Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2013/2014 Ing. Jarmila Krotká
Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu a které slouží k získání energie a k tvorbě látek, určených pro činnost organismu
Metabolismus bílkovin souhrn biochemických přeměn bílkovin v organismu Odpověď na otázky: Co je to bílkovina? Z čeho se skládá? Jaké je její chemické složení?
Co je to bílkovina (protein) organická sloučenina (látka složená ze stejných molekul, které vždy obsahují jeden nebo více atomů C a dále atomy vodíku, kyslíku, dusíku, síry, aj.) molekula bílkoviny je tvořena řetězcem aminokyselin
Aminokyselina organická sloučenina, která obsahuje současně na jednom atomu uhlíku (alfa) funkční aminoskupinu (-NH 2 ) a karboxylovou skupinu (-COOH) amino karboxylová skupina skupina
Vlastnosti aminokyselin dipolární charakter = amfoterní látky - v závislosti na ph prostředí se mohou chovat a) jako kyseliny b) jako zásady
Fyzikální vlastnosti aminokyselin - jsou dobře rozpustné ve vodě (polární rozpouštědlo) - Amfiterní povaha umožňuje jejich separaci a identifikaci (elektroforéza, chromatografie)
Chemické vlastnosti aminokyselin 1. na α-uhlíku - peptidová vazba 2. R postranní řetězec (radikál) může být jednoduchý, rozvětvený, obsahovat aromatická jádra, síru apod. důležité pro budování prostorových struktur bílkovin
Peptidová vazba
Dělení aminokyselin podle struktury
Esenciální aminokyseliny V organismu se vyskytuje celkem 20 aminokyselin (L forma) z toho 8 neumí sám syntetizovat esenciální AMK nezbytný příjem potravou, důležitý je jejich vzájemný poměr Přebytečné AMK se neukládají, jsou odbourány nebo využity ke glukoneogenezi
Dělení aminokyselin Esenciální AMK organismus neumí vytvořit, musí se přijímat v potravě Neesenciální AMK organismus umí vytvořit z jiných AMK Neesenciální Ala Asn Asp Cys Gln Glu Gly Pro Ser Tyr, Arg*, His* Esenciální Isoleucin Leucin Lysin Methionin Phenylalanin Threonin Tryptofan Valin
Získávání aminokyselin pro organismus Esenciální nutné v potravě (živočišné a rostlinné bílkoviny) syntéza v lidském organismu 1. transaminace 2. přestavba neesenciální aminokyselin 3. přestavba esenciální aminokyselin
Základní metabolické procesy AMK dekarboxylace deaminace R amin aminokyselina α-ketokyselina transaminace aminotransferázy 2.10.2009 14
Močovinový cyklus (Ornitinový cyklus)
Výměna AMK mezi orgány 1. cyklus glukosa alanin mezi svaly a játry (alanin jde ze svalů do jater, zde podstoupí glukoneogenezi vznikne glukosa, ta jde do svalů, glykolýzou poskytne pyruvát, který se transaminací opět přemění na alanin) 2. játra detoxikují aminový dusík na netoxickou močovinu 3. ledviny přijímají glutamin a vylučují do moče amoniový iont, do krve vrací alanin a serin
Funkce AMK v organismu základ pro stavbu peptidů a bílkovin (příjem z potravy bílkoviny živočišného a rostlinné původu, v trávicím procesu a dále v játrech jsou metabolizovány na AMK) produkt metabolismu při odbourávání peptidů a bílkovin dekarboxylace, deaminace, transaminace, vznik močoviny
Aminokyselinová hotovost 70 kg dospělý člověk, jeho tělo obsahuje cca 14 kg proteinů Aminokyselinová hotovost 600 700 g Příjem potravou 70 100 g/den Proteolýza 300 500 g/den Proteosyntéza 300 500 g/den Resyntéza AMK 30 40 g/den, nejvíce alanin a glutamin Odbourávní AMK 120 130 g/den
Dědičné metabolické poruchy screaning novorozenců Fenylketonurie (fenylalanin) Nemoc javorového sirupu (leucin) 2.10.2009 19
Peptidy Peptid látka tvořená řetězcem dvou a více AMK: a) oligopeptidy (2 10 aminokyselin) b) polypeptidy (11 100 aminokyselin) příklady v organismu hormony (insulín, C peptid, PTH, hormony hypofýzy, oxytocin, vasopresin) vznik v organismu rozštěpením bílkovin, jejich natrávením pepto = vařit, trávit
Peptidová vazba
Bílkoviny = proteiny charakteristika, struktura, dělení, metabolismus, vlastnosti a funkce řec. protos první vysokomolekulární látka (makromolekula), tvořená řetězcem AMK (až tisíc v jedné molekule) přesné pořadí AMK tvořících bílkovinu je zakódováno v genech v organismu existuje 20 AMK velký počet různých kombinací, přesné pořadí AMK je rozhodující pro funkci bílkovin
Struktura bílkovin rozlišujeme 4 úrovně struktury, každá z nich je důležitá pro správnou funkci bílkoviny v organismu odlišnost ve stavbě bílkoviny může být rozeznána imunitním aparátem a vést k tvorbě protilátek.
