Meziorgánové vztahy metabolismu aminokyselin. Přeměna aminokyselin na odvozené produkty. Jana Novotná



Podobné dokumenty
Přeměna aminokyselin na odvozenéprodukty

Propojení metabolických drah. Alice Skoumalová

Přehled energetického metabolismu

Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová

Metabolismus aminokyselin. Vladimíra Kvasnicová

Metabolismus aminokyselin 2. Vladimíra Kvasnicová

Metabolismus bílkovin. Václav Pelouch

Procvičování aminokyseliny, mastné kyseliny

Intermediární metabolismus. Vladimíra Kvasnicová

Regulace metabolizmu lipidů

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová

Metabolizmus aminokyselin I

Metabolismus krok za krokem - volitelný předmět -

Vztahy v intermediárním

Metabolismus aminokyselin II. Močovinový cyklus

Regulace metabolických drah na úrovni buňky

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

Biochemie jater. Eva Samcová

Integrace metabolických drah v organismu. Zdeňka Klusáčková

VEGETATIVNÍ NERVOVÝ SYSTÉM

Regulace glykémie. Jana Mačáková

Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (

EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY

Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_20_BI2 HORMONÁLNÍ SOUSTAVA

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus dusíkatých látek

Biochemie nervové soustavy. Pavla Balínová

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

Ivana FELLNEROVÁ PřF UP Olomouc

Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová

METABOLISMUS SACHARIDŮ

vysoká schopnost regenerace (ze zachovalých buněk)

Energetický metabolizmus buňky

Diabetes mellitus. úplavice cukrová - heterogenní onemocnění působení inzulínu. Metabolismus glukosy. Insulin (5733 kda)

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Proteiny. Markéta Vojtová VOŠZ a SZŠ Hradec Králové

Metabolismus proteinů a aminokyselin

PROTEINY. Biochemický ústav LF MU (H.P.)

Autoři: Jan Sítař a Dominik Mališ Školitel: MVDr. Jana Petrášová, Ph.D IVA 2014FVL/1200/004 Modelové patomechanizmy v interaktivním powerpointu

1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu

Metabolismus pentóz, glykogenu, fruktózy a galaktózy. Alice Skoumalová

Odbourávání a syntéza glukózy

NUTRACEUTIKA PROTEINY

AMINOKYSELINY REAKCE

Aminokyseliny, struktura a vlastnosti bílkovin. doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty

Obecná struktura a-aminokyselin

Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová

fce jater: (chem. továrna, jako 1. dostává všechny látky vstřebané GIT) METABOLICKÁ (jsou metabolicky nejaktivnější tkání v těle)

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.

Biochemie ledvin. (upraveno ze starší verze M. Rovenská: Biochemie ledvin) Tomáš Kučera.

Inovace profesní přípravy budoucích učitelů chemie

Metabolizmus aminokyselin II

Bunka a bunecné interakce v patogeneze tkánového poškození

Obecný metabolismus.

TEST:Bc-1314-BLG Varianta:0 Tisknuto:18/06/

9. Léčiva CNS - úvod (1)

Metabolizmus aminokyselin II

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Biochemie jater. Vladimíra Kvasnicová

Metabolismus mikroorganismů

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*

Intermediární metabolismus CYKLUS SYTOST-HLAD. Vladimíra Kvasnicová

Biosyntéza a metabolismus bílkovin

Přeměny proteinů a aminokyselin

Struktura a funkce biomakromolekul

Sůl kyseliny mléčné - konečný produkt anaerobního metabolismu

Klinická fyziologie a farmakologie jater a ledvin. Eva Kieslichová KARIP, Transplantcentrum

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese

Tomáš Kuˇ. cera. Ústav lékaˇrské chemie a klinické biochemie 2. lékaˇrská fakulta, Univerzita Karlova v Praze.

Co jsou aminokyseliny

Já trá, slinivká br is ní, slož ení potrávy - r es ení

Metabolismus aminokyselin SOUHRN. Vladimíra Kvasnicová

Integrace a regulace savčího energetického metabolismu

MUDr Zdeněk Pospíšil

OBOROVÁ RADA Fyziologie a patofyziologie člověka

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal ::

Tereza Páková, Michaela Kolářová

Biochemie kosti. Anatomie kosti. Kostní buňky. Podpůrná funkce. Udržování homeostasy minerálů. Sídlo krvetvorného systému

Funkce jater 7. Játra stavba, struktura jaterní buňky, žluč. Metabolismus základních živin v játrech. Metabolismus bilirubinu.

