MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Podobné dokumenty
MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

kolík je v jedné nebo více spojovaných součástech usazen s předpětím způsobeným buď přesahem naráženého kolíku vůči díře, nebo kuželovitostí

Namáhání na tah, tlak

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Části a mechanismy strojů 1 KKS/CMS1

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Ing. Jan BRANDA PRUŽNOST A PEVNOST

TLUSTOSTĚNNÉ ROTAČNĚ SYMETRICKÉ VÁLCOVÉ NÁDOBY. Autoři: M. Zajíček, V. Adámek

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

POŽADAVKY KE ZKOUŠCE Z PP I

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Plán přednášek a úkolů z předmětu /01

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Kapitola vstupních parametrů

Ing. Jan BRANDA PRUŽNOST A PEVNOST

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN A ASME

OVMT Mechanické zkoušky

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

Různé druhy spojů a spojovací součásti (rozebíratelné spoje)

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Otázky pro Státní závěrečné zkoušky

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

Náhradní ohybová tuhost nosníku

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

Únosnost kompozitních konstrukcí

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí Analýza deformací 185

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

České vysoké učení technické v Praze, Fakulta strojní. Pevnost a životnost Jur II. Pevnost a životnost. Jur II

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Spolehlivostní a citlivostní analýza vrtule. Západočeská univerzita v Plzni Katedra mechaniky Bc. Lukáš Němec 18. září 2017

Dovolené napětí, bezpečnost Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

10.1. Spoje pomocí pera, klínu. hranolového tvaru (u klínů se skosením na jedné z ploch) kombinaci s jinými druhy spojů a uložení tak, aby

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah

Příloha č. 1. Pevnostní výpočty

VY_32_INOVACE_C 07 03

BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL.

trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem.

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Katedra geotechniky a podzemního stavitelství

Příloha-výpočet motoru

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Nejpoužívanější podmínky plasticity

Části a mechanismy strojů 1 KKS/CMS1

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Cvičení 7 (Matematická teorie pružnosti)

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

Nelineární problémy a MKP

Transkript:

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE September 2017 (číslo 4) Ročník piaty ISSN 1339-3189 Kontakt: info@mladaveda.sk, tel.: +421 908 546 716, www.mladaveda.sk Fotografia na obálke: Altenberger Dom, Nemecko. Branislav A. Švorc, foto.branisko.at REDAKČNÁ RADA doc. Ing. Peter Adamišin, PhD.(Katedra environmentálneho manažmentu, Prešovská univerzita, Prešov) doc. Dr. Pavel Chromý, PhD. (Katedra sociální geografie a regionálního rozvoje, Univerzita Karlova, Praha) prof. Dr. Paul Robert Magocsi (Chair of Ukrainian Studies, University of Toronto; Royal Society of Canada) Ing. Lucia Mikušová, PhD. (Ústav biochémie, výživy a ochrany zdravia, Slovenská technická univerzita, Bratislava) doc. Ing. Peter Skok, CSc. (Ekomos s. r. o., Prešov) prof. Ing. Róbert Štefko, Ph.D. (Katedra marketingu a medzinárodného obchodu, Prešovská univerzita, Prešov) prof. PhDr. Peter Švorc, CSc.,predseda (Inštitút histórie, Prešovská univerzita, Prešov) doc. Ing. Petr Tománek, CSc. (Katedra veřejné ekonomiky, Vysoká škola báňská - Technická univerzita, Ostrava) REDAKCIA PhDr. Magdaléna Keresztesová, PhD. (Fakulta stredoeurópskych štúdií UKF, Nitra) Mgr. Martin Hajduk (Inštitút histórie, Prešovská univerzita, Prešov) RNDr. Richard Nikischer, Ph.D. (Ministerstvo pro místní rozvoj ČR, Praha) Mgr. Branislav A. Švorc, PhD., šéfredaktor (Vydavateľstvo UNIVERSUM, Prešov) PhDr. Veronika Trstianska, PhD. (Ústav stredoeurópskych jazykov a kultúr FSŠ UKF, Nitra) Mgr. Veronika Zuskáčová (Geografický ústav, Masarykova univerzita, Brno) VYDAVATEĽ Vydavateľstvo UNIVERSUM, spol. s r. o. www.universum-eu.sk Javorinská 26, 080 01 Prešov Slovenská republika Mladá veda / Young Science. Akékoľvek šírenie a rozmnožovanie textu, fotografií, údajov a iných informácií je možné len s písomným povolením redakcie.

KONTROLA ZAJIŠTĚNÍ FUNKCE SPOJENÍ NÁBOJE S HŘÍDELEM POMOCÍ PŘESAHU CONTROL TO ENSURE THE HUB CONNECTION WITH THE SHAFT BY MEANS OF OVERHANG Tomáš Náhlík, Petr Hrubý 1 Tomáš Náhlík působí jako odborný asistent na Katedře informatiky a přírodních věd, Ústavu technicko-technologického, Vysoké školy technické a ekonomické v Českých Budějovicích v České republice. V rámci své odborné činnosti na pracovišti se věnuje problematice zpracování dat a analýze obrazu, aplikacím a výuce matematiky, fyziky a informatiky. Petr Hrubý působí jako docent na Katedře strojírenství Ústavu technicko-technologického Vysoké školy technické a ekonomické v Českých Budějovicích v České republice. Ve svém výzkumu se věnuje problematice matematického modelování strojních součástí se zaměřením na dimenzování rotujících částí mechanismů strojů. Tomáš Náhlík is an assistant professor at the Department of Informatics and Natural Sciences, Faculty of Technology, Institute of Technology and Business in České Budějovice, Czech Republic. As part of his professional work at the workplace he deals with data processing and analysis of images, applications and teaching of mathematics, physics and informatics. Petr Hrubý works as an asociated profesor at the Department of Mechanical Engineering of the Faculty of Technology at the Institute of Technology and Bussines in České Budějovice in Czech Republic. Him research is devoted to problems of mathematical modeling of machine parts with focus on dimensioning of rotating parts of machine mechanisms. Abstract The problems described in the contribution will serve as a basis for the formulation of the mathematical model, the method of solving and processing the software of the module for the design of the hub connection with the overlap of the rotary parts of the gear pumps within the Program for Support of Applied Research and Experimental Development ALFA TA04010579 of the Technology Agency of the Czech Republic. The aim is to create a modular interactive computing system that allows the designer to solve the problem of individual types of engineering calculations of the gear pump, both in the design calculations phase and in the phases of functional control and strength control. The system will also include modules for analysing cyclical load effects on component dimensioning and resonant 1 Adresa pracoviště: Mgr. Tomáš Náhlík, Ph.D., Doc. Ing. Petr Hrubý, CSc., Vysoká škola technická a ekonomické, Okružní 517/10, 370 01 České Budějovice, Česká Republika E-mail: nahlik@mail.vstecb.cz, dochruby@mail.vstecb.cz 144 http://www.mladaveda.sk

states in an operational design mode, supported by a local computing system, a desktop computer, or a laptop. Key words: pump, gear, rotating, component, overlap, load, strength, function Abstrakt Problematika popsaná v příspěvku bude sloužit jako východisko při formulaci matematického modelu, metody řešení a zpracování programového vybavení modulu pro návrh spojení náboje s přesahem rotujících částí zubových čerpadel v rámci Programu na podporu aplikovaného výzkumu a experimentálního vývoje ALFA TA04010579 Technologické agentury České republiky. Cílem je vytvořit modulární interaktivní výpočtový systém umožňující konstruktérovi řešit izolovaně problematiku jednotlivých typů inženýrských výpočtů zubového čerpadla, a to jak ve fázi návrhových výpočtů, tak ve fázích kontroly zajištění funkce a pevnostní kontroly. Systém bude zahrnovat rovněž moduly pro analýzy vlivu cyklického zatížení na dimenzování součástí a rezonančních stavů operativně, v běžném pracovním režimu konstruktéra, s podporou lokálního výpočetního systému, stolního počítače, či notebooku. Klíčová slova: čerpadlo, zubové, rotující, součást, přesah, zatížení, pevnost, funkce Úvod Požadavek konstruktérů z praxe je vytvoření malého univerzálního výpočtového systému pro modelaci a analýzu různých kloubových a hřídelových spojení, protože současné velké systémy nejsou vhodné pro malé a střední podniky. Proto v rámci Programu na podporu aplikovaného výzkumu a experimentálního vývoje ALFA TA04010579 Technologické agentury České republiky vzniká modulární interaktivní výpočtový systém umožňující konstruktérovi řešit izolovaně problematiku jednotlivých typů inženýrských výpočtů zubového čerpadla v různých fázích návrhu i konstrukce, ať už se jedná o fázi návrhových výpočtů či fázi kontroly zajištění funkce a pevnostní kontroly. Samozřejmě vývoj takového systému probíhá v určitých krocích. Začíná to vytvořením matematického modelu, algoritmizací daného problému, následuje vývojový diagram a vytvoření programu. Vytváření modelu Jedním z aktuálních inženýrských problémů, které vyplývají z praxe, je modelování a řešení problému spojení náboje s hřídelem s přesahem. Toto spojení se obvykle nazývá jako lisovaný spoj, případně nalisované spojení. Z teoretického hlediska tento návrh vychází z teorie nekonečně dlouhých silnostěnných nádob. V tomto modelu se nacházejí tři hlavní napětí radiální σr, tečné (obvodové) σt a axiální σa, přičemž axiální napětí je nulové. Radiálního a tečného napětí využijeme při konstrukci pevnostní podmínky součástí podílejících se na spoji, zejména náboje. Z hlediska vytváření systému pro konstruktéry se budeme v tuto chvíli zabývat nejnižší úrovní formulací základního matematického modelu a jeho ověřením. V první kroku při návrhu hřídele je potřeba stanovit minimální plochu průřezu, kterou je nutné konstrukcí zajistit. Základem je dovolené smykové napětí v krutu při konstantním 145 http://www.mladaveda.sk

časovém průběhu zatěžujícího krouticího momentu Mk(t). Abychom získali dovolené napětí v krutu τd, musíme zvolit materiál. Pokud budeme uvažovat osově symetrické průřezy rotujících částí, pak pro plný kruhový průřez z definice platí dle Hájek et al (1988): τ K = M K W K Za maximální provozní napětí τk dosadíme τd. Po dalších úpravách a dosazeních získáme minimální průměr hřídele, který je nutné zajistit jako: d = ( 16 π M 1 K 3 ) τ D Pokud průřez bude mít tvar mezikruží, bude modul odporu: W K = πd3 16 [1 (d D ) 4 ] Kromě určení průřezu je nutné při návrhu určit i délku minimálního přesahu, která zaručí funkci spoje. Pro tento výpočet použijeme teorie silnostěnných nádob (viz Kolektiv 1979), r 2 = r 2 E (r 3 2 2 + r 2 r 2 2 3 r + 1) p 2 2 kde p2 je minimální tlak potřebný pro zajištění funkce spoje, E je Youngův modul pružnosti v tahu (tlaku), Δr2 je požadovaný přesah a r2 a r3 odpovídá poloměru náboje. Kontrola zajištění funkce spoje a analýza pevnosti jeho součástí Na základě stanoveného krouticího momentu (Bolek a Kochman 1989) M K = π 2k d2 l p f kde l je délka spoje v metrech, d jmenovitý průměr hřídele v metrech, p tlak ve stykové ploše v pascalech, f součinitel smykového tření a k provozní součinitel. Výpočet krouticího momentu je zásadně ovlivněn součinitelem smykového tření f. Jeho volba je kritická a vyžaduje nejen dohledání tabulkové hodnoty, ale je potřeba zohlednit stav a kvalitu montovaných součástí, použité materiály, drsnosti a čistotu povrchů. Také je nutné zahrnout jisté zkušenosti, případně provést experimenty pro ověření. V literatuře lze dohledat přibližné hodnoty f v klidu v knize autorů Bolek a Kochman (1989): Obě součásti z oceli, kalené a broušené, čep válcový, lisováno za studena, pak f = 0,10 0,15 146 http://www.mladaveda.sk

Stejné materiály, čep válcový, plochy hladce obrobené, lisováno za studena, pak f = 0,12 0,20 Stejné materiály, čep kuželovitý, lisováno za studena, pak f = 0,15 0,18 Litinová součást na válcovém ocelovém čepu, lisováno za studena, pak f = 0,10 0,16 Obě součásti z oceli, plochy hladce obrobené, lisováno za tepla, pak f = 0,15 0,25 Provozní součinitel k bude roven dvěma, za předpokladu pulzujícího průběhu provozního zatížení, tedy amplitudy cyklického zatížení rovnající se předpětí. To nám dává horní krouticí moment rovný dvojnásobku jmenovitého momentu. Pro analýzu pevnosti součástí spoje lze aplikovat Guestovu hypotézu maximálního smykového napětí. Pevnostní analýza τmax je vhodná pro tvárné materiály, pro něž jsou dovolená napětí v tahu a tlaku přibližně stejná, σ Dt = σ Dd = σ D. Pak lze pevnostní podmínku formulovat tak, že průměr největší Mohrovy kružnice uvažované napjatosti smí být nejvýše roven dovolenému napětí σd. Guestova podmínka pevnosti (viz Hájek et al 1988), stejně jako Trescova podmínka plasticity může být znázorněna v Mohrově rovinném diagramu (σ, τ), viz. obr. 1. Pokud zakreslíme do toho diagramu také kružnici prostého tahu (tlaku) pro mez kluzu σk a kružnici prostého tahu (tlaku) pro dovolené napětí σd, pak musí platit, že největší z Mohrových kružnic zkoumané napjatosti se smí nejvýše dotýkat tečny m pro splnění podmínky plasticity. Pro splnění podmínky pevnosti se smí dotýkat nejvýše tečny d, přičemž m(τ) = σ K a d(τ) = σ D. 2 2 Obr. 1 Mohrův rovinný diagram (viz Hájek et al 1988) Zdroj: vlastní V námi uvažovaném případě platí, že σ 3 = 0, σ 2 = p a σ 1 stanovíme z rovnice při výpočtu minimálního přesahu. Pro pevnostní kontrolu spoje lze využít také hypotézu maximálního normálového napětí (viz Hájek et al 1988). Tato hypotéza udává, že při prostorové napjatosti dojde k poruše tehdy, pokud největší tahové (tlakové) normálové napětí σ max dosáhne hodnoty pevnosti materiálu v tahu (tlaku). Extrémní tahové, či tlakové napětí prostorové napjatosti je vždy jedno 147 http://www.mladaveda.sk

z hlavních napětí σ 1, σ 2, σ 3, lze proto podmínky dosažení mezního stavu porušení při statickém namáhání zapsat ve tvaru: σ 1 = σ Pt, σ 1 = σ Pd σ 2 = σ Pt, σ 2 = σ Pd σ 3 = σ Pt, σ 13 = σ Pd Obecně: Pro tah: σ max = σ Pt Pro tlak: σ max = σ Pd Nahradíme-li v rovnicích napětí na mezi pevnosti dovoleným napětím σ Dt = σ P t, resp. σ P d a při k k σ 3 = 0 σ Dd σ 1 σ Dt σ Dd σ 2 σ Dt Hypotéza σ max platí s odpovídající přesností pro křehké materiály nebo pro napjatosti vyvolávající křehký stav materiálu. Závěr Ve firmách se ve stále větší míře využívají systémy pro dynamické plánování výroby. Tyto postupy a systémy zaručují rychlejší reakci firmy na požadavky zákazníka, ale také tím znesnadňují práci konstruktéra, na kterého jsou tímto kladeny větší požadavky na rychlost reakce při změně úlohy. Velké výpočetní systémy, popřípadě ruční zpracování inženýrské úlohy neumožňují patřičně rychlou reakci. Proto je potřeba vytvořit modulární platformu či soubor jednodušších univerzálních interaktivních programů, které umožní konstruktérovi rychleji reagovat na přání firmy, resp. zákazníků. V tomto článku byl popsán pouze jeden z několika nutných kroků vytvoření matematického modelu a testování části návrhu. Na základě těchto matematických odvození v budoucnu vznikne algoritmus a následně i použitelný program. Tento článok odporúčal na publikovanie vo vedeckom časopise Mladá veda: Prof. RNDr. Josef Mikeš, DrSc. Poděkování: Tento článek vznikl za podpory projektu TAČR č. TA04010579. Použitá literatura 1. BOLEK, A., J. KOCHMAN, 1989. Části strojů. Praha: SNTL. 04-202-89. 2. HÁJEK, E., P. REIF, F. VALENTA, 1988. Pružnost a pevnost I. Praha: SNTL/ALFA. 04-224-88. 3. Kolektiv, 1979. Pružnost a pevnost II. Praha: ČVUT. 148 http://www.mladaveda.sk