Primární struktura bílkovin - lineární pořadí aminokyselin v polypeptidovém řetězci
Sekundární struktura bílkovin prostorové uspořádání lineárního řetězce polypeptidu. Vzniká na základě vzájemných interakcí mezi jednotlivými aminokyselinovými zbytky v polypeptidovém řetězci uplatňují se především slabé vazebné (nekovalentní) interakce. Nejčastějšími typy je struktura alfa-helix (šroubovice) a betaskládaný list. Sekundární struktura závisí na fyzikálně chemických podmínkách prostředí, ve kterých se protein nachází (ph, iontová síla, přítomnost dalších látek).
Terciální struktura bílkovin další prostorové uspořádání jednotlivých úseků proteinů, uspořádaných do sekundární struktury, vzniká během syntézy proteinu procesem zvaným sbalování proteinu - podle terciární struktury se proteiny dělí na globulární (klubíčko) nebo fibrilární (vlákna)
Kvartérní struktura bílkovin uspořádání jednotlivých polypeptidů u proteinů tvořených více polypeptidy (tzv. oligomerní proteiny)
Význam bílkovin pro organismus 1. stavební (konstrukční) kolagen - šlachy, chrupavky, kůže, pojivová tkáň - pevný v tahu elastin - stavba cév keratin - vlasy, nehty, kůže 2. transportní hemoglobin - krevní barvivo v erytrocytech, podílí se na přenosu kyslíku a CO 2 krví, je složen ze 4 jednotek bílkoviny globinu albumin plasmatická bílkovina, produkován jaterními hepatocyty, podílí se z více než 70 % na onkotickém tlaku plazmy, dále transportní bílkovina (nekonjugovaný bilirubin, tyreoidní hormony, ionty vápníku, hořčíku, zinku, léky aj.) transferin - transportní bílkovina přenášející v krvi železo
3. zásobní (skladovací) feritin - bílkovina sloužící k uložení železa v buňce, jeho hladina v krvi odráží velikost zásob železa v organismu 4. zajišťující pohyb bílkoviny svalových vláken - aktin, myosin 5. katalytické, řídící a regulační enzymy hormony 6. ochranné, obranné - imunoglobuliny fibrin, fibrinogen - zamezení krvácení
Proteolýza jedná se o rozložení bílkovin na menší části (peptidy) a na aminokyseliny Žaludek: Kyselina chlorovodíková rozvolňuje kolagen spojující svalová vlákna přijatého masa a umožňuje trávicím enzymům přístup k jeho bílkovině, která se štěpí na kratší řetězce Tenké střevo: pokračuje trávení bílkovin prostřednictvím enzymů (proteázy - např. pepsin a trypsin) na peptidy. Ty jsou dále štěpeny peptidázami až na aminokyseliny, di- a tripeptidy. Ty již většinou prostupují volnou difúzí stěnou střeva do krevního oběhu.
