Grammar-based genetic programming
|
|
- Eva Křížová
- před 9 lety
- Počet zobrazení:
Transkript
1 Grammar-based genetic programming Obhajoba diplomové práce Adam Nohejl Vedoucí práce: RNDr. František Mráz, CSc. Katedra software a výuky informatiky, MFF UK Praha 2011
2 1 Úvod do problematiky: genetické programování 2 Cíle práce 3 Výsledky práce 4 Reference
3 Genetické programování (tradiční verze) Genetické programování jako druh evolučního algoritmu: Reprezentace: stromy programů v podmnožině LISPu. GP strom: Odpovídající derivační strom: E * (* E E) m expt m (expt E E) c 2 GP funkce: *, expt (binární) GP terminály: 2, c, m c Odpovídající pravidla gramatiky: E (* E E) E (expt E E) E 2 E c E m Reprezentovaný výraz: (* m (expt c 2)) Operátory: na stromech; respektují množiny funkcí a terminálů. Zbývá: interpretovat výstup programů, přiřadit fitness. 2
4 Genetické programování: problémy Jazyk jedinců Je vše vhodné programovat v LISPu? Typy Co když problém zahrnuje více datových typů? obecněji: Uzávěr (closure) Může být každý GP terminál a výstup každé GP funkce libovolným argumentem libovolné GP funkce? Dostatečnost (sufficiency) Umožňují zvolené GP funkce a GP terminály vyřešit problém? obecněji: Deklarativní reprezentace znalostí Jak zachytit jemnější znalosti o problému a zefektivnit tak jeho řešení? (Obrázek z webového komiksu xkcd.com v licenci Creative Commons.)
5 Genetické programování založené na gramatice Změny oproti tradičnímu GP: místo GP stromů: derivační stromy, místo množin funkcí a terminálů: pravidla formální gramatiky. Přínos: lze popsat jazyk, typový systém i znalosti o problému. Trade-off: vyjadřovací schopnost efektivita operátorů GP. CFG-GP (Whigham 95): bezkontextová gramatika (CFG), operace na derivačních stromech. LOGENPRO (Wong & Leung 95): logická gramatika, potenciálně Turingovsky úplná, operace na deriv. stromech. Grammatical Evolution (Ryan & O Neill 98): CFG, ale stromy zakódované jako řetězce čísel výběrů v pořadí nejlevější derivace, operace na nich.
6 1 Úvod do problematiky: genetické programování 2 Cíle práce 3 Výsledky práce 4 Reference
7 Cíle práce V literatuře chybí srovnání mezi CFG-GP, GE, LOGEPRO. LOGENPRO a GE byly aplikovány především svými autory. Operátory GE na číselných řetězcích: efekt na stromy? Vyplatí se silný formalismus LOGENPRO? Cíle: Popsat, srovnat a (vyjma LOGENPRO) implementovat. Porovnat výsledky experimentů v různých aplikacích. Důraz kladen na kvalitní implementaci, reprodukovatelnost výsledků, ověření proklamovaných výhod metod, alespoň empirické zhodnocení efektů operátorů GE.
8 1 Úvod do problematiky: genetické programování 2 Cíle práce 3 Výsledky práce 4 Reference
9 Logická gramatika: zbytečný luxus Při pečlivém čtení publikovaných výsledků LOGENPRO se ukazuje, že logické predikáty i unifikace se užívají triviálně zbývá: CFG. Dva experimenty podle Wanga & Leunga (2000) s jejich implementací LOGENPRO a mojí implementací CFG-GP a GE: Konečný typový systém lze snadno popsat CFG. Generování náhodných konstant pomocí logického predikátu lze nahradit sadou pravidel, navíc je v dané aplikaci zbytečné. Celkově: slabší metody CFG-GP a GE dávají podobné výsledky jako LOGENPRO.
