U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
|
|
- Markéta Dostálová
- před 8 lety
- Počet zobrazení:
Transkript
1 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo
2 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Přenos tepla Nestacionární vedení tepla v tuhých látkách 2 Seminář z PHH - eplo
3 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Nestacionární vedení tepla F. K. rovnice!! 2 ρ c p + u λ + 2µ d t! + (g) : d Q" Nestacionární vedení tepla stagnantním prostředím (tělesa a kapalina, ve které se neprojevuje přirozená konvekce) F. K. rovnice ρ c p λ + Q" t 2 ( g ) Nestacionární vedení bez vnitřního zdroje tepla Fourierova rovnice t λ ρ c p 2 a 2 a součinitel teplotní vodivosti (m 2 /s) 3 Seminář z PHH - eplo
4 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Biotovo číslo Bi Bi vnitřní termický odpor (kondukcí) vnější termický odpor (konvekcí) L / λ α L 1 / α λ α L λ součinitel přestupu tepla, charakteristický rozměr, tepelná vodivost tělesa.!!!!!!!!!!!!! NEJDŘÍVE VYPOČÍA Biotovo číslo!!!!!!!!!!!!! PROČ? MÁ VLIV NA ŘEŠENÍ!!!!!!!!!!!!! Případy A. Zanedbatelný vnitřní konduktivní termický odpor Bi << 1 B. Zanedbatelný vnější konvektivní termický odpor Bi >> 1 C. ermické odpory stejného řádu Bi 1 4 Seminář z PHH - eplo
5 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze A. Zanedbatelný vnitřní konduktivní termický odpor Bi << 1 Dominance vnějšího konvektivního odporu. Zanedbatelný vnitřní konduktivní termický odpor teplotní gradienty uvnitř tělesa zanedbatelné (x, t) (t) teplota povrchu teplota tělesa Prakticky Bi < 0,1. Případy: ělesa: malý charakteristický rozměr (např. malé částice, dráty, tenké plechy). vysoká tepelná vodivost (např. kovy) malý součinitel přestupu tepla α (např. vzduch nebo jiné plyny) 5 Seminář z PHH - eplo
6 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze F. K. rovnice v integrálním tvaru d dt ρ c p dv n q ds ρ c p n u ds + V S!! S!! V!# τ!# d Q " ( g) dv : dv + V ρ c p!! dv n q ds t V S eplota tělesa v čase t Bi << 1 : teplota tělesa a hustota tepelného toku q nezávisí na souřadnici lze i q umístit před integrál ρ c p V α ( f ) t S 6 Seminář z PHH - eplo
7 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Řešení: eplota tělesa v čase t Integrace: počáteční podmínka: teplota tělesa (t 0) 0 ( t) 0 f f exp α S ρ c V p t f teplota prostředí c p měrná tepelná kapacita ρ - hustota epelný tok povrchem tělesa S a objemu V v čase t ( ( t ) S Q" ( t) α ) f Celkové množství tepla převedeného povrchem tělesa za dobu t t S Q Q " α ( t) dt ρ c t p V ( 0 f ) 1 exp ρ c p V 0 Q ρ c p V ( 0 ( t)) 7 Seminář z PHH - eplo
8 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze B. Zanedbatelný vnější konvektivní termický odpor Bi >> 1 Dominance vnitřního konduktivního termického odporu. Zanedbatelný vnější konvektivní termický odpor diference mezi S a f zanedbatelná ; těleso (x, t) teplota povrchu teplota prostředí Prakticky Bi > 100. Případy: Opačné případy než v předchozím případě, tj: ělesa: velký charakteristický rozměr nízká tepelná vodivost velký součinitel přestupu tepla α (např. kondenzující pára) Díly lisu Vítkovice Strojírenství a.s. sloup hydraulický válec 8 Seminář z PHH - eplo
9 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze B1. Poloneomezené prostředí (polomasiv) Skoková změna teploty + OP I.druhu Počáteční podmínka (t,x) (t 0, 0 x < ) 0 Okrajové podmínky OP1: teplota stěny (t > 0, x 0) S OP2: teplota polomasivu (t > 0, x ) 0 Nestacionární teplotní profil + S erf ( η) erfc( η) bezrozměrná polohová souřadnice η : η 2 erf (x) Gaussův integrál chyb erfc(x) komplementární funkce Gaussova integrálu chyb erf(x) ; erf(x) + erfc(x) 1. x a t 9 Seminář z PHH - eplo
