Rozběh a reverzace asynchronního motoru řízeného metodou U/f
|
|
- Emil Němeček
- před 9 lety
- Počet zobrazení:
Transkript
1 Rozběh a reverzace asynchronního motoru řízeného metodou U/f Anotace: Tento dokument vznikl pro interní účely Výzkumného centra spalovacích motorů a automobilů Josefa Božka. Měl by sloužit jako podkladový materiál po další vývoj v oblasti mikroprocesorového řízení asynchronních motorů. Uvedené výsledky jsou specifické pro vybudované výzkumné pracoviště v laboratoři H26 katedry elektrických pohonů a trakce FEL ČVUT Praha. Vypracoval: Petr Kadaník Datum: 10. září 2004 Úvod Asynchronní motor (ASM) je napájen napěťovým IGBT střídačem vyrobeným firmou Elcom. Regulační algoritmus je implementován na řídící desce se signálovým procesorem Motorola DSP56F805 od firmy BetaControl. Motor je řízen metodou U/f bez zpětné otáčkové vazby. ASM nebyl zatěžován, jeho hřídel je však spojena s dalšími rotačními stroji. Spínací PWM frekvence je 8kHz, vkládaná ochranná doba (deadtime) je 4.5 µs. DC meziobvod střídače je napájen z rotačního rekuperačního DC zdroje (dynamo). Nasnímané průběhy by měly sloužit pouze jako ukázka funkčnosti celého pohonu, proto nejsou uvedeny podrobné informace o programové realizaci řídícího algoritmu. Předpokládá se, že regulační struktura i uživatelské rozhraní dozná v nejbližších týdnech poměrně výrazných změn, a proto bude detailnější a komplexnější zpráva vypracována později. Skalární řízení motoru Na signálovém procesoru (DSP) je implementováno jednoduché skalární řízení bez zpětné otáčkové a proudové vazby. Ze zadávané synchronní frekvence je podle tabulky U/f (obr.1) stanovena žádaná velikost amplitudy statorového napětí. Algoritmus obsahuje navíc blok pro eliminaci vlivu kolísání napětí DC meziobvodu a korekci vlivu ochranných dob. Následující vlastnosti a parametry charakterizují celý řídící algoritmus a jeho implementaci na DSP: Spínací PWM frekvence: 8 khz Typ PWM modulace: sinusovka se superponovanou 3-tí harmonickou (zjednodušená varianta) Frekvence obnovování referenční hodnoty PWM modulátoru: 8 khz Takt rychlé regulační smyčky: 125 µs Frekvence vzorkování AD převodníku: 8 khz (125 µs) Snímané analogové veličiny: napětí DC meziobvodu (U DC ), proud DC meziobvodu (I DC ), proud fází A (I A ) a fází B (I B ) řízeného motoru Vyhodnocení otáček motoru z pulsů inkrementálního čidla (1024 pulsů na otáčku) Nastavení rozběhové rampy otáček: 200 ot/s (interní parametr SPEED_INC=250) Velikost vkládané ochranné doby: 4.5 µs Parametry pro korekci vlivu ochranné doby (deadtime): T_OFF = 2.4 µs (vypínací doba IGBT); T_ON = 1.0 µs (zapínací doba IGBT); DT_CURR_TRESH = 1.7 A (hranice hodnoty fázového
2 proudu, do které se velikost korekčního napětí zvyšuje lineárně); DT_CURR_ZERO = 0.1 A (hranice hodnoty fázového proudu, do které se korekce neprovádí); U_SAT = 0.5 V (konstantní napěťový úbytek na IGBT v sepnutém stavu); R_D = Ω (dynamický odpor IGBT v sepnutém stavu) Pozn.: Tyto konkrétní hodnoty nejsou pro tuto studii zvlášť důležité. Jsou zde uvedeny hlavně kvůli eventuálnímu opakování stejného měření v budoucnosti. Převodní tabulka U/f Tabulka závislosti amplitudy statorového napětí na žádané synchronní frekvenci je tvořena pěti body, mezi nimiž je lineární aproximace viz obr.1. Tvar lomené křivky lze samozřejmě přizpůsobit typu aplikace (zátěže) a konkrétnímu poháněnému motoru. Obr.1: Závislost amplitudy statorového napětí na synchronní frekvenci Ve výsledcích jsou uvedeny průběhy pro řízení s i bez korekce ochranných dob. Charakter tabulky U/f byl optimalizován pro případ, kdy je tato korekce zavedena. Je třeba poznamenat, že lze pro případ ignorování vlivu ochranné doby na výstupní napětí střídače upravit parametry tabulky U/f tak, aby byly regulační vlastnosti co nejlepší. Jedná se hlavně o oblast nízkých otáček (pod 500 ot/min), kdy je vliv ochranné doby nejmarkantnější. Korekce vlivu ochranné doby Ochranná doba vkládaná do řídících pulsů pro spínání IGBT tranzistorů s sebou přináší zkreslení výstupního napětí střídače ve srovnání s referenčními signály PWM modulátoru. Velikost ochranné doby bývá často doporučena výrobcem příslušného IGBT modulu, respektive signálového budiče. V našem případě doporučuje firma Mitsubishi (výrobce IGBT modulu s integrovanými budiči) hodnotu 3.5µs, a firma Elcom (výrobce celého střídače) hodnotu 5.5µs. Zkreslení výstupního napětí je při konstantní ochranné době (t DT ) tím znatelnější, čím vyšší je spínací PWM frekvence (f PWM ) a napětí DC meziobvodu (U DC ). Během jedné spínací periody (T PWM =1/f PWM ) lze vypočítat střední hodnotu zkreslujícího napětí dle vztahu t udt = DT UDC [1] TPWM V našem případě používáme spínací frekvenci f PWM =8kHz, takže T PWM =1/8000=125µs. Ochranná doba je nastavena na t DT =4.5µs. Pro napětí DC meziobvodu U DC =100V tedy vzniká vlivem ochranných dob chybové napětí u DT =(4.5/125)*100=3.6V, a pro U DC =500V dokonce u DT =(4.5/125)*500=18V. Výzkumné centrum spalovacích motorů a automobilů Josefa Božka strana 2 / 8