10 Operátory GE: většinou stejné nebo horší výsledky Srovnával jsem statistiky výšky a košatosti stromů během generací evoluce u GE a CFG-GP. GE má tendenci produkovat nižší stromy, méně košaté, méně různorodých tvarů menší prohledávaný prostor. Přitom jsou operátory poměrně destruktivní. Ve speciálních případech může být chování GE výhodné. Ve většině experimentů to však vedlo k až o řád horším výsledkům. Příklad špatného fungování: automaticky definované funkce ( stavební bloky ): podstromy se řídí odlišnými částmi gramatiky. Obrázek: proměnná z v ADF; funkce f a proměnné x, y v hlavním programu. ADF f(z) = π z 2 hl. program f(x) + 2f(y)
11 GE není nutně časově efektivnější Nejnáročnější je operace křížení, při které se vyměňují kompatibilní podstromy dvou stromů: GE: jednoduchá implementace, navíc asymptoticky: O(m + n), kde m, n jsou počty vrcholů stromů. CFG-GP: náročnější implementace, asymptoticky O(mn), ale pokud se implementuje dobře, je praktický rozdíl malý, navíc podstatně náročnější je pak vyhodnocování jedinců. LOGENPRO: asymptoticky O(mn log m) s vysokou multiplikativní konstantou (unifikace) a za předpokladu vyvážených stromů (logaritmická hloubka). LOGENPRO: velmi náročné pro pravé logické gramatiky, zbytečná režie pro CFG. U GE ale může být celkový běh algoritmu delší než u CFG-GP (uvidíme později).
12 Rozvrhování zkoušek: pěkné výsledky CFG-GP i GE Bader-El-Den et al. (2009): článek o zajímavé aplikaci GP s gramatikou (varianta CFG-GP) skoro z reálného světa: rozvrhování zkoušek. Zavedený problém (Carter 96) s mnoha vyzkoušenými heuristikami. Hyperheuristický přístup. Mé výsledky pro 5 datových sad z 10, kde CFG-GP a GE dopadly zvlášť dobře: car91 car92 tre92 uta92 yor83 Bader-El-Den CFG-GP GE CFG-GP* GE* Nejlepší jiná Fuzzy Fuzzy Fuzzy TM Fuzzy *: mnou zvolená gramatika. Nejlepší jiná: z konstruktivních heuristik, podle Bader-el-Den et al. (2009). 1. a 2. nejlepší výsledek. TM: Tabu-Multi-stage.
13 Shrnutí výsledků Efektivní implementace GE a CFG-GP: o řád rychlejší než jiné. Rozsáhlé srovnání těchto metod a LOGENPRO. Ve vybraných úlohách (používaných i autory LOGENPRO) se neprokázala výhodnost logických gramatik. GE dosahovala obvykle horších výsledků: rozbor příčin. V reálné aplikaci rozvrhování zkoušek: podobné výsledky jako Bader-El-Den et al. (2009), s některými sadami dat i lepší (CFG-GP). Ukázal jsem, že lze zvolit výhodnější gramatiku. Výsledky naznačují, že přínosnější než sofistikované metody GP založeného na gramatikách by mohly být metody generování (evoluce) gramatik vhodných pro úlohu.
14 1 Úvod do problematiky: genetické programování 2 Cíle práce 3 Výsledky práce 4 Reference
15 Reference Mohamed Bahy Bader-El-Den, Riccardo Poli, and Shaheen Fatima. Evolving timetabling heuristics using a grammar-based genetic programming hyperheuristic framework. Memetic Computing, 1(3): , Michael W. Carter, Gilbert Laporte, and Sau Yan Lee. Examination timetabling: Algorithmic strategies and applications. J Oper Res Soc, 47(3): , Michael O Neill and Conor Ryan. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Springer, Peter Whigham. Inductive bias and genetic programming. In First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA, pages , Man Leung Wong and Kwong Sak Leung. Data Mining Using Grammar-Based Genetic Programming and Applications. Kluwer Academic Publishers, Norwell, MA, USA, 2000.