10 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Graf funkce erf(x), erfc(x) abulka funkce erf(x) 10 Seminář z PHH - eplo
11 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH - eplo 11 eplotní gradient t a x S π η ) exp( ) ( 2 0 Hustota tepelného toku na povrchu poloneomezeného prostředí ) ( ) ( t a x q S S x x δ λ π λ λ Celkové množství tepla převedeného do prostředí plochou S za čas t t S t S a dt q S Q S S t x ) ( 2 2 ) ( δ λ π λ Penetrační hloubka konduktivního přenosu tepla δ t a π δ Interpretace: Za dobu t od okamžiku teplotního skoku na povrchu z 0 na S dojde v penetrační hloubce δ k relativnímu zvýšení teplotní diference o 21 % ( + 0,21).
12 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Použití pro konečná tělesa Řešení pro nestacionární vedení tepla v poloneomezeném prostředí použitelné s dostatečnou přesností i pro konečná tělesa s charakteristickým rozměrem L když Fo a.t/l 2 < 0,04 tj. (δ << L) 12 Seminář z PHH - eplo
13 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze B2. Neomezená deska, neomezený válec, koule Okrajová podmínka I. druhu - teplota stěny S konst. eplotní profil OP. I.druhu : α 1/Bi 0 Použít grafy případ C: teplotní profil * f (x*, Fo) z grafu pro 1/Bi 0 13 Seminář z PHH - eplo
14 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze C. ermické odpory stejného řádu Bi 1 Oba termické odpory jsou téhož řádu ; ani jeden nelze zanedbat. Na povrchu se uplatňují okrajové podmínky III. druhu. Prakticky 0,1 < Bi < 100. Fourierova rovnice t λ ρ c p 2 a 2 C1. Poloneomezené prostředí C2. Neomezená deska C3. Neomezený válec C4. Koule C5. 2D a 3D tělesa 14 Seminář z PHH - eplo
15 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze C1. Poloneomezené prostředí (polomasiv) Skoková změna teploty + OP III.druhu Počáteční podmínka (t,x) (t 0, 0 x < ) 0 povrch x 0 Okrajové podmínky OP1: OP III.druhu OP2: teplota polomasivu (t > 0, x ) 0 Nestacionární teplotní profil Bi * erfc x 2 Fo * + exp( Bi * f ( Bi, Fo*) x x + Fo*) erfc Fo * + 2 Bi x Fo * bezrozměrná teplota Biotovo číslo Fourierovo číslo f * 1 f + Bi x 0 λ α x a t a t Fo* ( ) 2 L 2 fikt λ / α x souřadnice (počátek souřadného systému na povrchu polomasívu), f teplota prostředí, 0 počáteční teplota poloneomezeného prostředí, α součinitel přestupu tepla, erfc(x) komplementární funkce Gaussova integrálu chyb 15 Seminář z PHH - eplo
16 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Řešení v grafické formě eplota na povrchu poloneomezeného prostředí x 0 Bi x 0 * exp( Bi ) erfc( Fo *) x 16 Seminář z PHH - eplo
17 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze C2. Neomezená deska!! POZOR!! počátek souřadného systému v ose desky H polovina tloušťky desky!!! Skoková změna teploty + OP III.druhu Počáteční podmínka (t, x) (t 0, -H x < H ) 0 Okrajové podmínky OP III.druhu Nestacionární teplotní profil v desce tloušťky 2H * f ( x*, Fo, Bi) bezrozměrná teplota bezrozměrná souřadnice polohy Biotovo číslo Fourierovo číslo * 0 f f f f 0 x α H x * Bi H λ Fo a t H 2 17 Seminář z PHH - eplo
18 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Řešení: * j 1 α j 2 sinα + sinα j j cosα j cos ( *) ( 2 ) α x exp α Fo j j α j vlastní (charakteristické) hodnoty musí splňovat rovnici: Bi α cotg α nekonečně mnoho α j Hustota tepelného toku na 1m 2 povrchu q α ( f S ) kde S f(t), která se vypočte z *(x* 1, Fo, Bi) Okrajová podmínka I. druhu - teplota stěny S konst. OP I.druhu : α 1/Bi 0 ; teplotní profil * f (x*, Fo) z grafu pro 1/Bi 0 18 Seminář z PHH - eplo
19 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Řešení v grafické formě A. Kutatěladze, Borišanskij: Sdílení tepla Neomezená deska povrch desky * 19 Seminář z PHH - eplo