3 Korekce tohoto negativního vlivu se v aplikaci provádí na základě snímání polarity fázových proudů přičtením vypočteného korekčního napětí u DT k referenčním signálům PWM modulátoru. Podrobnější analýzu a zpracování eliminace vlivu ochranných dob na chování střídače přinesou další výzkumné zprávy. Časové průběhy rozběhu a reverzace ASM Chování ASM řízeného metodou U/f bez zpětné otáčkové vazby je přiblíženo pomocí následujících průběhů. Otáčky jsou zadávány po rampě 200 ot/s. Pro různá nastavení pohonu jsou programem PCMaster zaznamenány tyto veličiny: žádané a skutečné otáčky [ot/min] modul statorového proudu [A] zadávaná amplituda statorového napětí [-] (po eliminaci poklesu napětí DC meziobvodu) napětí DC meziobvodu [V] proud DC meziobvodu [A] Jednotlivé průběhy jsou na následujících stránkách uspořádány tak, aby bylo možné jejich snadné vzájemné srovnání. Výzkumné centrum spalovacích motorů a automobilů Josefa Božka strana 3 / 8
4 Rozběh ASM na jmenovité otáčky Napětí DC meziobvodu: 500V DC Žádaná frekvence: 0 50Hz (1500 ot/min) žádané (zelená) a skutečné (červená) otáčky motoru, modul statorového proudu (modrá) žádaná amplituda statorového napětí (modrá), napětí DC meziobvodu (zelená), proud DC meziobvodu (červená) Výzkumné centrum spalovacích motorů a automobilů Josefa Božka strana 4 / 8
5 Reverzace otáček ASM Napětí DC meziobvodu: 500V DC Žádaná frekvence: -50Hz +50Hz Napětí DC meziobvodu: 500V DC Žádaná frekvence: -15Hz +15Hz žádané (zelená) a skutečné (červená) otáčky motoru, modul statorového proudu (modrá) žádaná amplituda statorového napětí (modrá), napětí DC meziobvodu (zelená), proud DC meziobvodu (červená) Výzkumné centrum spalovacích motorů a automobilů Josefa Božka strana 5 / 8
6 Reverzace otáček ASM Napětí DC meziobvodu: 300V DC Žádaná frekvence: -15Hz +15Hz Napětí DC meziobvodu: 100V DC Žádaná frekvence: -15Hz +15Hz žádané (zelená) a skutečné (červená) otáčky motoru, modul statorového proudu (modrá) žádaná amplituda statorového napětí (modrá), napětí DC meziobvodu (zelená), proud DC meziobvodu (červená) Výzkumné centrum spalovacích motorů a automobilů Josefa Božka strana 6 / 8
7 Závěry a vyhodnocení V této zprávě je zachycen aktuální stav (srpen 2004) pracoviště pro řízení asynchronního motoru (ASM) pomocí signálového procesoru Motorola DSP56F805. Prostřednictvím implementace jednoduchého U/f řízení je demonstrována funkčnost celého pohonu, který se kromě řídící desky s DSP skládá z napěťového IGBT střídače firmy Elcom, měřícího rozhraní, asynchronního motoru a pomocných elektroinstalačních zařízení. Stejnosměrný meziobvod je napájen dynamem s možností rekuperace a volbou napětí v rozsahu od 50 do 550V DC. Předpokládá se další vylepšování způsobu řízení ASM. Uvedené výsledky tedy budou sloužit hlavně pro srovnání s pokročilejšími budoucími variantami. Z tohoto dokumentu lze rovněž vycházet při hledání nejlepšího způsobu záznamu veličin řízeného pohonu, a jejich kvalitní a relevantní prezentaci. Následující podkapitoly budou shrnovat poznámky a návrhy ke konkrétním problémům stávajícího pohonu. Rozběhová rampa V aplikaci byla pro zadávání otáček nastavena rampa s růstem 200 otáček za sekundu. Jmenovitých otáček 1500 ot/min tedy motor dosáhne za 7.5s, což je poměrně dlouhá doba. To se nám však pro první pokusy hodí, neboť tím ochráníme motor před proudovým přetěžováním. Rychlejší rampu lze použít v případě nasazení kvalitního regulačního algoritmu, funkčnosti nezávislých nadproudových ochran a znalosti zátěže motoru. Korekce vlivu ochranných dob Uvedené průběhy umožňují srovnávat chování motoru při zavedení i nezavedení korekce vlivu ochranných dob. Z průběhů je evidentní, jak se korekce promítne do charakteru skutečných otáček (vzhledem k referenčním). Díky zavedení této korekce je v motoru udržován poměr U/f dle zvolené tabulky a regulace rychlosti je i při nízkých otáčkách (pod 500 ot/min) mnohem hladší. Volba velikosti ochranné doby Výrobce střídače, firma Elcom, doporučuje zavedení ochranné doby o velikosti 5.5µs. Výrobce IGBT modulu použitém ve střídači, firma Mitsubishi, doporučuje minimálně 3.5µs. Oba tyto údaje jsou pravděpodobně uvažovány při jmenovitém proudu IGBT