Gramatická evoluce a softwarový projekt AGE
Gramatická evoluce a softwarový projekt AGE Adam Nohejl Matematicko-fyzikální fakulta Univerzita Karlova v Praze http://nohejl.name/ 4. 4. 2010 Poznámka: Prezentace založené na variantách těchto slajdů
Genetické programování
Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace
2015 http://excel.fit.vutbr.cz Kartézské genetické programování s LUT Karolína Hajná* Abstract Tato práce se zabývá problematikou návrhu obvodů pomocí kartézského genetického programování na úrovni třívstupových
Genetické programování 3. část
1 Portál pre odborné publikovanie ISSN 1338-0087 Genetické programování 3. část Macháček Martin Elektrotechnika 08.04.2011 Jako ukázku použití GP uvedu symbolickou regresi. Regrese je statistická metoda
SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR
EVOLUČNÍ NÁVRH A OPTIMALIZACE APLIKAČNĚ SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR Miloš Minařík DVI4, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení
GLOBÁLNÍ OPTIMALIZACE S VYUŽITÍM SOFTWARU MATHEMATICA
GLOBÁLNÍ OPTIMALIZACE S VYUŽITÍM SOFTWARU MATHEMATICA Barbora Tesařová Univerzita Hradec Králové, Fakulta informatiky a managementu Abstrakt: Mnoho úloh reálné praxe může být definována jako optimalizační
2. Modelovací jazyk UML 2.1 Struktura UML 2.1.1 Diagram tříd 2.1.1.1 Asociace 2.1.2 OCL. 3. Smalltalk 3.1 Jazyk 3.1.1 Pojmenování
1. Teoretické základy modelování na počítačích 1.1 Lambda-kalkul 1.1.1 Formální zápis, beta-redukce, alfa-konverze 1.1.2 Lambda-výraz jako data 1.1.3 Příklad alfa-konverze 1.1.4 Eta-redukce 1.2 Základy
Virtuální počítač. Uživatelský program Překladač programovacího jazyka Operační systém Interpret makroinstrukcí Procesor. PGS K.
Virtuální počítač Uživatelský program Překladač programovacího jazyka Operační systém Interpret makroinstrukcí Procesor Virtuální počítač Překladač Překladač : Zdrojový jazyk Cílový jazyk Analytická část:
Evoluční výpočetní techniky (EVT)
Evoluční výpočetní techniky (EVT) - Nacházejí svoji inspiraci v přírodních vývojových procesech - Stejně jako přírodní jevy mají silnou náhodnou složku, která nezanedbatelným způsobem ovlivňuje jejich
Maturitní témata. IKT, školní rok 2017/18. 1 Struktura osobního počítače. 2 Operační systém. 3 Uživatelský software.
Maturitní témata IKT, školní rok 2017/18 1 Struktura osobního počítače Von Neumannova architektura: zakreslete, vysvětlete její smysl a popište, jakým způsobem se od ní běžné počítače odchylují. Osobní
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Navrženy v 60. letech jako experimentální optimalizační metoda. Velice rychlá s dobrou podporou teorie
Evoluční strategie Navrženy v 60. letech jako experimentální optimalizační metoda Založena na reálných číslech Velice rychlá s dobrou podporou teorie Jako první zavedla self-adaptation (úpravu sebe sama)
A0M33EOA: Evoluční optimalizační algoritmy
A0M33EOA: Evoluční optimalizační algoritmy Zkouškový test Pátek 8. února 2011 Vaše jméno: Známka, kterou byste si z předmětu sami dali, a její zdůvodnění: Otázka: 1 2 3 4 5 6 7 8 Celkem Body: 1 3 2 1 4
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
ANALYTICKÉ PROGRAMOVÁNÍ
ZVYŠOVÁNÍODBORNÝCH KOMPETENCÍAKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉUNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ANALYTICKÉ PROGRAMOVÁNÍ Eva Volná Zuzana Komínková Oplatková Roman Šenkeřík OBSAH PRESENTACE
Funkcionální programování. Kristýna Kaslová
Funkcionální programování Kristýna Kaslová Historie Alonzo Church (30. léta) Netypovaný lambda kalkul Základ prvních funkcionálních jazyků Jeho konstrukce i v mnoha současných programovacích jazycích (Python)
Základy umělé inteligence 4. Evoluční výpočetní techniky Jiří Kubaĺık Katedra kybernetiky, ČVUT-FEL http://cw.felk.cvut.cz/doku.php/courses/y33zui/start ppřírodní motivace EVT :: Stochastické optimalizacní
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
Emergence chování robotických agentů: neuroevoluce
Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_146_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Algoritmizace. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Úvod stránky předmětu: https://cw.felk.cvut.cz/doku.php/courses/a4b33alg/start cíle předmětu Cílem je schopnost samostatné implementace různých variant základních
PŘEDNÁŠKA 03 OPTIMALIZAČNÍ METODY Optimization methods
CW057 Logistika (R) PŘEDNÁŠKA 03 Optimization methods Ing. Václav Venkrbec skupina obecných modelů slouží k nalezení nejlepšího řešení problémů a modelovaných reálií přináší řešení: prvky konečné / nekonečné
Logika a logické programování
Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho
Umělá inteligence a rozpoznávání
Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová
Algoritmizace a programování
Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech
Semestrální úloha č. 1 z předmětu Moderní programovací postupy Studenti:...