20 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Neomezená deska osa desky * 20 Seminář z PHH - eplo
21 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze B. Šesták, Rieger: Přenos hybnosti, tepla a hmoty 21 Seminář z PHH - eplo
22 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze C3. Neomezený válec Skoková změna teploty + OP III.druhu Počáteční podmínka (t, r) (t 0, 0 r < R ) 0 Okrajové podmínky OP III.druhu Nestacionární teplotní profil ve válci o poloměru R * f ( r*, Fo, Bi) bezrozměrná teplota bezrozměrná souřadnice polohy Biotovo číslo Fourierovo číslo * 0 f f f f 0 r * r R Bi α R λ Fo a t 2 R 22 Seminář z PHH - eplo
23 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Hustota tepelného toku na 1m 2 povrchu q α ( f S ) kde S f(t), která se vypočte z *(r* 1, Fo, Bi) Okrajová podmínka I. druhu - teplota stěny S konst. OP I.druhu : α 1/Bi 0 ; teplotní profil * f (r*, Fo) z grafu pro 1/Bi 0 23 Seminář z PHH - eplo
24 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Řešení v grafické formě A. Kutatěladze, Borišanskij: Sdílení tepla Neomezený válec povrch válce * 24 Seminář z PHH - eplo
25 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Neomezený válec osa válce * 25 Seminář z PHH - eplo
26 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze B. Šesták, Rieger: Přenos hybnosti, tepla a hmoty 26 Seminář z PHH - eplo
27 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze C4. Koule Skoková změna teploty + OP III.druhu Počáteční podmínka (t, r) (t 0, 0 r < R ) 0 Okrajové podmínky OP III.druhu Nestacionární teplotní profil v kouli o poloměru R * f ( r*, Fo, Bi) bezrozměrná teplota bezrozměrná souřadnice polohy Biotovo číslo Fourierovo číslo * 0 f f f f 0 r * r R Bi α R λ Fo a t 2 R 27 Seminář z PHH - eplo
28 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Hustota tepelného toku na 1m 2 povrchu q α ( f S ) kde S f(t), která se vypočte z *(r* 1, Fo, Bi) Okrajová podmínka I. druhu - teplota stěny S konst. OP I.druhu : α 1/Bi 0 ; teplotní profil * f (r*, Fo) z grafu pro 1/Bi 0 28 Seminář z PHH - eplo
29 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Řešení v grafické formě Šesták, Rieger: Přenos hybnosti, tepla a hmoty 29 Seminář z PHH - eplo
30 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze C5. 2D a 3D tělesa Základní jednorozměrná pole označení P * poloneomezené prostředí ( i ) D * neomezená deska ( j ) * neomezený válec V (r) Newtonův multiplikativní princip(1936) ěleso konečného rozměru průnik elementárních případů Příklad: Konečný válec průnik nekonečného válce a neomezené desky eplotní profil konečného válce: (, ) ( ) ( ) x x * r x V r D x 30 Seminář z PHH - eplo
31 U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Platnost ento princip v zásadě vzato platí pro okrajové podmínky II. nebo III. druhu resp. II. druhu pro izolované stěny. Na protilehlých površích musí být hodnoty Biotova čísla Bi shodné, mohou se však lišit na površích sousedních. Radek 2005 v1 31 Seminář z PHH - eplo
VI. Nestacionární vedení tepla
VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento
Výpočtové nadstavby pro CAD
Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se
TERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
Technologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření
FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých
M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22
M T I B ZATÍŽENÍ KONSTRUKCÍ KLIMATICKOU TEPLOTOU A ZÁKLADY VEDENÍ TEPLA Ing. Kamil Staněk, k124 2010/03/22 ROVNICE VEDENÍ TEPLA Cíl = získat rozložení teploty T T x, t Řídící rovnice (parciální diferenciální)
GAUSSŮV ZÁKON ELEKTROSTATIKY
GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ
Dynamická viskozita oleje (Pa.s) Souřadný systém (proč)?