modulu, tedy 300A. Na výzkumném pracovišti v laboratoři H26 se v prvních fázích výzkumu nepředpokládají proudy vyšší jak 50A (i vzhledem k dimenzování ASM). Proto je celkem bezpečné a z hlediska kvality regulace i výhodné zavádět ochranné doby menší, než doporučené. Při zevrubných testech se střídač choval zcela standardně i s ochrannou dobou 2.5µs. Hodnota ochranné doby doporučená firmou Elcom (5.5µs) je úmyslně nadsazena pravděpodobně kvůli použití optočlenů pro galvanické oddělení PWM signálů pro spínání IGBT tranzistorů. Volba tabulky U/f Závislost amplitudy zadávaného statorového napětí na žádané synchronní frekvenci je dána převodní tabulkou U/f. V této aplikaci je její tvar zvolen za předpokladu použití korekce vlivu ochranných dob. Pokud bychom z nějakého důvodu nechtěli tuto korekci zavádět, pak by bylo nutné pro dosažení lepších regulačních vlastností tuto tabulku upravit. Jde hlavně o oblast nízkých otáček, kdy by bylo zapotřebí motor napěťově nakopnout. Vhodný poměr U/f pro celou pracovní oblast jsem volil experimentálně. Motor jsem řídil naruku zadával jsem frekvenci a napětí nezávisle na sobě a pro nastavenou frekvenci jsem zvolil takové napětí, aby motorem protékal v ustáleném stavu asi třetinový jmenovitý proud. Tímto způsobem jsem získal 5 bodů do U/f tabulky pro frekvence 0, 15, 33, 50 a 80 Hz. Tvar takto vzniklé lomené křivky lze samozřejmě optimalizovat dle různých kritérií. Výzkumné centrum spalovacích motorů a automobilů Josefa Božka strana 7 / 8
8 Zapojení hvězda/trojúhelník Statorové vinutí použitého ASM bylo zapojeno do trojúhelníka. I v dalším výzkumu se předpokládá toto zapojení, neboť s ním lze motor plně výkonově využít i se sníženým napětím. Pro další vývoj doporučuji vypracovat detailní studii o závislosti velikosti referenčního signálu zadávaným do PWM modulátoru řídícího procesoru, a sdruženým napětím na svorkách motoru (respektive jeho první harmonické). K tomu bude ovšem zapotřebí důkladné měření s použitím adekvátní měřící techniky. Tyto informace budou velmi užitečné i při eventuální realizaci vektorového řízení, jenž vyžaduje znalost o parametrech náhradního obvodu ASM a někdy i informaci o svorkovém napětí motoru. Co dál? Uvedené výsledky a úvahy by měly posloužit jako podnět pro diskusi o dalším směřování vývoje aplikací pro mikroprocesorové řízení ASM s použitím stávajícího vybavení pracoviště. Nabízí se možnost implementace skalárního řízení s otáčkovou a proudovou regulací, vektorového řízení a moderních algoritmů pro identifikaci parametrů asynchronního motoru, případně diagnostiku jeho stavu. Výzkumné centrum spalovacích motorů a automobilů Josefa Božka strana 8 / 8
Srovnání kvality snímání analogových veličin řídících desek se signálovým procesorem Motorola DSP56F805. Úvod. Testované desky
Srovnání kvality snímání analogových veličin řídících desek se signálovým procesorem Motorola DSP56F805 Anotace: Tento dokument vznikl pro interní účely Výzkumného centra spalovacích motorů a automobilů
POPIS PROGRAMU PRO DSP
7 POPIS PROGRAMU PRO DSP Navržený algoritmus pro řízení rychlosti ASM bez využití zpětné otáčkové vazby je prováděn signálovým procesorem Motorola DSP56F805. Samotný program jsem psal v jazyku C, přičemž
Střídavé měniče. Přednášky výkonová elektronika
Přednášky výkonová elektronika Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Vstupní a výstupní proud střídavý Rozdělení střídavých měničů f vst
PRAKTICKÁ REALIZACE A VÝSLEDKY
8 PRAKTICKÁ REALIZACE A VÝSLEDKY Celý pohon byl realizován v laboratoři H26 Katedry elektrických pohonů a trakce v Praze Dejvicích. Laboratoř umožňuje snadnou instalaci elektrických motorů na testovací
5. POLOVODIČOVÉ MĚNIČE
5. POLOVODIČOVÉ MĚNIČE Měniče mění parametry elektrické energie (vstupní na výstupní). Myslí se tím zejména napětí (střední hodnota) a u střídavých i kmitočet. Obr. 5.1. Základní dělení měničů 1 Obr. 5.2.
i β i α ERP struktury s asynchronními motory
1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází
Řízení asynchronních motorů
Řízení asynchronních motorů Ing. Jiří Kubín, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
PROGRAMOVÉ A PŘÍSTROJOVÉ VYBAVENÍ
6 PROGRAMOVÉ A PŘÍSTROJOVÉ VYBAVENÍ V této kapitole jsou popsány nejdůležitější přístrojové a programové prostředky jenž jsem využíval v této disertační práci. Zevrubnou představu o struktuře celého systému
MS - polovodičové měniče POLOVODIČOVÉ MĚNIČE
POLOVODIČOVÉ MĚNIČE Měniče mění parametry elektrické energie (vstupní na výstupní). Myslí se tím zejména napětí (u stejnosměrných střední hodnota) a u střídavých efektivní hodnota napětí a kmitočet. Obr.