Komplementový systém a nespecifická imunita. Jana Novotná Ústav lékařské chemie a biochemie 2 LF UK

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.

Funkce Nedostatek (N - ) Nadbytek (P - ) Šišinka (nadvěsek mozkový, epifýza) Endokrinní žláza. hormony. Shora připojena k mezimozku

POZNÁMKY K METABOLISMU SACHARIDŮ

Eva Benešová. Dýchací řetězec

Regulace metabolických drah na úrovni buňky. SBT 116 Josef Fontana

*Mléko a mléčné výrobky obsahují řadu bioaktivních

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

Didaktické testy z biochemie 2

Bílkoviny - proteiny

Klinický detektivní příběh Glykémie

Jak zdravotní obtíže ovlivňují naši mozkovou výkonnost. PaedDr. Mgr. Hana Čechová

Aminokyseliny a dlouhodobá parenterální výživa. Luboš Sobotka

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - katabolismus

Transkript:

Meziorgánové vztahy metabolismu aminokyselin. Přeměna aminokyselin na odvozené produkty. Jana Novotná

Zopakování Proč je potřeba udržet relativně vysokou hladinu AK v krvi i během hladovění? syntéza proteinů a derivátů esenciálních AK (neurotransmitery) AK jako substráty pro glukoneogenezi v játrech Játra - hlavní místo metabolismu AK a syntézy močoviny oxidace uhlíkaté kostry AK přeměna na glukózu, ketolátky nebo CO 2 Dusík z katabolismu AK transportován ze tkání do jater jako Ala a Gln Větvené AK (Val, Leu, Ile) oxidované hlavně v kosterním svalu a dalších tkáních, ne v játrech Aminoskupina Gln ze svalů a dalších tkání se v ledvinách uvolňuje jako NH 4 + do moči (odstraňování protonů vzniklých při oxidaci substrátů, regulace ph) Gln významný zdroj energie pro ledviny a střevo, rychle se dělící buňky (lymfocyty, makrofágy) a donor dusíku pro biosyntetické reakce

Metabolismus AK/dusíku za hladovění Postabsopční stav aminokyselinovou hotovost doplňují hlavně AK z kosterních svalů. Kosterní svaly oxidují větvené AK a produkují energii a Gln. Aminoskupiny větvených AK jsou transportovány ze svalu ve formě Ala a Gln (~ 50%) inzulin, glukokortikoidy stimulují uvolnění AK z kosterních svalů. Gln NH 4 + do ledvin (vyloučení protonů) a zdroj energie pro ledviny, střevo a buňky imunitního systému. Ala aminoskupina ze svalů, ledvin a střeva do jater močovina. Mozek přeměna AK na neurotransmitery.

Hormonální regulace metabolismu AK v játrech za hladovění Glukagon a glukokortikoidy stimulují příjem AK do jater zvyšují glukoneogenezi a tvorbu močoviny. Glukagon podporuje hlavně transport Ala do jater. Stimulace syntézy enzymů glukoneogeneze glukagonem a glukokortikoidy koreluje se zvýšenou syntézou enzymů odbourávání AK a enzymů močovinového cyklu.

Glutamin jako zdroj energie pro ledviny Uhlíkatou kostru Gln tvoří α- ketoglutarát, který je oxidován na CO 2, přeměněn na glukózu nebo uvolněn jako Ser či Ala Glukóza je využívána hlavně buňkami dřeně Laktát je oxidován v buňkách kůry, které mají vyšší obsah mitochondrií a bohatší krevní zásobení

Metabolismus větvených aminokyselin ve svalu První krok transaminace - uhlík z Val a Ile vstup do CC jako sukcinyl-coa. Přeměněn na pyruvát dekarboxylací malátdehydrogenázou (jablečný enzym) na pyruvát. Oxidativní dráhou vzniká NADH a FADH 2 ještě před vstupem do CC. Rychlost oxidativní dráhy je limitována dehydrogenázovým komplexem a-ketokyselin. Uhlíkatá kostra může být přeměněna na Glu a Ala.

Metabolismus aminokyselin ve střevě Glutamin během hladovění, uhlíkatá kostra přeměněna na CO 2, laktát, citrulin a ornithin. Větvené AK během hladovění a dusík z odbouraných AK zabudován do cirtulinu, Ala, NH 4 + a dalších komponent do jater. Ala vzniká hlavně z glukózy. enzymy močovinového cyklu

Úloha glutaminu v mozku Glutamin neurony přeměněn na g-aminomáselnou kyselinu (GABA) nebo glutamát. (BCCAs = větvené AK)

Přeměna aminokyselin po vysokoproteinové dietě Dieta čisté proteiny Asp, Glu, Gln a větvené AK zdroj energie pro střevo. Játra 60% - 70% AK přeměna na glukózu (glukoneogeneze) AK stimulace produkce glukagonu (pankres). Inzulin (v menší míře než při sacharidové dietě) stimulace vychytávání větvených AK a syntézy proteinů v kosterním svalu, glukoneogeneze v játrech není inhibována. Játra do cirkulace uvolňují větvené AK (nemají transaminázu), ty jsou pomalu vychytávány svaly a dalšími tkáněmi. Vysokoproteinová a nízkosacharidová dieta založena na předpokladu, že se udržuje relativně nízká hladina insulinu (netvoří se enrgetická zásoba), poměr inzulin/glukagon vede k mobilizaci energie z tukové tkáně ztráta tělesné hmotnosti.

Biologicky aktivní aminy vznikají z aminokyselin dekarboxylací Katecholaminy: dopamin, adrenalin a noradrenalin g-aminomáselná kyselina (GABA) serotonin, melatonin histamin polyaminy

Syntéza katecholaminů z tyrosinu Katecholaminy* - neurotransmitery působení na a- a b- adrenergní receptory (hladký sval, myokard, lipolýza, glykogenolýza). Syntéza: dřeň nadledvin (A) neurony secernující katecholaminy (A, NA). Katecholaminy skladovány ve vesikulech, vázány na ATP a protein chromatin A. *Katechol = dihydroxybenzen

Odbouránání katecholaminů katechol-o-methyltransferáza (COMT), monoaminooxidáza (MAO) Aerobní deaminace vzniká H 2 O 2, NH 3 MAO vázaná na vnější stranu vnější mitochondriální membrány Inhibitory MAO - antidepresiva

Odbourávání katecholaminů

Léčba Parkinsonovy choroby

g-aminomáselná kyselina (GABA) Inhibiční neurotransmiter v míše a mozkovém kmeni (synapse, specifické receptory), hlavní regulace svalového tonu. Receptory chloridové kanály GABA tok Cl - do buňky nebo K + z buňky hyperpolarizace Snížená produkce GABA vede k epileptickým záchvatům. Analoga GABA se používají jako antiepileptika. (hladinu GABA lze zvýšit podáním inhibitorů enzymu GABA aminotransferázy). Odbourání GABA semialdehyd sukcinátu sukcinát Krebsův cyklus

Tryptofan prekurzor serotoninu a melatoninu Serotonin: Vysoká koncentrace v trombocytech, gastrointestinálním traktu, mozkových neuronech. Tonus svalů, podpora kontrakce hladkého svalu (kontrakce hl. sval. buněk cév při krvácení) Neurotransmiter - nálada, emoce, paměť, bolest, spánek, chuť k jídlu. Nedostatek serotoninu - snížení přenosu nervových vzruchů (antidepresiva inhibují zpětné vychytávání serotoninu, prodlužují jeho účinek). Serotonergický syndrom zvýšená hladina serotoninu, potenciálně život ohrožující stav Serotonin působí přes specifické receptory (identifikovány a klonovány byly receptory 5HT 1-5HT 7. Většina receptů je spojena s G-proteinem, ovlivňují adenylátcyklázu nebo fosfolypázu C g. 5HT 3 je třída receptorů jsou iontové kanály). K některým receptorům mají vysokou afinitu antidepresiva - Prozac. Převzato z článku: http://www.vesmir.cz/clanek.php3?cid=3581

Důležitá role v udržování normálního biorytmu organizmu, zejména cyklu spaní a bdění. Produkován epifýzou hlavně během spánku (maximum mezi 2 4 ranní hod). Produkce cyklická. Vysokoafinitní receptory spojeny s G-proteiny. Kardioprotektivní, regenerační, antioxidační účinky (omezuje riziko vzniku rakoviny prsu a prostaty, imunitní systém), významný v procesu stárnutí buněk a orgánů. Snížená produkce ve stáří děti (vysoká hladina během spánku)

Histamin Dekarboxylace histidinu. Řada fyziologických funkcí (celkem 23): v imunitních reakcích, účinky na vasodilataci, bronchokonstrikci, aktivuje hladké svalové buňky, imunologické funkce po stimulaci IgE protilátkami (vazba alergenu) degranulace vylití His Nejvíce His produkují žírné buňky a bílé krvinky basofily. Vazba na specifické receptory H1 H4, spojené s aktivitou G proteinů Další fyziologické funkce: - regulace spánku (inhibice receptorů vyvolá spánek) - stimulace sekrece HCl v žaludku - kontrola mechanismů ukládání vzpomínek a učení - kontrola funkce erekce a libida Strukturální analog Cimetidin se používá k léčbě duodenálního vředu.

Karnosin, homokarnosin, anserin Karnosin - dipeptid b-alaninu a histidinu (karnosinsyntasa). kosterní sval (vysoká hladina u sprinterů), srdeční sval, mozek, játra, ledviny. Aktivuje myosinovou ATPasu. Vychytává kyslíkové radikály (ROS) snížení: - oxidace proteinů, - lipoperoxidace, - neenzymatické glykace (stárnutí). - inhibice vzniku a růstu agregátů b- amyloidních peptidů (Alzheimerova choroba). - neurotransmiter Homokarnosin dipeptid GABA a histidinu, v CNS pravděpodobně prekurzor pro GABA Anserin n-methylkarnosin kosterní svaly ptáků a jiných savců než člověk.

Polyaminy Přeměna argininu přes ornitin a putrescin na polyaminy. Podíl na mnoha fyziologických procesech: polykationty asociace s polyanionty DNA a RNA (stabilizace) transkripce a translace modulace chromatinu stimulace syntézy proteinů rychlá buněčná proliferace a rychlý buněčný růst migrace buněk iontové kanály stabilizace buněčné membrány přenos signálu interakce receptor-ligand

Syntéza spermidinu a sperminu arginin H 2 O arginasa močovina

Glycin Biosyntéza hemu, purinu a kreatinu Syntéza hemu: a-dusík a a-uhlík glycinu zabudovány do pyrrolového jádra, součásti porfyrinu (prostetická skupina hemu). 1. Kondenzace glycinu a sukcinyl-coa (d-aminolevulátsyntáza) - mitochondrie.

2. Transport d-aminolevulové kyseliny (ALA) do cytosolu. 3. ALA dehydratáza dimerizuje dvě molekuly ALA na porfobilinogen Převzato z: http://www.rpi.edu/dept/bcbp/molbiochem/mbweb/mb2/part1/heme.htm

Převzato z: http://www.rpi.edu/dept/bcbp/molbiochem/mbweb/mb2/part1/heme.htm Glycin - součást purinu Převzato z učebnice: D. L. Nelson, M. M. Cox: Lehninger Principle of Biochemistry. Fourt Deition.

Kreatin a kreatinin Syntéza kreatinu v játrech. Kreatinfosfát (vysoká spotřeba energie, cvičení). Kreatin a kreatinfosfát - svaly, mozek, krev Produkce kreatininu je odrazem velikosti svalové hmoty. Relativně konstantně vylučován ledvinami, hladina exkrece (clearence) se používá pro měření renální funkce.

Glutathion Přítomnost ve všech buňkách (mm koncentrace) Sufhydrylová skupina Cys donor redukujících ekvivalentů (H + + e - ) redukce reaktivních forem kyslíku. Glutathiondisulfid (GSSG) - oxidovaná forma. Glutathionreduktáza + NADPH redukce GSSG na dva GSH. Zdravá buňka 90% GSH, 10% GSSG Oxidační stres zvyšuje poměr GSSG/GSH Součást glutathionperoxidázy Oxidovaná forma Udržuje vitamin C a E v redukované (aktivní) formě. Konjugace s léky (stávají se rozpustné ve vodě). Účast na transportu aminokyselin přes buněčnou membránu (cyklus g-glutamylu). Účast na různých biochemických reakcích syntéza DNA, proteinů, prostaglandinů, aktivace enzymů

Oxid dusnatý NO Produkce: buňky cévního endotelu, hladké svalové buňky, buňky srdečního svalu. Funkce: vazodilatace inhibice vasokonstrikce inhibice adheze destiček k cévnímu endotelu inhibice adheze lekocytů na cévní endotel antiproliferativní účinek (inhibice hyperplázie hladkých svalových buněk a následné poškození cévní stěny vychytává O 2 - (protizánětlivý účinek)