Žaludek pepsinogen Štěpení bílkovin I HCl (ph 2-5) pepsin Duodenum pankreatická šťáva trypsinogen chymotrypsinogen enteropeptidasa trypsin trypsin chymotrypsin karboxypeptidasy Tenké střevo dipeptidasy, aminopeptidasy 2.10.2009 31
Štěpení bílkovin II Endopeptidasy pepsin trypsin chymotrypsin Exopeptidasy karboxypeptidasy aminopeptidasy aminopeptidasa NH 2 karboxypeptidasa COOH 2.10.2009 32
Odbourávání bílkovin v tkáních štěpení tkáňových bílkovin probíhá v buněčných organelách - lysozomech reakce katalyzují protázy kathepsiny rozklad na jednotlivé AMK - hotovost AMK - přestavba - odbourání (biodegradace) a) glukogenní pyruvát, oxalacetát (syntéza glukózy) b) ketogenní acetylkoenzym A, acetoacetylkoenzym A (syntéza mastných kyselin) c) glukogenní i ketogenní
Měřené parametry celková bílkovina (směs bílkovin) albumin imunoglobuliny (A, G, M, E) transferin, ferritin ceruloplasmin C reaktivní protein aminokyseliny hormony, enzymy fibrinogen reaktanty akutní fáze 2.10.2009 34
Enzymy Enzymy slouží jako tzv. biokatalyzátory Význam: chceme ze substrátu S získat produkt P S P a) reakce samovolně neprobíhá b) reakce probíhá rychle za současného uvolnění velkého množství energie (exploze) c) chci řídit, jaké množství substrátu se přemění d) substrát může být surovinou pro více produktů a potřebuji zvolit pouze jeden z nich Zapojení enzymu S + E S-E P-E P + E
Enzymy bílkoviny nebo peptidy apoenzym (bílkovinná složka) + koenzym (nebílkovinová složka, např. vitamíny B) Funkce: koenzym se váže váže v blízkosti aktivního centra enzymu a účastní se katalyzované reakce
Specifičnost enzymové reakce substrátová enzym katalyzuje přeměnu pouze jednoho substrátu na produkt funkční enzym katalyzuje stejný typ reakce u podobných substrátů (např. lipáza katalyzuje hydrolýzu triacylglycerolů)
Enzymy
Názvosloví enzymů triviální (historické) tripsin, pepsin obecně užívané pojmenovává substrát a často typ přeměny laktátdehydrogenáza, kreatinkináza, amyláza vědecké klasifikace všech enzymů pomocí 4-místného čísla, které určuje typ reakce, koenzymu a substrátu např. LDH L-laktát: NAD + oxidoreduktáza, EC 1.1.1.27 oxidoreduktázy, transferázy, hydrolázy, lyázy, isomerázy, ligázy (syntetázy)
Koncentrace enzymu Katalytická koncentrace = množství substrátu přeměněného pomocí enzymu na produkt za časovou jednotku a) katal/l, μkat/l b) U/l, IU/l mezinárodní jednotka 1 μkat/l = 60 IU/l hmotnostní koncentrace enzymu (mass) g/l, μg/l 2.10.2009 40
Faktory ovlivňující aktivitu enzymu 1. teplota (37 o C) 2. acidita (ph 7-8) 3. aktivátory umožňují nebo urychlují reakci (např. Ca 2+ pro koagulační faktory) 4. inhibitory zpomalují nebo zastavují enzymovou reakci a) struktura molekuly je podobná substrátu a obsadí část aktivních center (reakce je vratná) b) pevně se navážou na aktivní centra (Hg, Pb) 5. koncentrace substrátu
Inhibitory nekompetitivní kompetitivní
Mechanismus enzymové katalýzy K M = Michaelisova konstanta = taková koncentrace substrátu, při které rychlost enzymové reakce dosahuje ½ maximální rychlosti, v rychlost enzymové reakce S koncentrace substrátu v [E] = konst. 2.10.2009 43 K M [S]
Vyšetřované enzymy aminotransferázy - AST, ALT katalyzují přenos aminoskupiny NH 2 - z aminokyseliny na ketokyselinu a naopak alanin + 2-oxoglutarát pyruvát + glutamát aspartát + 2-oxoglutarát oxalacetát + glutamát při poškození buněk přejdou enzymy v nich obsažené do krve a v laboratořích prokazujeme jejich zvýšenou aktivitu v plazmě nejčastěji vyšetřované enzymy: AST, ALT, GGT, CK, AMS, LPS, ALP, CHS
Děkuji Vám za pozornost a prosím o Vaše případné dotazy.