Moderní trakční pohony Ladislav Sobotka
Moderní trakční pohony Ladislav Sobotka ŠKODA ELECTRIC a.s. Trakční pohon pro 100% nízkopodlažní tramvaje ŠKODA Modulární konstrukce 100% nízká podlaha Plně otočné podvozky Individuální pohon každého kola
popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu
9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad
1. Regulace otáček asynchronního motoru - skalární řízení
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
Mechatronické systémy struktury s asynchronními motory
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
Typové příklady zapojení frekvenčních měničů TECO INVERTER 7300 CV. Verze: duben 2006
RELL, s.r.o., Centrum 7/, Tel./Fax/Zázn.: + SK-08 Dubnica nad áhom, Mobil: + 90 6 866 prevádzka: Strážovská 97/8, SK-08 ová Dubnica E-mail: prell@prell.sk www.prell.sk Typové příklady zapojení frekvenčních
Skalární řízení asynchronních motorů malých výkonů
Skalární řízení asynchronních motorů malých výkonů Vít Řehák TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
X14POH Elektrické POHony. K13114 Elektrických pohonů a trakce. elektrický pohon. Silnoproudá (výkonová) elektrotechnika. spotřeba el.
Předmět: Katedra: X14POH Elektrické POHony K13114 Elektrických pohonů a trakce Přednášející: Prof. Jiří PAVELKA, DrSc. Silnoproudá (výkonová) elektrotechnika podíl K13114 na výuce technická zařízení elektráren
9. Harmonické proudy pulzních usměrňovačů
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Skalární řízení asynchronních motorů
Vlastnosti pohonů s rekvenčním řízením asynchronních motorů Frekvenčním řízením střídavých motorů lze v současné době docílit téměř vlastností stejnosměrných regulačních pohonů a lze očekávat ještě další
Stejnosměrný generátor DYNAMO
Stejnosměrný generátor DYNAMO Cíle cvičení: Naučit se - stavba stejnosměrných strojů hlavní části, - svorkovnice, - schématické značky, - náhradní schéma zdroje napětí, - vnitřní indukované napětí, - magnetizační
Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty
Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty stejnosměrného napětí U dav Užití v pohonech: řízení stejnosměrných
Zkušenosti z návrhu víceúčelového frekvenčního měniče
Zkušenosti z návrhu víceúčelového frekvenčního měniče Pavel Přikryl VUES Brno s.r.o. Frekvenční měniče firmy Control Techniques typu UNIDRIVE SPMD nabízí ve svém základu čtyři různé pracovní módy přepnutím
VEKTOROVÉ ŘÍZENÍ VYSOKOOTÁČKOVÉHO SYNCHRONNÍHO STROJE Vector Control of High-Speed Synchronous Motor
odborný seminář Jindřichův Hradec, 8. až 9. května 9 VEKTOROVÉ ŘÍZENÍ VYSOKOOTÁČKOVÉHO SYNCHRONNÍHO STROJE Vector Control of High-Speed Synchronous Motor Martin Novák Abstrakt: Paper deals with torque
Řídící a regulační obvody fázové řízení tyristorů a triaků
A10-1 Řídící a regulační obvody fázové řízení tyristorů a triaků.puls.výstup.proud Ig [ma] pozn. U209B DIP14 155 tacho monitor, softstart, U211B DIP18 155 proud.kontrola, softstart, tacho monitor, limitace
Spojité řízení Řídící úhly tyristorů se mění spojitě. Řízení je sloţitější, ale napětí má výhodnější průběh. I tak obsahuje vyšší harmonické.