Viskozimetr kužel-deska S pomocí rotačního viskozimetru s uspořádáním kužel-deska, viz obrázek, byla měřena dynamická viskozita oleje. Při použití kužele o průměru 40 mm, který se otáčel úhlovou rychlostí
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
ZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
Měření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina
Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru Petr Svačina I. Vliv difuze vodíku tekoucím filmem kapaliny na průběh katalytické hydrogenace ve zkrápěných reaktorech
TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
PROCESY V TECHNICE BUDOV 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad
Přednáška č. 5: Jednorozměrné ustálené vedení tepla
Přednáška č. 5: Jednorozměrné ustálené vedení tepla Motivace Diferenciální rovnice problému Gradient teploty Energetická bilance Fourierův zákon Diferenciální rovnice vedení tepla Slabé řešení Diskretizace
Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny
U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně
1 Zatížení konstrukcí teplotou
1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Přenos tepla. Přehled základních rovnic
U8 - Ústav pocesní a zpacovatelské techniky FS ČVU v Paze I. Bilance vnitřní enegie Přenos tepla Přehled základních ovnic Fyzikální vlastnost P ρ ue u E vnitřní enegie Hustota toku IP q q - hustota tepelného
Stavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) Jan Tywoniak A48 tywoniak@fsv.cvut.cz součásti stavební fyziky Stavební tepelná technika Stavební akustika Denní osvětlení. 6 4
1 Vedení tepla stacionární úloha
1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT
SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I.
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM
ANALÝZA TEPLOTNÍCH POLÍ PALIVOVÝCH ELEMENTŮ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE ANALÝZA TEPLOTNÍCH POLÍ PALIVOVÝCH ELEMENTŮ
Tepelná vodivost pevných látek
Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné
1. Cvičení: Opakování derivace a integrály
. Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Teplotní analýza konstrukce Sdílení tepla
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů
N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti
17. Základy přenosu tepla - přenosu tepla vedením, přenos tepla prouděním, nestacionární přenos tepla, prostup tepla, vyměníky tepla
1/14 17. Základy přenosu tepla - přenosu tepla vedením, přenos tepla prouděním, nestacionární přenos tepla, prostup tepla, vyměníky tepla Příklad: 17.1, 17.2, 17.3, 17.4, 17.5, 17.6, 17.7, 17.8, 17.9,
VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken
VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.
Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako
Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ
KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ URČEN ENÍ PRÁCE KLIKOVÉHO LISU URČEN ENÍ SETRVAČNÍKU KLIKOVÉHO LISU KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÁ HŘÍDEL OJNICE KLIKOVÁ HŘÍDEL BERAN LOŽISKOVÁ TĚLESA
TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček
TERMOFYZIKÁLNÍ VLASTNOSTI Radek Vašíček Základní termofyzikální vlastnosti Tepelná konduktivita l (součinitel tepelné vodivosti) vyjadřuje schopnost dané látky vést teplo jde o množství tepla, které v
Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce
Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště,
Kapitola 8: Dvojný integrál 1/26
Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost
Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Přestup tepla nucená konvekce beze změny skupenství v trubkových systémech Hana Charvátová,
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
Příklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA. Technická fakulta České zemědělské univerzity v Praze
VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA Radomír Adamovský Pavel Neuberger Technická fakulta České zemědělské univerzity v Praze H = 1,0 2,0 m; D = 0,5 2,0 m; S = 0,1
4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:
Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:
Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert
Numerické řešení 2D stlačitelného proudění s kondenzací Michal Seifert Úkoly diplomové práce Popsat matematické modely proudící tekutiny Popis numerických metod založených na metodě konečných objemů Porovnání
Měření kinematické a dynamické viskozity kapalin
Úloha č. 2 Měření kinematické a dynamické viskozity kapalin Úkoly měření: 1. Určete dynamickou viskozitu z měření doby pádu kuličky v kapalině (glycerinu, roztoku polysacharidu ve vodě) při laboratorní
Teplotní roztažnost Přenos tepla Kinetická teorie plynů
Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost pevných látek l a kapalin Teplotní délková roztažnost Teplotní objemová roztažnost a závislost hustoty na teplotě Objemová roztažnost
Hydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
Termodynamika nevratných procesů
1 Nevratný proces Přenosové jevy.1 Sdílení tepla.1.1 Tepelný tok Hustota tepleného toku Celkový tepelný tok. Sdílení tepla vedením 3 Tepelná vodivost 3.1 Wiedemannův-Franzův zákon 4 Tepelný odpor 5 Sdílení
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 4 PŘENOS TEPLA
VYSOKÉ UČENÍ ECHNICKÉ V BRNĚ FAKULA SAVEBNÍ PAVEL SCHAUER APLIKOVANÁ FYZIKA MODUL 4 PŘENOS EPLA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc.
CVIČENÍ č. 3 STATIKA TEKUTIN
Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením
TEPLOTNÍ ODEZVA. DIF SEK Part 2: Thermal Response 0/ 44
DIF SEK ČÁST 2 TEPLOTNÍ ODEZVA DIF SEK Part 2: Thermal Response 0/ 44 Stanovení požární odolnosti Θ Zatížení 1: Zapálení čas Ocelové sloupy 2: Tepelné zatížení 3: Mechanické zatížení R 4: Teplotní odezva
Potenciální proudění
Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace
ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT
ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT ČLOVĚK ODĚV - PROSTŘEDÍ FYZIOLOGICKÉ REAKCE ČLOVĚKA NA OKOLNÍ PROSTŘEDÍ Lidské tělo - nepřetržitý zdroj tepla Bazální metabolismus, teplo je produkováno na základě
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav
Tepelné jevy při ostřiku okují Thermal phenomena of descalling
Tepelné jevy při ostřiku okují Thermal phenomena of descalling Toman, Z., Hajkr, Z., Marek, J., Horáček, J, Babinec, A.,VŠB TU Ostrava, Czech Republic 1. Popis problému Technický pokrok v oblasti vysokotlakých
Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština
Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
14. cvičení z Matematické analýzy 2
4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas
Řešení úlo celostátnío kola 59. ročníku fyzikální olympiády Úloy navrl J. Tomas 1.a) Rovnice rozpadu je 38 94Pu 4 He + 34 9U; Q E r [ m 38 94Pu ) m 4 He ) m 34 9U )] c 9,17 1 13 J 5,71 MeV. body b) K dosažení
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU
MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU. Cíl práce: Roštový kotel o jmenovitém výkonu 00 kw, vybavený automatickým podáváním paliva, je určen pro spalování dřevní štěpky. Teplo z topného okruhu je předáváno
KAPILÁRNÍ VODIVOST VLHKOSTI V PLOCHÝCH STŘEŠNÍCH KONSTRUKCÍCH. Ondřej Fuciman 1
KAPILÁRNÍ VODIVOST VLHKOSTI V PLOCHÝCH STŘEŠNÍCH KONSTRUKCÍCH CAPILLARY CONDUCTIVITY OF MOISTURE IN FLAT ROOF CONSTRUCTIONS Abstract Ondřej Fuciman 1 The roof is the most sensitive part of the building,
FBI nevratné procesy Nevratný proces Nevratný proces nevratný ireverzibilní děj relaxační procesy Fickův zákon Fourierův zákon Ohmův zákon
Přenosové jevy Procesy, které probíhají přirozeně, nemohou nikdy samy od sebe proběhnout opačným směrem. Takové procesy nazýváme nevratné procesy. Příklad: Nevratné procesy začínají nějakým vnějším zásahem,
VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte
Analýza termodynamických jevů v potrubních sítích - měření tepelných ztrát potrubí. Pavel Sláma
Analýza termodynamických jevů v potrubních sítích - měření tepelných ztrát potrubí Pavel Sláma Odborné vedení, spolupracovníci a autor ČVUT Praha Fakulta strojní školitel: prof. Ing. Jiří Nožička CSc.
