala, Ser, Gly d) Phe, Trp Vyberte esenciální aminokyseliny a) Asp,
Aerobní odbourávání cukrů+elektronový transportní řetězec
Aerobní odbourávání cukrů+elektronový transportní řetězec Dochází k němu v procesu jménem aerobní respirace. Skládá se z kroků: K1) Glykolýza K2) oxidativní dekarboxylace pyruvátu K3) Krebsův cyklus K4)
METABOLISMUS SACHARIDŮ
METABOLISMUS SACHARIDŮ Sacharidy v potravě: polysacharidy: škrob (brambory, pečivo, pudinky...) celulosa - ovoce, zelenina disacharidy: sacharosa (sladké jídlo) laktosa (mléko a výrobky z něj) maltosa
Buněčný metabolismus. J. Vondráček
Buněčný metabolismus J. Vondráček Téma přednášky BUNĚČNÝ METABOLISMUS základní dráhy energetického metabolismu buňky a dynamická podstata jejich regulací glykolýza, citrátový cyklus a oxidativní fosforylace,
Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD
Ukázky z pracovních listů z biochemie pro SŠ A ÚVD 1) Doplň chybějící údaje. Jak se značí makroergní vazba? Kolik je v ATP makroergních vazeb? Co je to ADP Kolik je v ADP makroergních vazeb 1) Pojmenuj
Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy
Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba
Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa
8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika
Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno:
Bruno Sopko Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Z předchozí rovnice vyplývá: Pokud katalýza při 25
Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.
Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé
MASTNÉ KYSELINY, LIPIDY (BIOSYNTÉZA)
MASTNÉ KYSELINY, LIPIDY (BISYNTÉZA) BSAH Syntéza mastných kyselin cholesterolu žlučové kyseliny isoprenoidy steroly Rozdíly mezi odbouráváním a syntézou mastných kyselin 1. Syntéza mastných kyselin probíhá
Lipidy - složení vyšší mastné kyseliny + alkohol nepolární sloučeniny
LIPIDY Lipidy - složení vyšší mastné kyseliny + alkohol fyz. chem. vlastnosti nepolární sloučeniny nerozpustnost ve vodě ve vodném prostředí nutná aktivace Mastné kyseliny nasycené palmitová 16 stearová
pátek, 24. července 15 BUŇKA
BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné
Enzymy. Vladimíra Kvasnicová
Enzymy Vladimíra Kvasnicová METABOLISMUS soubor enzymových reakcí, při nichž dochází k přeměně látek a energií v živém organismu, látková přeměna Enzymy jsou biokatalyzátory snižují aktivační energii reakce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Citrátový a glyoxylátový cyklus Buněčná respirace I. Fáze Energeticky bohaté látky jako glukosa, mastné kyseliny a některé aminokyseliny
Metabolismus lipoproteinů. Vladimíra Kvasnicová
Metabolismus lipoproteinů Vladimíra Kvasnicová animace: http://www.wiley.com/college/fob/quiz/quiz19/19-5.html Obrázek převzat z knihy Grundy, S.M.: Atlas of lipid disorders, unit 1. Gower Medical Publishing,
Vztahy v intermediárním
Vztahy v intermediárním metabolismu Eva Samcová Starve feed cycle Nejlepší způsob jak porozumět vztahům mezi jednotlivými metabolickými drahami a pochopit změny, které probíhají v časovém období po najedení,