Frekvenční měniče Tyristorové měniče (klasické): o přímé frekvenční měniče cyklokonvertory o podsynchronní kaskády Nepřímé frekvenční měniče Přímé frekvenční měniče (cyklokonvertory) Jsou to přímé frekvenční
Pojistka otáček PO 1.1
Pojistka otáček PO 1.1 1. Účel použití: 1.1. Signalizátor dosažení maximálních dovolených otáček turbiny (dále jen SMDO) je určen pro automatickou elektronickou signalizaci překročení zadaných otáček rotoru
Třísystémová lokomotiva ŠKODA 109E řada 380
Třísystémová lokomotiva ŠKODA 109E řada 380 Historie elektrických výzbrojí ŠKODA Odporová regulace stejnosměrných trakčních motorů Pulzní regulace stejnosměrných trakčních motorů Řízené tyristorové usměrňovače
Příloha P1 Určení parametrů synchronního generátoru, měření provozních a poruchových stavů synchronního generátoru
synchronního generátoru - 1 - Příloha P1 Určení parametrů synchronního generátoru, měření provozních a poruchových stavů synchronního generátoru Soustrojí motor-generátor v laboratoři HARD Tab. 1 Štítkové
Část pohony a výkonová elektronika 1.Regulace otáček asynchronních motorů
1. Regulace otáček asynchronních motorů 2. Regulace otáček stejnosměrných cize buzených motorů 3. Regulace otáček krokových motorů 4. Jednopulzní usměrňovač 5. Jednofázový můstek 6. Trojpulzní usměrňovač
Stejnosměrné měniče. přednášky výkonová elektronika
přednášky výkonová elektronika Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a ovace výuky technických předmětů. Stejnosměrné měniče - charakteristika vstupní proud stejnosměrný, výstupní
Mechatronické systémy se spínanými reluktančními motory
Mechatronické systémy se spínanými reluktančními motory 1. SRM Mechatronické systémy se spínaným reluktančním motorem (Switched Reluctance Motor = SRM) mají několik předností ve srovnání s jinými typy
Elektrické stroje. Jejich použití v automobilech. Použité podklady: Doc. Ing. Pavel Rydlo, Ph.D., TU Liberec
Elektrické stroje Jejich použití v automobilech Použité podklady: Doc. Ing. Pavel Rydlo, Ph.D., TU Liberec Stejnosměrné motory (konstrukční uspořádání motoru s cizím buzením) Pozor! Počet pólů nemá vliv
Aplikace měničů frekvence u malých větrných elektráren
Aplikace měničů frekvence u malých větrných elektráren Václav Sládeček VŠB-TU Ostrava, FEI, Katedra elektroniky, 17. listopadu 15, 708 33 Ostrava - Poruba Abstract: Příspěvek se zabývá možnostmi využití
Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická
Digital Control of Electric Drives Vektorové řízení asynchronních motorů České vysoké učení technické Fakulta elektrotechnická B1M14DEP O. Zoubek 1 MOTIVACE Nevýhody skalárního řízení U/f: Velmi nízká
Rezonanční řízení s regulací proudu
1 Rezonanční řízení s regulací proudu Ing. Ladislav Kopecký, 15.12. 2013 Provozování střídavého motoru v režimu sériové rezonance vyžaduje nižší napětí než napájení stejného motoru ze sítě 230V/50Hz. To
Stejnosměrné generátory dynama. 1. Princip činnosti
Stejnosměrné generátory dynama 1. Princip činnosti stator dynama vytváří budící magnetické pole v tomto poli se otáčí vinutí rotoru s jedním závitem v závitech rotoru se indukuje napětí změnou velikosti
1. Obecná struktura pohonu s napěťovým střídačem
1. Obecná struktura pohonu s napěťovým střídačem Topologicky můžeme pohonný systém s asynchronním motorem, který je napájen z napěťového střídače, rozdělit podle funkce a účelu do následujících částí:
Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II. Vítězslav Stýskala, Jan Dudek únor Elektrické stroje
Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II Vítězslav Stýskala, Jan Dudek únor 2007 Elektrické stroje jsou zařízení, která
FEL ČVUT Praha. Semestrální projekt předmětu X31SCS Struktury číslicových systémů. Jan Kubín
FEL ČVUT Praha Semestrální projekt předmětu X31SCS Struktury číslicových systémů 2. Rozdělení napájecích zdrojů Stručně 5. Problematika spín. zdrojů Rozdělení napájecích zdrojů Spínané zdroje obecně Blokové
Vývojové práce v elektrických pohonech
Vývojové práce v elektrických pohonech Pavel Komárek ČVUT Praha, Fakulta elektrotechnická, K 31 Katedra elektrických pohonů a trakce Technická, 166 7 Praha 6-Dejvice Konference MATLAB 001 Abstrakt Při
ELEKTRICKÉ STROJE - POHONY
ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 1.5.2 DERIVAČNÍ MOTOR SCHÉMA ZAPOJENÍ 1.5.2 DERIVAČNÍ MOTOR PRINCIP ČINNOSTI Po připojení zdroje stejnosměrného napětí na svorky motoru začne procházet
Základy elektrotechniky 2 (21ZEL2)
Základy elektrotechniky 2 (21ZEL2) Přednáška 7-8 Jindřich Sadil Generátory střídavého proudu osnova Indukované napětí vodiče a závitu Mg obvody Úvod do strojů na střídavý proud Synchronní stroje princip,
Základy elektrotechniky
Základy elektrotechniky Přednáška Stejnosměrné stroje 1 Konstrukční uspořádání stejnosměrného stroje 1 - hlavní póly 5 - vinutí rotoru 2 - magnetický obvod statoru 6 - drážky rotoru 3 - pomocné póly 7