Semestrální úloha č. 1 z předmětu Naimplementujte komplexní kalkulačku. Naprogramujte základní aritmetické operace (sčítání, odčítání, násobení, dělení), zjištění velikosti a výpočet úhlu (argumentu).
Typované funkcionální genetické programovaní
Typované funkcionální genetické programovaní Tomáš Křen Vedoucí: Roman Neruda Co to je Genetické programování? GP je technika inspirovaná biologickou evolucí, která se snaží pro zadaný problém najít počítačový
Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David
Úvod do Prologu Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David Warren (Warren Abstract Machine) implementace
Základy fuzzy řízení a regulace
Ing. Ondřej Andrš Obsah Úvod do problematiky měkkého programování Základy fuzzy množin a lingvistické proměnné Fuzzyfikace Základní operace s fuzzy množinami Vyhodnocování rozhodovacích pravidel inferenční
Analytické programování v C#
Analytické programování v C# Analytic programming in C# Bc Eva Kaspříková Diplomová práce 2008 UTB ve Zlíně, Fakulta aplikované informatiky, 2008 4 ABSTRAKT Analytické programování je metoda, která generuje
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_148_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.
OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
COMPLEXITY
Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT
Využit ití empirických modelů při i optimalizaci procesu mokré granulace léčivl Jana Kalčíkov ková 5. ročník Školitel: Doc. Ing. Zdeněk k Bělohlav, B CSc. Granulace Prášek Granule Vlhčivo Promíchávání
AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace
AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně
B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11
333LP - lgoritmy a programování - Zkouška z předmětu 333LP Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8]
IB013 Logické programování I Hana Rudová. jaro 2011
IB013 Logické programování I Hana Rudová jaro 2011 Hodnocení předmětu Zápočtový projekt: celkem až 40 bodů Průběžná písemná práce: až 30 bodů (základy programování v Prologu) pro každého jediný termín:
Užití systému Matlab při optimalizaci intenzity tepelného záření na povrchu formy
Užití systému Matlab při optimalizaci intenzity tepelného záření na povrchu formy Radek Srb 1) Jaroslav Mlýnek 2) 1) Fakulta mechatroniky, informatiky a mezioborových studií 2) Fakulta přírodovědně-humanitní
NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk
NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk Pavel Töpfer Katedra softwaru a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer
RELATIONAL DATA ANALYSIS
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO RELATIONAL DATA ANALYSIS RADIM BELOHLAVEK, JAN OUTRATA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM
Popis zobrazení pomocí fuzzy logiky
Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy
Elegantní algoritmus pro konstrukci sufixových polí
Elegantní algoritmus pro konstrukci sufixových polí 22.10.2014 Zadání Obsah Zadání... 3 Definice... 3 Analýza problému... 4 Jednotlivé algoritmy... 4 Algoritmus SA1... 4 Algoritmus SA2... 5 Algoritmus
Přijímací zkouška na navazující magisterské studium 2017
Přijímací zkouška na navazující magisterské studium 27 Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
Paralelní gramatická evoluce pro optimalizaci elektronických obvodů
Paralelní gramatická evoluce pro optimalizaci elektronických obvodů Pavel Ošmera Ústav automatizace a informatiky, fakulta strojního inženýrství Technická 2, 616 69 Brno E-mail: osmera@fme.vutbr.cz Abstrakt
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Doba běhu daného algoritmu/programu. 1. Který fragment programu z následujících dvou proběhne rychleji?
1 Doba běhu daného algoritmu/programu 1. Který fragment programu z následujících dvou proběhne rychleji? int n = 100; int sum = 0; for (i = 0; i < n; i++) for (j = 0; j < i; j++) sum += i+j; int n = 75;
Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví
Genetické algoritmy Informační a komunikační technologie ve zdravotnictví Přehled přednášky Úvod Historie Základní pojmy Principy genetických algoritmů Možnosti použití Související metody AI Příklad problém
/01: Teoretická informatika(ti) přednáška 5
460-4005/01: Teoretická informatika(ti) přednáška 5 prof. RNDr Petr Jančar, CSc. katedra informatiky FEI VŠB-TUO www.cs.vsb.cz/jancar LS 2010/2011 Petr Jančar (FEI VŠB-TU) Teoretická informatika(ti) LS
APLIKACE UMĚLÉ INTELIGENCE V EKONOMICKÉ OBLASTI THE APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE FIELD OF ECONOMICS
APLIKACE UMĚLÉ INTELIGENCE V EKONOMICKÉ OBLASTI THE APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE FIELD OF ECONOMICS Jiří Šťastný, Martin Pokorný, Arnošt Motyčka Mendelova zemědělská a lesnická univerzita
Algoritmy I, složitost
A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??