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
STRUKTURA A VLASTNOSTI KAPALIN
STRUKTURA A VLASTNOSTI KAPALIN Struktura kapalin je něco mezi plynem a pevnou látkou Částice kmitají ale mohou se také přemísťovat Zvýšením teploty se a tím se zvýší tekutost kapaliny Malé vzdálenosti
FYZIKA I. Složené pohyby (vrh šikmý)
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Složené pohb (vrh šikmý) Prof. RNDr. Vilém Mádr, CSc. Prof. In. Libor Hlaváč, Ph.D. Doc. In. Irena Hlaváčová, Ph.D. Mr. Art. Damar
11. cvičení z Matematické analýzy 2
11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
1. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA
. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA. Veličiny, symboly, jednotky Teplota, teplotní rozdíl ϑ... teplota Θ... termodynamická teplota = ϑ - ϑ... teplotní rozdíl Θ = Θ - Θ... teplotní rozdíl C... stupeň Celsia
1 Veličiny charakterizující geometrii ploch
1 Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně
11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
Přednáška 2. Martin Kormunda
Přednáška 2 Objemové procesy Difuze Tepelná transpirace (efuze) Přenos energie Proudění plynů : proud plynu, vakuová vodivost, vodivost otvoru, potrubí. Proudění plynu netěsnostmi Difuze plynu Veškeré
Splaveniny. = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti
SPLAVENINY Splaveniny = tuhé částice přemísťované vodou anorganický původ organický původ různého tvaru a velikosti Vznik splavenin plošná eroze (voda, vítr) a geologické vlastnosti svahů (sklon, příp.
Přenos tepla 1: ustálený stav, okrajové podmínky, vliv vlhkosti. Ing. Kamil Staněk, Ph.D. 124XTDI TERMOVIZNÍ DIAGNOSTIKA.
124XTDI TERMOVIZNÍ DIAGNOSTIKA Přenos tepla 1: ustálený stav, okrajové podmínky, vliv vlhkosti Ing. Kamil Staněk, Ph.D. kamil.stanek@fsv.cvut.cz Praha, 30.10. 2012 1D Přenos tepla obvodovou konstrukcí
7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro
7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace
ELT1 - Přednáška č. 6
ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,
þÿ PY e s t u p t e p l a
DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a b e z p e n o s t n í i n~ e n ý r s t v í / S a f e t y E n gþÿx i n eae dr ia n g b es zep re i ens o s t n í i n~ e n ý r s t v í. 2 0 1 0, r o. 5 /
Aplikované chemické procesy. Heterogenní nekatalyzované reakce
plikované hemiké proesy Heterogenní nekatalyzované reake Heterogenní nekatalytiké reake plyn nebo kapalina dostávají do styku s tuhou látkou a reagují s ní, přičemž se tato látka mění v produkt. a ( tekutina