VYSOKORYCHLOSTNÍ SYNCHRONNÍ STROJE S PERMANENTNÍMI MAGNETY REGULACE MOMENTU High-speed Permanent Magnet Synchronous Motors Torque Control
VYSOKORYCHLOSTNÍ SYNCHRONNÍ STROJE S PERMANENTNÍMI MAGNETY REGULACE MOMENTU High-speed Permanent Magnet Synchronous Motors Torque Control Martin Novák, Marek Čambál, Jaroslav Novák Abstrakt: Příspěvek
REALIZACE VÝKONOVÉ ČÁSTI
VZ /K/ REALIZACE VÝKONOVÉ ČÁSTI NAPĚŤOVÉHO IGBT STŘÍDAČE Interní zpráva katedry K FEL ČVUT Praha Vypracoval: Petr Kadaník Aktualizováno:.. Jaroslav Hybner V této zprávě je stručně popsán počátek a současný
TGZ. 2-osé digitální servozesilovače
TGZ 2-osé digitální servozesilovače Digitální servozesilovače TGZ TGZ představuje nový koncept měničů pro více-osé aplikace. TGZ v sobě zahrnuje moderní prvky digitálního řízení, jednoduché přednastavené
ZÁSADY PARALELNÍHO A SÉRIOVÉHO ŘAZENÍ SOUČÁSTEK VE VÝKONOVÝCH OBVODECH
ZÁSADY PARALELNÍHO A SÉRIOVÉHO ŘAZENÍ SOUČÁSTEK VE VÝKONOVÝCH OBVODECH Jestliže je v dané aplikaci vyžadován větší proud než jaký je možno získat použitím jedné součástky, je třeba součástky zapojovat
REKONSTRUKCE REGULOVANÝCH POHONŮ VÁLCOVACÍ LINKY TANDEM NA VŠB-TU FMMI OSTRAVA
REKONSTRUKCE REGULOVANÝCH POHONŮ VÁLCOVACÍ LINKY TANDEM NA VŠB-TU FMMI OSTRAVA Václav Sládeček, Pavel Hlisnikovský, Petr Bernat *, Ivo Schindler **, VŠB TU Ostrava FEI, Katedra výkonové elektroniky a elektrických
Merkur perfekt Challenge Studijní materiály
Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 11 Název úlohy: Krokový motor a jeho řízení Anotace: Úkolem
OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ
OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ Odlišnosti silových a ovládacích obvodů Logické funkce ovládacích obvodů Přístrojová realizace logických funkcí Programátory pro řízení procesů Akční členy ovládacích
1 JEDNOFÁZOVÝ INDUKČNÍ MOTOR
1 JEDNOFÁZOVÝ INDUKČNÍ MOTOR V této kapitole se dozvíte: jak pracují jednofázové indukční motory a jakým způsobem se u různých typů vytváří točivé elektromagnetické pole, jak se vypočítají otáčky jednofázových
Odometrie s řízením rychlosti motorů pomocí PWM. Vzorce pro výpočet konstanty nastavení duty pro instrukci pwmout
Odometrie s řízením rychlosti motorů pomocí PWM Vzorce pro výpočet konstanty nastavení duty pro instrukci pwmout Jízda po poloměru větším než 83 mm duty = 1023 * (r 83)/(r + 83) pro poloměr menší než 83
Zaměření Pohony a výkonová elektronika. verze 9. 10. 2014
Otázky a okruhy problematiky pro přípravu na státní závěrečnou zkoušku z oboru PE v navazujícím magisterském programu strukturovaného studia na FEL ZČU v ak. r. 2015/16 Soubor obsahuje tematické okruhy
Základní zapojení stykačových kombinací. Stykač. UČEBNÍ TEXT Elektrická instalace v budovách občanské vybavenosti
Základní zapojení stykačových kombinací Stykač Stykač je zařízení pro spínání nebo rozepínání elektrického spojení. Stykače se používají v ovládacích obvodech, např. jako řídicí stykače pro střední výkony.
Obr. 1 Činnost omezovače amplitudy
. Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti
11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr
11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,
Mgr. Ladislav Blahuta
Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. výuková sada ZÁKLADNÍ
KONTAKT Řízení motorů pomocí frekvenčních měničů. Autor: Bc. Pavel Elkner Vedoucí: Ing. Jindřich Fuka
KONTAKT 2010 Řízení motorů pomocí frekvenčních měničů Autor: Bc. Pavel Elkner (elknerp@seznam.cz) Vedoucí: Ing. Jindřich Fuka (fuka@fel.cvut.cz) 1/5 Hardware Model s asynchronním motorem Modul s automatem
Název: Autor: Číslo: Únor 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Střídavé motory Synchronní motor Ing. Radovan
Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek
Řídicí obvody (budiče) MOSFET a IGBT Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Řídicí obvody (budiče) MOSFET a IGBT Hlavní požadavky na ideální budič Galvanické
A45. Příloha A: Simulace. Příloha A: Simulace
Příloha A: Simulace A45 Příloha A: Simulace Pro ověření výsledků z teoretické části návrhu byl využit program Matlab se simulačním prostředím Simulink. Simulink obsahuje mnoho knihoven s bloky, které dokáží
Příloha 3 Určení parametrů synchronního generátoru [7]
Příloha 3 Určení parametrů synchronního generátoru [7] Příloha 3.1 Měření charakteristiky naprázdno a nakrátko synchronního stroje Měření naprázdno: Teoretický rozbor: při měření naprázdno je zjišťována
1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs
1 Zadání 1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda integrační obvod se zadanou časovou konstantu: τ 1 = 62µs derivační obvod se zadanou časovou konstantu: τ 2 = 320µs Možnosti
Synchronní stroje 1FC4
Synchronní stroje 1FC4 Typové označování generátorů 1F. 4... -..... -. Točivý elektrický stroj 1 Synchronní stroj F Základní provedení C Provedení s vodním chladičem J Osová výška 560 mm 56 630 mm 63 710
Metody řízení moderních soustav s
Metody řízení moderních soustav s akumulací Název elektrické prezentace energie Autoři: Ing. Martin Sobek Ph.D. Ing. Aleš Havel Ph.D. Rožnov Pod Radhoštěm, Perspektivy Elektroniky 2016 Úvod měniče pro
Zvyšující DC-DC měnič
- 1 - Zvyšující DC-DC měnič (c) Ing. Ladislav Kopecký, 2007 Na obr. 1 je nakresleno principielní schéma zapojení zvyšujícího měniče, kterému se také říká boost nebo step-up converter. Princip je založen,
Obr.3-1: Kategorie elektrických motorů
3 SŘÍDAVÉ POHONY Klasické DC motory s mechanickým komutátorem pomalu, ale jistě ztrácejí svůj podíl na pohonářském trhu a jsou postupně nahrazovány buď asynchronními nebo synchronními motory. Na obr.3-1
Nový jednoduchý měnič
Nový jednoduchý měnič Potravinářské stroje, míchače Dopravníkové systémy Ventilátory, čerpadla Dřevozpracující stroje Velký výkon v kompaktním přístroji Vítejte v nové generaci frekvenčních měničů MICRO
LC oscilátory s transformátorovou vazbou
1 LC oscilátory s transformátorovou vazbou Ing. Ladislav Kopecký, květen 2017 Základní zapojení oscilátoru pro rezonanční řízení motorů obsahuje dva spínače, které spínají střídavě v závislosti na okamžité
BKD/ BKF 7000 tyristorové DC měniče od 5 do 1100 kw
BKD/ BKF 7000 tyristorové DC měniče od 5 do 1100 kw BKD/ BKF 7000 - DC měniče pro aplikace do 1100 kw Firma Baumüller vyvinula novou řadu DC měničů BKD/ BKF 7000 nahrazující osvědčenou serii BKD/ BKF 6000.
VY_32_INOVACE_AUT-2.N-06-DRUHY AUTOMATICKEHO RIZENI. Střední odborná škola a Střední odborné učiliště, Dubno
Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_AUT-2.N-06-DRUHY AUTOMATICKEHO RIZENI Střední odborná škola a Střední odborné učiliště, Dubno
Maturitní témata. 1. Elektronické obvody napájecích zdrojů. konstrukce transformátoru. konstrukce usměrňovačů. konstrukce filtrů v napájecích zdrojích
Maturitní témata Studijní obor : 26-41-L/01 Mechanik elektrotechnik pro výpočetní a elektronické systémy Předmět: Elektronika a Elektrotechnická měření Školní rok : 2018/2019 Třída : MEV4 1. Elektronické
Základní pojmy z oboru výkonová elektronika
Základní pojmy z oboru výkonová elektronika prezentace k přednášce 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. výkonová elektronika obor,
ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.
SG 2000 je vysokofrekvenční generátor s kmitočtovým rozsahem 100 khz - 1 GHz (s option až do 2 GHz), s možností amplitudové i kmitočtové modulace. Velmi užitečnou funkcí je také rozmítání výstupního kmitočtu
Energetická bilance elektrických strojů
Energetická bilance elektrických strojů Jiří Kubín TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
TGZ. 2-osé digitální servozesilovače
TGZ 2-osé digitální servozesilovače Digitální servozesilovače TGZ TGZ představuje nový koncept měničů pro více-osé aplikace. TGZ v sobě zahrnuje moderní prvky digitálního řízení, jednoduché přednastavené
Zásady regulace - proudová, rychlostní, polohová smyčka
Zásady regulace - proudová, rychlostní, polohová smyčka 23.4.2014 Schématické znázornění Posuvová osa s rotačním motorem 3 regulační smyčky Proudová smyčka Rychlostní smyčka Polohová smyčka Blokové schéma
Mechatronické systémy s elektronicky komutovanými motory
Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current
Řada Popis Jmenovitý výkon motoru Vybrané typy Kompaktní měnič pro všeobecné použití se skalárním řízením V/f
FREKVENČNÍ MĚNIČE Standardní frekvenční měniče (3G3JV) Kompaktní měnič pro všeobecné použití se skalárním řízením V/f Pro výkon motoru 0,1 až Programovací konzole se zabudovaným potenciometrem Zadání frekvence
1.1 Princip činnosti el. strojů 1.2 Základy stavby el. strojů
Elektrické stroje 1. Základní pojmy 2. Rozdělení elektrických strojů 1.1 Princip činnosti el. strojů 1.2 Základy stavby el. strojů 2.1 Transformátory 2.2 Asynchronní motory 2.3 Stejnosměrné generátory
Osnova kurzu. Elektrické stroje 2. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3
Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 1) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických
Kompenzační transformátory proudu Proudové senzory
Kompenzační transformátory proudu Proudové senzory Edisonova 3, Brno 612 00 www.ghvtrading.cz Tel.: +420 541 235 386 Fax: +420 541 235 387 E-Mail: ghv@ghvtrading.cz CCT 31.3 RMS (Kompenzační proudový transformátor,
Synchronní stroje. Φ f. n 1. I f. tlumicí (rozběhové) vinutí
Synchronní stroje Synchronní stroje n 1 Φ f n 1 Φ f I f I f I f tlumicí (rozběhové) vinutí Stator: jako u asynchronního stroje ( 3 fáz vinutí, vytvářející kruhové pole ) n 1 = 60.f 1 / p Rotor: I f ss.
LC oscilátory s transformátorovou vazbou II
1 LC oscilátory s transformátorovou vazbou II Ing. Ladislav Kopecký, květen 2017 V první části článku jsme skončili u realizací oscilátoru s reálným spínačem. Nyní se opět vrátíme k základní idealizované
TGZ. 2-osé digitální servozesilovače
TGZ 2-osé digitální servozesilovače Digitální servozesilovače TGZ TGZ představuje nový koncept měničů pro více-osé aplikace. TGZ v sobě zahrnuje moderní prvky digitálního řízení, jednoduché přednastavené
ÚVOD. Obr.2-1: Srovnání světové produkce elektromotorů v letech 1996 a 2001
2 ÚVOD Elektrické pohony mají jakožto řízené elektromechanické měniče energie velký význam ve většině technologických a výrobních procesů. Tyto systémy se používají zejména v oblastech jako jsou: obráběcí
Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C
26. března 2015 1 Elektro-motor AC DC Asynchronní Synchronní Ostatní DC motory AC brushed Univerzální Vícefázové Jednofázové Sinusové Krokové Brushless Reluktanční Klecový stroj Trvale připojeny C Pomocná
Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C
5. října 2015 1 Elektro-motor AC DC Asynchronní Synchronní Ostatní DC motory AC brushed Univerzální Vícefázové Jednofázové Sinusové Krokové Brushless Reluktanční Klecový stroj Trvale připojeny C Pomocná
Elektrické pohony pro elektromobily
ČVUT FEL Katedra elektrických pohonů a trakce Elektrické pohony pro elektromobily Ing. Petr SÝKORA České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektrických pohonů a trakce Technická
Servopohony. Servozesilovače AKD
Servopohony Servozesilovače AKD Komplexní dodávky a zprovoznění servopohonů, dodávky řídicích systémů. Česká společnost TG Drives dodává již od roku 1995 servopohony pro stroje a zařízení v průmyslové
PŘIROZENÉ ŘÍZENÍ. 5.1 Použitý matematický model ASM. Základní vlastnosti NFO
5 PŘIOZENÉ ŘÍZENÍ V roce 1994 byla švédským vědcem agnarem Jönssonem prvně publikována metoda pro řízení asynchronního motoru (ASM) bez použití čidla rychlosti pod názvem Natural Field Orientation (NFO).
Test. Kategorie M. 1 Na obrázku je průběh napětí, sledovaný osciloskopem. Jaké je efektivní napětí signálu?
Oblastní kolo, Vyškov 2006 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Na obrázku je průběh napětí, sledovaný osciloskopem. Jaké je efektivní napětí
Elektrické stroje pro hybridní pohony. Indukční stroje asynchronní motory. Doc.Ing.Pavel Mindl,CSc. ČVUT FEL Praha
Indukční stroje asynchronní motory Doc.Ing.Pavel Mindl,CSc. ČVUT FEL Praha 1 Indukční stroj je nejpoužívanější a nejrozšířenější elektrický točivý stroj a jeho význam neustále roste. Rozdělení podle toku
SIMULACE JEDNOFÁZOVÉHO MATICOVÉHO MĚNIČE
SIMULE JEDNOFÁZOVÉHO MATICOVÉHO MĚNIČE M. Kabašta Žilinská univerzita, Katedra Mechatroniky a Elektroniky Abstract In this paper is presented the simulation of single-phase matrix converter. Matrix converter
3. VYBAVENÍ LABORATOŘÍ A POKYNY PRO MĚŘENÍ
9. V laboratořích a dílnách, kde se provádí obsluha nebo práce na elektrickém zařízení s provozovacím napětím vyšším než bezpečným, musí být nevodivá podlaha, kterou je nutno udržovat v suchém a čistém
Základy logického řízení
Základy logického řízení 11/2007 Ing. Jan Vaňuš, doc.ing.václav Vrána,CSc. Úvod Řízení = cílené působení řídicího systému na řízený objekt je členěno na automatické a ruční. Automatickéřízení je děleno
5. A/Č převodník s postupnou aproximací
5. A/Č převodník s postupnou aproximací Otázky k úloze domácí příprava a) Máte sebou USB flash-disc? b) Z jakých obvodů se v principu skládá převodník s postupnou aproximací? c) Proč je v zapojení použit
Frekvenční měniče a servomotory Frekvenční měnič D2
intelligence IN MOTION 1.6 Plně digitální frekvenční měniče HIWIN D2 s vektorovým řízením jsou speciálně navrženy pro použití se servomotory HIWIN. Pro různé druhy použití jsou k dispozici různá provedení
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola
Novar 314RS. Regulátor jalového výkonu. Vlastnosti. pro kompenzaci rychlých změn účiníku (rozběh motorů atd.)
Novar 314RS Regulátor jalového výkonu Vlastnosti pro kompenzaci rychlých změn účiníku (rozběh motorů atd.) 8 reléových stupňů pro standardní kompenzaci + alarmové relé 6 tranzistorových výstupů pro připojení
Modernizace trakčních pohonů vozidel elektrické trakce
Stanislav Gregora, Jaroslav Novák Modernizace trakčních pohonů vozidel elektrické trakce Klíčová slova: bezkomutátorové trakční motory, střídač, asynchronní motor, synchronní motor s permanentními magnety,