Maturitní otázky z předmětu PROGRAMOVÁNÍ
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu PROGRAMOVÁNÍ 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu ověřování správnosti
Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
Automatická oprava textu v různých jazycích
Automatická oprava textu v různých jazycích Bc. Petr Semrád, doc. Ing. František Dařena Ph.D., Ústav informatiky, Provozně ekonomická fakulta, Mendelova univerzita v Brně, xsemrad@mendelu.cz, frantisek.darena@mendelu.cz
Václav Matoušek KIV. Umělá inteligence a rozpoznávání. Václav Matoušek / KIV
Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 16. 2. (3h) 2. 3. (4h) 17. 3. (5h) 14. 4. (3h) Úvod, historie a vývoj UI, základní
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Evolučníalgoritmy. Dále rozšiřována, zde uvedeme notaci a algoritmy vznikléna katedře mechaniky, Fakulty stavební ČVUT. Moderní metody optimalizace 1
Evolučníalgoritmy Kategorie vytvořená v 90. letech, aby se sjednotily jednotlivémetody, kterévyužívaly evoluční principy, tzn. Genetickéalgoritmy, Evolučnístrategie a Evoluční programování (v těchto přednáškách
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
Geneticky vyvíjené strategie Egyptská hra SENET
Geneticky vyvíjené strategie Egyptská hra SENET Lukáš Rypáček, lukor@atrey.karlin.mff.cuni.cz Abstrakt V tomto dokumentu popíši jeden příklad použití genetických algoritmů pro počítačové hraní her. V tomto
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 2 METODY VERIFIKACE SYSTÉMŮ NA ČIPU II doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
5.5 Evoluční algoritmy
5.5 Evoluční algoritmy Jinou skupinou metod strojového učení, které vycházejí z biologických principů, jsou evoluční algoritmy. Zdrojem inspirace se tentokrát stal mechanismus evoluce, chápaný jako Darwinův
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Paradigmata programování 1
Paradigmata programování 1 Explicitní aplikace a vyhodnocování Vilém Vychodil Katedra informatiky, PřF, UP Olomouc Přednáška 6 V. Vychodil (KI, UP Olomouc) Explicitní aplikace a vyhodnocování Přednáška
Logika pro sémantický web
ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Logika pro sémantický web Martin Žáček PROČ BALÍČEK? 1. balíček Formální logické systémy
OBJEKTOVÁ KNIHOVNA EVOLUČNÍCH ALGORITMŮ
OBJEKTOVÁ KNIHOVNA EVOLUČNÍCH ALGORITMŮ David Bražina, Hashim Habiballa, Viktor Pavliska Katedra informatiky a počítačů, PřF OU, 30. dubna 22, Ostrava 1 Ústav pro výzkum a aplikace fuzzy modelování, OU,
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11
Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8] count=0 for i in range(1,len(data)):
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
Znalostní technologie proč a jak?
Znalostní technologie proč a jak? Peter Mikulecký Kamila Olševičová Daniela Ponce Univerzita Hradec Králové Motivace 1993 vznik Fakulty řízení a informační technologie na Vysoké škole pedagogické v Hradci
POUŽITÍ GENETICKÝCH ALGORITMŮ PRO ANALÝZU NÁVŠTĚVNOSTI WWW PORTÁLU
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LVII 20 Číslo 6, 2009 POUŽITÍ GENETICKÝCH ALGORITMŮ PRO ANALÝZU NÁVŠTĚVNOSTI
FUNKCIONÁLNÍ A LOGICKÉ PROGRAMOVÁNÍ 3. CVIČENÍ
FUNKCIONÁLNÍ A LOGICKÉ PROGRAMOVÁNÍ 3. CVIČENÍ 2011 Jan Janoušek MI-FLP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Page 1 of 6 Cviceni 3 Obsah seznamy, cons-buňka, car, cdr, first,
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Metody návrhu algoritmů, příklady. IB111 Programování a algoritmizace
Metody návrhu algoritmů, příklady IB111 Programování a algoritmizace 2011 Návrhu algoritmů vybrané metody: hladové algoritmy dynamické programování rekurze hrubá síla tato přednáška: především ilustrativní
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky
Biologicky inspirované výpočty Schématické rozdělení problematiky a výuky 1 Biologicky inspirované výpočty - struktura problematiky Evoluční systémy: evoluční algoritmy, evoluční hardware, víceúčelová
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
NMIN101 Programování 1 2/2 Z --- NMIN102 Programování /2 Z, Zk
NMIN101 Programování 1 2/2 Z --- NMIN102 Programování 2 --- 2/2 Z, Zk Pavel Töpfer Katedra software a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer
NMIN101 Programování 1 2/2 Z --- NMIN102 Programování /2 Z, Zk
NMIN101 Programování 1 2/2 Z --- NMIN102 Programování 2 --- 2/2 Z, Zk Pavel Töpfer Katedra software a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
/1: Teoretická informatika(ti) přednáška 4
456-330/1: Teoretická informatika(ti) přednáška 4 prof. RNDr Petr Jančar, CSc. katedra informatiky FI VŠB-TUO www.cs.vsb.cz/jancar LS 2009/2010 Petr Jančar (FI VŠB-TU) Teoretická informatika(ti) LS 2009/2010
4.2 Syntaxe predikátové logiky
36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a
MATLAB Úvod. Úvod do Matlabu. Miloslav Čapek
MATLAB Úvod Úvod do Matlabu Miloslav Čapek Proč se na FELu učit Matlab? Matlab je světový standard pro výuku v technických oborech využívá ho více než 3500 univerzit licence vlastní tisíce velkých firem
Zobrazte si svazy a uspořádané množiny! Jan Outrata
LatVis Zobrazte si svazy a uspořádané množiny! Jan Outrata Motivace potřeba visualizovat matematické (algebraické) struktury rychle, přehledně a automaticky počítačovými prostředky ruční kreslení je zdlouhavé
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková
Seminář z umělé inteligence. Otakar Trunda
Seminář z umělé inteligence Otakar Trunda Plánování Vstup: Satisficing task: počáteční stav, cílové stavy, přípustné akce Optimization task: počáteční stav, cílové stavy, přípustné akce, ceny akcí Výstup:
Složitosti základních operací B + stromu
Složitosti základních operací B + stromu Radim Bača VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky ŠKOMAM 2010-1- 28/1/2010 Složitosti základních operací B +
Umělá inteligence aneb co už není sci -fi
Umělá inteligence aneb co už není sci -fi doc. Ing. Zuzana Komínková Oplatková, Ph.D. oplatkova@fai.utb.cz Umělá inteligence člověk se snažil vždy vyrobit nějaký stroj nebo systém, který by mu usnadnil
Inovace a zkvalitnění výuky prostřednictvím ICT Základy programování a algoritmizace úloh. Ing. Hodál Jaroslav, Ph.D. VY_32_INOVACE_25 09
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Inovace a zkvalitnění výuky prostřednictvím ICT Základy programování a algoritmizace úloh Operátory Autor:
VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE
VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE Přednáška na semináři CAHP v Praze 4.9.2013 Prof. Ing. Petr Noskievič, CSc. Ing. Miroslav Mahdal, Ph.D. Katedra automatizační
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
11. Číselné a mocninné řady
11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +
SOUBĚŽNÉ UČENÍ V KARTÉZSKÉM GENETICKÉM PROGRAMOVÁNÍ CO-LEARNING IN CARTESIAN GENETIC PROGRAMMING
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS SOUBĚŽNÉ UČENÍ V
Logické programování
30. října 2012 Osnova Principy logického programování 1 Principy logického programování 2 3 1 Principy logického programování 2 3 Paradigmata programování Strukturované programování Procedurální programování
PROGRAMOVÁNÍ V JAZYCE C V PŘÍKLADECH 11 Dynamické datové struktury 11.1 Spojové struktury... 11-1 11.2 Příklad PROG_11-01... 11-2 11.
David Matoušek Programování v jazyce C v pøíkladech Praha 2011 David Matoušek Programování v jazyce C v pøíkladech Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást kopírována nebo
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé