KOMPLEXNÍ MODELY INTEGROVANÝCH COMPLEX MODEL OF INTEGRATED PHYSIOLOGICAL SYSTEMS A THEORETICAL BASIS FOR MEDICAL

Podobné dokumenty
Komplexní modely fyziologických systémů jako teoretický podklad pro výukové simulátory Jiří Kofránek

KOMPLEXNÍ MODELY FYZIOLOGICKÝCH SYSTÉMŮ JAKO TEORETICKÝ PODKLAD PRO VÝUKOVÉ SIMULÁTORY Jiří Kofránek

LABORATOŘ BIOKYBERNETIKY A POČÍTAČOVÉ PODPORY VÝUKY ÚPF, 1. LF UK

Modelica Day Jiří Kofránek. Univerzita Karlova v Praze, 1. lékařská fakulta, Laboratoř biokybernetiky a počítačové podpory výuky

Základní struktura matematického modelu fyziologických funkcí člověka

Základní struktura matematického modelu fyziologických funkcí člověka

INTEGROVANÉ MODELY FYZIOLOGICKÝCH SYSTÉMŮ

INTEGRATIVNÍ MODELY LIDSKÉ FYZIOLOGIE HISTORIE, SOUČASNOST A PERSPEKTIVY Jiří Kofránek, Tomáš Kulhánek

Jiří Kofránek, Jan Rusz, Stanislav Matoušek

Guytonův diagram, Modelování, Akauzální modelování, Modelica, Fyziologické modelování, Matematické modelování, Objektově orientované modelování

TVORBA LÉKAŘSKÝCH SIMULÁTORŮ

rovnováha mezi acidifikujícími a alkalizujícími vlivy

Martin Tribula, Marek Mateják, Pavol Privitzer, Jiří Kofránek

Hemodynamické monitorování ventilovaného pacienta Stibor B.

Publikace podporované projektem MŠMT 2C0631

KAUZÁLNÍ NEBO AKAUZÁLNÍ MODELOVÁNÍ: DŘINU LIDEM NEBO DŘINU STROJŮM

Příloha 2. Publikace podporované projektem MŠMT 2C06031 za rok 2007

Characterization of soil organic carbon and its fraction labile carbon in ecosystems Ľ. Pospíšilová, V. Petrášová, J. Foukalová, E.

Melting the ash from biomass

Klinická fyziologie a farmakologie jater a ledvin. Eva Kieslichová KARIP, Transplantcentrum

CZ.1.07/1.5.00/

PROGRAMOVÝ SYSTÉM CONTROL WEB A JEHO MOŽNOSTI INTER- AKCE S REÁLNÝM PROSTŘEDÍM Roman Cagaš, Pavel Cagaš, Jiří Kofránek

:= = := :=.. := := := := ρ := := α := π α = α = := = :=

CZ.1.07/1.5.00/

BP = CO x TPR. (stroke volume x heart rate) BP = blood pressure CO = cardiac output TPR = Total peripheral resistance

Ventilace astronautů v kritické situaci na oběžné dráze současné možnosti. Ivan Herold 6.UPVML2010 1


Prognostický význam domácího měření TK. Jiří Vítovec 1.interní kardioangiologická klinika LF MU a ICRC FN u sv.anny v Brně

Acidobazická rovnováha pro pokročilé. František Duška KAR FNKV

Kardiogenní šok Co dělat vždy a co jen někdy?

(voda a ve vodě rozpustné látky) (ABR, elektrolyty, osmolarita, atd.) Hormonální (renin, erytropoetin, vitamin D 3 )

Introduction to MS Dynamics NAV

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1

Od obrázkových schémat k modelům pro výuku

Iontová chromatografie v obvyklých i neobvyklých aplikacích. Magdalena Voldřichová Veronika Plisková

Odpovědný projektant : Ing. Jiří Bilík. Vypracoval : Ing. Jiří Bilík. Investor : Město Karolinka Radniční náměstí 42, Karolinka

ICP více než jen číslo? MUDr. Josef Škola XXV. kongres ČSARIM, Praha, 4. října 2018


âistiã vzduchu / Air Cleaner MF 06, MF 08, MF 10 ada ASISTENT, velikost G 1/8, G 1/4, G 3/8 ASISTENT Series, G 1/8, G 1/4, G 3/8 Sizes

Registr pacientů s renální insuficiencí (RIP) - představení nového registru a principy fungování

ŘÍZENÍ FYZIKÁLNÍHO PROCESU POČÍTAČEM

F-06 Reference ranges of analytes OKB

Poruchy vnitřního prostředí

Dynamic programming. Optimal binary search tree

SOIL ECOLOGY the general patterns, and the particular

Kreativní propojení objektových technologií pro tvorbu výukových biomedicínských simulátorů

EFFECT OF DIFFERENT HOUSING SYSTEMS ON INTERNAL ENVIRONMENT PARAMETERS IN LAYING HENS

Biomechanika srdečněcévnísoustavy a konstitutivnímodelování

MAXIMUM DC INPUT CURRENT NO LOAD CURRENT DRAW OVER LOAD / SHORT CIRCUIT OVER TEMPERATURE HIGH DC INPUT VOLTAGE DC INPUT VOLTAGE, VOLTS

LÉKAŘSKÉ SYMPOZIUM MODULACE (MDM) V LÉKAŘSKÉ PRAXI TOP HOTEL PRAHA

Electrochemistry of Selected Phosphorus Oxoacids on a Bulk Pt Electrode. Tomas Bystron Martin Prokop Karel Bouzek

Database systems. Normal forms

Regulace krevního tlaku

Název společnosti: VPK, s.r.o. Vypracováno kým: Ing. Michal Troščak Telefon: Datum:

Size / Světlost : DN 1/4 to 4 / DN 1/4 až 4

Název společnosti: VPK, s.r.o. Vypracováno kým: Ing. Michal Troščak Telefon: Datum:

Název společnosti: VPK, s.r.o. Vypracováno kým: Ing. Michal Troščak Telefon: Datum:

Pokyny k použití. Model-300. Napájecí zdroj. Návod na obsluhu Operating Instructions. se systémem Aquacontrol Napájací zdroj

technický list PCB MOUNT SOLID STATE RELAY ESR2 SERIES FEATURES PART NUMBERING SYSTEM

Obecního úřadu v Palkovicích

Anesteziologem v utečeneckém táboře Dadaab Vladimír Vyhnal

INDUCTION HEATING CAPACITORS KONDENZÁTORY PRO INDUKČNÍ OHŘEV

Ovlivnění ledvin umělou plicní ventilací a Ventilator-induced kidney injury

Specifications AR5500

Inline Modular: analogové signály I/O (PHOENIX CONTACT) Od 10/2006

STLAČITELNOST. σ σ. během zatížení

ÚČINNOST ODSTRANĚNÍ PŘÍRODNÍCH ORGANICKÝCH LÁTEK PŘI POUŽITÍ HLINITÝCH A ŽELEZITÝCH DESTABILIZAČNÍCH ČINIDEL

Spa treatments price list

Nové možnosti farmakologické léčby

Téma 8. Náklady kapitálu. Kapitálová struktura a její optimalizace

Význam pozdního podvazu pupečníku pro novorozence. MUDr. Iva Burianová MUDr. Magdalena Paulová Thomayerova nemocnice, Praha

Srdce a krevní cévy. Heart and blood vessels

= = = : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = x = = 2 : 1.

Vypracováno: Telefon:

Monitorace hemodynamiky v intenzivní péči PRO

Fyziologie cirkulace - determinanty srdečního výdeje, arterial load, arteriální křivka (patterns), katecholaminy. Petr Waldauf KAR FNKV

Význam. Dýchací systém. Dýchání. Atmosférický vzduch. Dýchací cesty. Dýchání

Léčba anemie u srdečního selhání J.Vítovec, LF MU a FN U sv. Anny

Existence trade-offs záleží na proximátních mechanismech ovlivňujících znaky

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/

MĚŘENÍ FUNKČNÍ VÝZNAMNOSTI V KATLABU MARTIN MATES, NEMOCNICE NA HOMOLCE

Ústav klinické biochemie a laboratorní diagnostiky 1. LF UK a VFN Praha

Fluid-structure interaction

Pavel Suk ARK, FN u svatéanny v Brně

Acidobazická rovnováha a její vztahy k iontovému hospodářství. Klinické aplikace.

Acidobazická rovnováha pro pokročilé. František Duška KAR FNKV

OBSAH 1 Důležité pokyny a upozornění týkající 5 Používání varné desky se bezpečnosti a životního prostředí 6 Obsluha trouby 2 Obecné informace

VLIV APLIKACE GLYFOSÁTU NA POČÁTEČNÍ RŮSTOVÉ FÁZE SÓJI

SIMATIC S7-1500(T) SIMOTION konfigurace systému Motion Control. Engineered with TIA Portal. Unrestricted Siemens AG 2017

Fyzikální principy uplatňované v anesteziologii a IM

Inorganic technology

Jak dělám (C)RRT. Novák I JIP I. interní klinika FN Plzeň

BERGAMO FIRENZE RIMINI. Samozavírače a samozavírací závěsy Floor springs and hinges


DYNAMICKÉ PARAMETRY PRELOADU

MIDAM UC 301 modbus regulátor topeni, otočné tlačítko, RTC, 2xDO, 1x DI, externí odporové čidlo PT1000, RS485

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES

Výukový materiál zpracován v rámci projektu EU peníze školám

Nová éra diskových polí IBM Enterprise diskové pole s nízkým TCO! Simon Podepřel, Storage Sales

F-07 Referenční rozmezí OKH v anglickém jazyce

Transkript:

KOMPLEXNÍ MODELY INTEGROVANÝCH COMPLEX MODEL OF INTEGRATED PHYSIOLOGICAL SYSTEMS A THEORETICAL BASIS FOR MEDICAL Abtrakt Abtract

. Schola ludu pro 2. toletí 2

- - 3

4

AR 269 268 267 266 P4O xo AR2 288 u^3 P4^3 2 8. upper limit 8 PO xo 2 A3K 289 x o AOM 287 2M 68 27 POT RDO OSV 26 POV 262 2688 263 DOB 264 MO2 26 24 27 u^3 POT^3 x27 o 272 POT QO2.333 AK A2K AR3 POC POB POA 286 26 4 POD POK PON 29 28 27 26 2 POV ARM.947 POR ARM 4 29 AR 284 283 POJ 284b.33.3 if (POD<) {POJ=PODx3.3} POZ 29 POT 292 POQ 8 8 upper limit 8 PA lower limit 4 294 POQ 8 3 293 P2O 296 8 29 298 297 EXE.24 EXC Z2 AUC CALCULATION PA when PA<4: AUC=.2 AUC PA AUC when 4>PA<8: AUC=.3*(8-PA) when PA>=8: AUC= 37 32 33 AUC calculation AU6 AB 3 DAU AUK AU2 u^3 AUB^3 34 AUB CALCULATION. 38 3 AUB when PA<4: AUB=.878 PA AUB when 4>PA<7: AUB=.4286*(7-PA) when PA>=7: AUB= x o Z8 AUB calculation 39 6 AU8 AUZ AUN CALCULATION AUN 3 when PA<: AUN=6 PA AUN when 2>PA<: AUN=.2*(-PA) 3 AUJ when PA>=: AUC= AU u v xo AUN calculation AUJ^AUZ 37 36.2 AUM AU9. VV9 AUV 32 AUL 3.9.8 34 AU.3 33 VVR. AUD 2.9.7 VVR 3 2.949 AUH AUH AUY 39 32 38.. AUM AVE AVE SVO 328 QLO 2 lower limit.739 SVO HR 326 8 POT 7.999 7.4 lower limit.3 lower limit.2 lower limit. 32 32 327 323. 324 HMD 4 POV HM BFN 322 2 PRA 32 4 AU AAR-afferent arteriolar reitance [torr/l/min] AHM-antidiuretic hormone multiplier, ratio of normal effect AM-aldoterone multiplier, ratio of normal effect AMC-aldoterone concentration AMM-mucle vacular contriction caued by local tiue control, ratio to reting tate AMP-effect of arterial preure on rate of aldoterone ecretion AMR-effect of odium to potaium ratio on aldoterone ecretion rate AMT-time contant of aldoterone accumulation and detruction ANC-angiotenin concentration ANM-angiotenin multiplier effect on vacular reitance, ratio to normal ANN-effect of odium concentration on rate of angiotenin formation ANP-effect of renal blood flow on angiotenin formation ANT-time contant of angiotenin accumulation and detruction ANU-nonrenal effect of angiotenin AOM-autonomic effect on tiue oxygen utilization APD-afferent arteriolar preure drop [torr] ARF-intenity of ympathetic effect on renal function ARM-vaocontrictor effect of all type of autoregulation AR-vaocontrictor effect of rapid autoregulation AR2-vaocontrictor effect of intermediate autoregulation AR3-vaocontrictor effect of long-term autoregulation AU-overall activity of autonomic ytem, ratio to normal AUB-effect of baroreceptor on autoregulation AUC-effect of chemoreceptor on autonomic timulation AUH-autonomic timulation of heart, ratio to normal 4 xo 2.8 4.7.6. 2.86 OVA 2 AR3 OVA.2 98.7 22 227 226 224 OSA 223 VPF 4 RMO BFM OVA 2 BFM. HM ARM.6 VIM PLA PPA.4667 36 38 PCP PPC 39 POS PPI CPF.3 4 PFI 4 PLF 228 37 DFP 24 PM3 PK2 24 8 PMO AU 24 AMM 229 lower limit. 239 237 2A xo PK PK3. PM^2 u^2 2 23 246 23 236 238 QOM PM4.2 - xo 247 22.7 P2O AOM 23 24 8 x o 23 Xo P2O POE upper limit 8 7.987 lower limit. DVS 248 2 24 RMO 8. 232 7.4 6 234 242 P3O PVO 244 2 P3O^3 u^3 233 POM.8 PM 243 PDO 22 PMO 249 8 2 EXC 4 PVO 6 64 VV7 SRK 33 VV6 63 VV7 VV2 VV7.9 6 VV 62 algebraic ANM 4 loop AVE breaking lower limit.9 42 4A 36 38 CN7 xo ANU.79 43 RV AMM.22.2 VIM RVS RSM 4 39 RAM RV CN2 96.3 AUM 7 7 3 ANU RAM 2.9 3 VIM 37 BFM PGS PC RAR 2.782 3. AUM 7 RAR PAM PAM.4 RVS.2 VVE AUM AUM 34 BFM RBF.3229 VV7 4 PA BFN QAO PVS 99.96 6 VVR 2.86 3.78.49.3 VBD DVS 2.9 3 7 8 2 9 33 RSN VVS VV8 32 BFN PA PGS 3.2 x PVS VAS VAE o VVE lower limit. QVO.3.82.8 x o 2.8 VVS 3.7 QVO CV PVS VAS3 DAS 6 VAS VVS PA 9 VB 29 HSL.4 8 VLA LVM 3 QAO QLN VPA VRA HMD LVM PA2 QLO HPL PVS PLA.8 4 QLO 46 QLO.2244 PR 26.6 PVS PLA LVM = f(pa2) QLN QRF 44 27 47 RVG 28 2.738. VLE CPA RVM.4 PLA 4 3 49 26 QLN 48 AUH HSR 2 VLA qrt RPA QVO QLO -4 2 PP.4 HPR VLA QLN = f(pla) 6 HMD HMD x 2 o RPV RVM QRO lower limit.4.37 6 DRA 2 2. DLA 24 7 PP2 3 PL PLA x o RPT AUH QRN PRA.26 PPA VRA AUH PR lower limit 4-4 2 QRN = f(pra) VRA PPA QPO.22 9 8 23 PLA 2 QRO 4. RPT PRA 22 2 QPO VPE VPA PRA. PGL PPA x.992 o.38.362.48 VPA 7 28 PPC PLF 4 AUK-time contant of baroreceptor adaptation AUL-enitivity of ympathetic control of vacular capacitance AUM-ympathetic vaocontrictor effect on arterie AUN-effect of CNS ichemic reflex on auto-regulation AUV-enitivity control of autonomie on heart function AUY-enitivity of ympathetic control of vein AUZ-overall enitivity of autonomic control AVE-ympathetic vaocontrictor effect on vein AlK-time contant of rapid autoregulation A2K-time contant of intermediate autoregulation A3K-time contant of long-term autoregulation A4K-time contant for mucle local vacular repone to metabolic activity BFM-mucle blood flow [l/min] BFN-blood flow in non-mucle, non-renal tiue [l/min] CA-capacitance of ytemic arterie [l/torr] CCD-concentration gradient acro cell membrane [mmol/l] CHY-concentration of hyaluronic acid in tiue fluid [g/l] CKE-extracellular potaium concentration [mmol/l] CKI-intracellular potaium concentration [mmol/l] CNA-extracellular odium concentration [mmol/l] CNE-odium concentration abnormality cauing third factor effect [mmo/l] CPG-concentration of protein in tiue gel [g/l] CPI-concentration of protein in free intertitial fluid [g/l] CPN-concentration of protein in pulmonary fluid [g/l] CPP-plama protein concentration [g/l] CV-venou capacitance [l/torr] DAS-rate of volume increae of ytemic arterie [l/min] DFP-rate of increae in pulmonary free fluid [l/min] DHM-rate of cardiac deterioration caued by hypoxia DLA-rate of volume increae in pulmonary vein and left atrium [l/min]..2.22 x o CPP 46 42 VPF 47 PPN 44 PPI 43 2-(./u).2.3 CPN 49 PPR VPF.4 x o.37 PPD 7.866e-8 48 PPD POS PPI = 2 - (./VPF) DFP -4.842e-.22 VPF PLF 2 PPO AMM AOM.9899 DLP-rate of formation of plama protein by liver [g/min] DOB-rate of oxygen delivery to non-mucle cell [ml O2/min] DPA-rate of increae in pulmonary volume [l/min] DPC-rate of lo of plama protein through ytemic capillarie [g/min] DPI-rate of change of protein in free intertitial fluid [g/min] DPL-rate of ytemic lymphatic return of protein [g/min] DPO -rate of lo of plama protein [g/min] DRA-rate of increae in right atrial volume [l/min] DVS-rate of increae in venou vacular volume [l/min] EVR-potglomerular reitance [torr/l] EXC-exercie activity, ratio to activity at ret EXE-exercie effect on autonomic timulation GFN-glomerular filtration rate of undamaged kidney [l/min] GFR-glomerular filtration rate [l/min] GLP-glomerular preure [torr] GPD-rate of increae of protein in gel [l/min] GPR-total protein in gel [g] HM-hematocrit [%] HMD-cardiac depreant effect of hypoxia HPL-hypertrophy effect on left ventricle HPR-hypertrophy effect on heart, ratio to normal HR-heart rate [beat/min] HSL-baic left ventricular trength HSR-baic trength of right ventricle HYL-quantity of hyaluronic acid in tiue [g] IFP-intertitial fluid protein [g] KCD-rate of change of potaium concentration [mmol/min] KE-total extracellular fluid potaium [mmol] KED-rate of change of extracellular fluid potaium concentration [mmol/min] KI-total intracellular potaium concentration [mmol/l].3.9897 8 POT VIM 329 339 VIM PO 8.2 PO2 338.333. lower limit.237 VIE 337 POY 464e-7 33.92 RC 4 HM2 336 33 336c x RCD o 2 332 336b 6 HM 2 33 HM 4 VRC 4.8 333 RKC 334 VB VRC VRC RC2 2..3 VVE PA HSL 34 PPA4 34 u^.62 PA4^.62 HPL 342 343 RR GFN 2 2.2 28.78 EVR PFL 99 AAR 98 AAR PPC 29.66 8 GLP 3.67 23 GF4 2 VIM algebraic GF3 loop breaking GF3 97 2 VIM xo 22 APD 96 GP3 upper limit. lower limit.4 AAR RFN..2 9 ARF 2 27.2 lower limit RFN RBF lower limit.3 RBF.2 RFN AUM.2 REK 28 PPC HSR PPA 34 PP3 346 347 348 HPR 344 349 x x o o HPR HPL KID-rate of potaium intake [mmol/min] KOD-rate of renal lo of potaium [mmol/min] LVM-effect of aortic preure on left ventricular output MMO-rate of oxygen utilization by mucle cell [ml/min] M2--rate of oxygen utilization by non-mucle cell [ml/min] NAE-total extracellular odium [mmol] NED-rate of change of odium in intracellular fluid [mmol/min] NID-rate of odium intake [mmol/min] NOD-rate of renal excretion of odium [mmol/min] OMM-mucle oxygen utilization at ret [ml/min] OSA-aortic oxygen aturation OSV-non-mucle venou oxygen aturation OVA-oxygen volume in aortic blood [ml O2/l blood] OVS-mucle venou oxygen aturation O2M-baic oxygen utilization in non-mucle body tiue [ml/min] PA-aortic preure [torr] PAM-effect of arterial preure in ditending arterie, ratio to normal PC-capillary preure [torr] PCD-net preure gradient acro capillary membrane [torr] POP-pulmonary capillary preure [torr] PDO-difference between mucle venou oxygen PO2 and normal venou oxygen PO2 [torr] PFI-rate of tranfer of fluid acro pulmonary capillarie [l/min] PFL-renal filtration preure [torr] PGC-colloid omotic preure of tiue gel [torr] PGH-aborbency effect of gel caued by recoil of gel reticulum [torr] PGL-preure gradient in lung [torr] PGP-colloid omotic preure of tiue gel caued by entrapped protein [torr] PGR-colloid omotic preure of intertitial gel caued by Donnan equilibrium [torr] PIF-intertitial fluid preure [torr] PLA-left atrial preure [torr] 76 u^.62 PP3^. 76 8 POT 3 3 DHM 32 x o 6.2 upper limit HMD HMD. 26 22 2 27 26 AM AHM 23 24 AHM AM 2.9 RVS 66 DP.6379 79 PPD.7 PVG BFN 67 DPL 2.8 77 78 3.7 PVS 8 DLP.4 PC LPK CPR DPP 7.47 VB PC.4 6.8 8 7 VB 68 6 VRC 62 CPP PRP 2 xo 2 VP 72 VP CFC 69 PPC PIF.7 28.4-6.3 CPP 6.8 69.77 VTC PTC 73 PPC.2 74 CPP u^3 7.92 PC^3 VTC CP 74.6283e-7 CPK CPI TVD. DPC 7.4 7. VUD VPD VP.384 3 x DFP o 3 2 DPC 3.4 VTL.2 VP.2.2.899 VTL.38.2 PTC PTC.4 DPC VTL VTC 83 VID VTD 2 84 x o 2 VTS.99 VTS 8 PTT = (VTS/2)^2 (u/2)^2 PTT DPL 87 2 VIF.3826 DPL VTL lower limit 8 DPL 2 DPI 2 GPD AM 22 PTS = f(vif) 86 VG x o.4 VGD 96 V2D. u^2 CHY^2 93 94 9 PG2.4 PGR PGC PIF PGP PTC PTS PIF VG 89 9 9 92 7 CHY PRM HYL -.9 PLD-preure gradient to caue lymphatic flow [torr] PLF-pulmonary lymphatic flow [torr] PMO-mucle cell PO2 [torr] POD-non-mucle venou PO2 minu normal value [torr] POK-enitivity of rapid ytem of autoregulation PON-enitivity of intermediate autoregulation POS-pulmonary intertitial fluid colloid omotic preure [torr] POT-non-mucle cell PO2 [torr] POV-non-mucle venou PO2 [torr] POY-enitivity of red cell production POZ-enitivity of long-term autoregulation PO2-oxygen deficit factor cauing red cell production PPA-pulmonary arterial preure [torr] PPC-plama colloid omotic preure [torr] PPD-rate of change of protein in pulmonary fluid PPI-pulmonary intertitial fluid preure [torr] PPN-rate of pulmonary capillary protein lo [g/min] PPO-pulmonary lymph protein flow [g/min] PPR-total protein in pulmonary fluid [g] PRA-right atrial preure [torr] PRM-preure caued by compreion of intertitial fluid gel reticulum [torr] PRP-total plama protein [g] PTC-intertitial fluid colloid omotic preure [torr] PTS-olid tiue preure [torr] PTT-total tiue preure [torr] PGV-preure from vein to right atrium [torr] PVG-venou preure gradient [torr] PVO-mucle venou PO2 [torr] PVS-average venou preure [torr] QAO-blood flow in the ytemic arterial ytem [l/min].8 GFR 28 VUD lower limit.3. TRR.2.4 6 CNY 24.2 29 22 CNE PTS 3 x o 222 7 VUD.8 2. CPI -6.328 PIF PIF -6.3 88. NOD 2. CNX IFP PLD 6.4 PIF 97 CPI PTT 2 4 VIF NOD.. VG 3.3332 98 99 9 GP GP2 GPD 7 2 PGH 7.8 x o GPR.2 QLN-baic left ventricular output [l/min] QLO-output of left ventricle [l/min] QOM-total volume of oxygen in mucle cell [ml] QO2-non-mucle total cellular oxygen [ml] QPO-rate of blood flow into pulmonary vein and left atrium [l/min] QRF-feedback effect of left ventricular function on right ventricular function QRN-baic right ventricular output [l/min] QRO-actual right ventricular output [l/min] QVO-rate of blood flow from vein into right atrium [l/min] RAM-baic vacular reitance of mucle [torr/l/min] RAR-baic reitance of non-mucular and non-renal arterie [torr/l/min] RBF-renal blood flow [l/min] RC-red cell production rate [l/min] RC2-red cell detruction rate [l/min] RCD-rate of change of red cell ma [l/min] REK-percent of normal renal function RFN-renal blood flow if kidney i not damaged [l/min] RKC-rate factor for red cell detruction RM-rate of oxygen tranport to mucle cell [ml/min] RPA-pulmonary arterial reitance [torr/l/min] RPT-pulmonary vacular reitance [torr/l/min] RPV-pulmonary venou reitance [torr/l/min] RR-renal reitance [torr/l/min] RSM-vacular reitance in mucle [torr/l] RSN-vacular reitance in non-mucle, n/minon-renal tiue [torr/l/min] RVG-reitance from vein to right atrium [torr/l/min] RVM-depreing effect on right ventricle of pulmonary arterial preure RVS-venou reitance [torr/l/min] SR-intenity factor for tre relaxation SRK-time contant for tre relaxation 92 93 94 8 POT STH STH 8.2 4 TVD lower limit.2 Z Z 9 9 AHM. TVD.3.9 88 86 89 AHM AH4 6 AHC.78 8 AH2 87 AH 6 AHM u 8A CNZ 83 7 76 82.3333 42 CNA CN8.4 AH 84 lower limit 3 CNR 39 77 78 PRA 79 8 AHY AHZ AH7 2.7 8 AU AH8 lower_limit_ 42 62 ANM 63 AN 3.3.4 lower limit.7 6 6 AN3 AN2 ANM 4..42 u REK 9 3b 3a.2 RFN ANC (.2/u)^3 xo (.2/RFN)^3 CNE 4 6 7 8 42 CNA CNE AN ANM 2. ANT.2 AM ANM 64 4 PA.32 CKE CNA 74 AM 2.39 73 AM AMP AMR 2 AMP = f(pa) 6 66 KN lower limit 6 67 AM3 AM AMT 69 6 3.44e-6 VID CKI 33 CCD 34 3 32 VID VIC CNA. 2 x o VIC 3 KI x o 3 29 28 3 28 KE 27.3 CKE 4 AM KCD.4 2 22 KED 23 KE CKE 24.28 KID 7 x o 2 2 26.42 KOD REK 7 8 CNA NOD NED 9 CNA NAE 42. 23 x o. 6 42 NID STH. VIC VPF 4.2 VEC 39.99 VTW 3 VTW VP 2 VTS 9 9.8 STH-effect of tiue hypoxia on alt and water intake SVO-troke volume output [l] TRR-tubular reaborption rate [l/min] TVD-rate of drinking [l/min] VAS-volume in ytemic arterie [l] VB-blood volume [l] VEC-extracellular fluid volume [l] VG-volume of intertitial fluid gel [l] VGD-rate of change of tiue gel volume [l/min] VIB-blood vicoity, ratio to that of water VIC-cell volume [l] VID-rate of fluid tranfer between intertitial fluid and cell [l/min] VIE-portion of blood vicoity caued by red blood cell VIF-volume of free intertitial fluid [l] VIM-blood vicoity (ratio to normal blood) VLA-volume in left atrium [l] VP-plama volume [l] VPA-volume in pulmonary arterie [l] VPD-rate of change of plama volume [l] VPF-pulmonary free fluid volume [l] VRA-right atrial volume [l] VTC-rate of fluid tranfer acro ytemic capillary membrane [l/min] VTD-rate of volume change in total intertitial fluid [l/min] VTL-rate of ytemic lymph flow [l/min] VTW-total body water [l] VUD-rate of urinary output [l/min] VV7-increaed vacular volume caued by tre relaxation [l] VVR-diminihed vacular volume caued by ympathetic timulation [l] VVS-venou vacular volume [l] Z8-time contant of autonomic repone 68 72 u 7 -.7 AMC 7 AM2 NON-MUSCLE OXYGEN DELIVERY NON-MUSCLE LOCAL BLOOD FLOW CONTROL 278 277 276 27 274 273 28 282 28 28 279 AUTONOMIC CONTROL HEART RATE AND STROKE VOLUME MUSCLE BLOOD FLOW CONTROL AND PO2 PULMONARY DYNAMICS AND FLUIDS RVM = f(pp2) CIRCULATORY DYNAMICS VASCULAR STRESS RELAXATION x o RED CELLS AND VISCOSITY HEART HYPERTROPHY OR DETERIORATION KIDNEY DYNAMICS AND EXCRETION CAPILLARY MEMBRANE DYNAMICS TISSUE FLUIDS, PRESSURES AND GEL THIRST AND DRINKING ANTIDIURECTIC HORMONE CONTROL ANGIOTENSIN CONTROL ALDOSTERONE CONTROL KCD KIE KIR ELECTROLYTES AND CELL WATER xo LIST OF VARIABLES -

6

7

TBEOX YCO3IN YHIN MRH ZBEEC BEOX TYINT XGL CGL CGL2 YINS CGL3 YGLI YINT ZGLE QIN QVIN QIWL QMWP CFC CSM VRBC XHBER VIN VP VIF VIC YCAI YMGI ZCAE ZMGE RTOT RTOP KL KR DEN KRAN YCLI ZCLE QLF CPR YNIN CBFI CHEI ZKI CKEI YKIN ZNE ZKE ZHI MRCO2 MRO2 PBA FCO2I VAL FO2I UCO2V UO2V FCO2A FO2A YPO4I YSO4I YORGI ZPO4E ZSO4E ZORGE YPLIN ZPG ZPIF ZPP ZPLG TPHA YTA TPHU2 TPHU YNH4 PHA PHU2 PHU VA YURI YMNI ZUR ZMNE SIMTIME ZUR XURE YURU ZMNE XMNE YMNU VA GFR ALD ADH THDF STPG YTA YTA PHU YNH4 YCO3 YCO3R PICO XPIF ZPIF ZPP XPP PPCO ZPO4E XPO4 YPO4 ZSO4E XSO4 YSO4 ZORGE XORGE YORG OSMP UCO2V UO2V PCO2A FCO2A PO2A FO2A YNU YNH YND XNE ZNE YNHI YKHI ZKI ZKE YKU YKD XKE PIF QLF QWD QWU OSMU ZCLE XCLE YCLU QCO PAP PAS PC PVS PVP ZCAE XCAE YCA ZMGE XMGE YMG HB HT VB VP VEC VIF VTW VIC YINT YGLS YKGLI ZGLE XGLE YGLU A STBC BE AH PHA XCO3 UCO2A UO2A BEOX BEEC GOLEM (=.) (=) (=) (=) (=) (=) (=) (=) (=.) (=) (=77.) (=) (=) (=6) (=6) (=7.4) (=.24) (=3) (=2) (=.68) (=2) (=7) (=4) (=76) (=2) (=) (=66.) (=22) (=24.2) (=.) (=.4) (=.) (=.473) (=.6) (=.) (=.2) (=.2) (=3) (=.3) (=76) (=.29) (=.238) (=) (=49.) (=4) (=.47) (=.) (=28) (=) (=e-9) (=.6) (=.2) (=.2) (=44) (=.3) (=.93) (=) (=.3) (=.2) (=3) (=2) (=33) (=) (=.8) (=.7) (=2) (=8.8) (=2.2) (=.) (=33.34) (=.8) (=3e-4) (=.7) (=e-4) (=e-4) (=.) (=66) (=.3) (=) (=) (=8) (=) (=.4) (=8.) 98 BEEC 97 BEOX 96 UO2A 9 UCO2A 94 XCO3 93 92 PHA 9 AH 9 BE 89 STBC 88 A 87 YGLU 86 XGLE 8 ZGLE 84 YKGLI 83 YGLS 82 YINT 8 VIC 8 VTW 79 VIF 78 VEC 77 VP 76 VB 7 HT 74 HB 73 YMG 72 XMGE 7 ZMGE 7 YCA 69 XCAE 68 ZCAE 67 PVP 66 PVS 6 PC 64 PAS 63 PAP 62 QCO 6 YCLU 6 XCLE 9 ZCLE 8 OSMU 7 QWU 6 QWD QLF 4 PIF 3 XKE 2 YKD YKU ZKE 49 ZKI 48 YKHI 47 YNHI 46 ZNE 4 XNE 44 YND 43 YNH 42 YNU 4 FO2A 4 PO2A 39 FCO2A 38 PCO2A 37 UO2V 36 UCO2V 3 OSMP 34 YORG 33 XORGE 32 ZORGE 3 YSO4 3 XSO4 29 ZSO4E 28 YPO4 27 XPO4 26 ZPO4E 2 PPCO 24 XPP 23 ZPP 22 ZPIF 2 XPIF 2 PICO 9 YCO3R 8 YCO3 7 YNH4 6 PHU YTA 4 YTA 3 STPG 2 THDF ADH ALD 9 GFR 8 VA 7 YMNU 6 XMNE ZMNE 4 YURU 3 XURE 2 ZUR SIMTIME 84 ZMNE 83 ZUR 82 YMNI 8 YURI 8 VA 79 PHU 78 PHU2 77 PHA 76 YNH4 7 TPHU 74 TPHU2 73 YTA 72 TPHA 7 ZPLG 7 ZPP 69 ZPIF 68 ZPG 67 YPLIN 66 ZORGE 6 ZSO4E 64 ZPO4E 63 YORGI 62 YSO4I 6 YPO4I 6 FO2A 9 FCO2A 8 UO2V 7 UCO2V 6 FO2I VAL 4 FCO2I 3 PBA 2 MRO2 MRCO2 ZHI 49 ZKE 48 ZNE 47 YKIN 46 CKEI 4 ZKI 44 CHEI 43 CBFI 42 YNIN 4 CPR 4 QLF 39 ZCLE 38 YCLI 37 KRAN 36 DEN 3 KR 34 KL 33 RTOP 32 RTOT 3 ZMGE 3 ZCAE 29 YMGI 28 YCAI 27 VIC 26 VIF 2 VP 24 VIN 23 XHBER 22 VRBC 2 CSM 2 CFC 9 QMWP 8 QIWL 7 QVIN 6 QIN ZGLE 4 YINT 3 YGLI 2 CGL3 YINS CGL2 9 CGL 8 XGL 7 TYINT 6 BEOX ZBEEC 4 MRH 3 YHIN 2 YCO3IN TBEOX Simulation time QIN YURI YCO3IN TBEOX YHIN MRH ZBEEC BEOX TYINT XGL CGL CGL2 YINS CGL3 YGLI YINT ZGLE QVIN QIWL QMWP CFC CSM VRBC XHBER VIN VP VIF VIC YCAI YMGI ZCAE ZMGE RTOT RTOP KL KR DEN KRAN YCLI ZCLE QLF CPR YNIN CBFI CHEI ZKI CKEI YKIN ZNE ZKE ZHI MRCO2 MRO2 PBA FCO2I VAL FO2I UCO2V UO2V FCO2A FO2A YPO4I YSO4I YORGI ZPO4E ZSO4E ZORGE YPLIN ZPG ZPIF ZPP ZPLG TPHA YTA TPHU2 TPHU YNH4 PHA PHU2 PHU VA YMNI ZUR ZMNE <BEEC> <BEOX> <UO2A> <UCO2A> <XCO3> <> <PHA> <AH> <BE> <STBC> <A> <YGLU> <XGLE> <ZGLE> <YKGLI> <YGLS> <YINT> <VIC> <VTW> <VIF> <VEC> <VP> <VB> <HT> <HB> <YMG> <XMGE> <ZMGE> <YCA> <XCAE> <ZCAE> <PVP> <PVS> <PC> <PAS> <PAP> <QCO> <YCLU> <XCLE> <ZCLE> <OSMU> <QWU> <QWD> <QLF> <PIF> <XKE> <YKD> <YKU> <ZKE> <ZKI> <YKHI> <YNHI> <ZNE> <XNE> <YND> <YNH> <YNU> <FO2A> <PO2A> <FCO2A> <PCO2A> <UO2V> <UCO2V> <OSMP> <YORG> <XORGE> <ZORGE> <YSO4> <XSO4> <ZSO4E> <YPO4> <XPO4> <ZPO4E> <PPCO> <XPP> <ZPP> <ZPIF> <XPIF> <PICO> <YCO3R> <YCO3> <YNH4> <PHU> <YTA> <YTA> <STPG> <THDF> <ADH> <ALD> <GFR> <VA> <YMNU> <XMNE> <ZMNE> <YURU> <XURE> <ZUR> - 8

<YTA> <YNH4> <YCO3> <ALD> <GFR> <CPR> <THDF> <YNIN> <PHA> <CBFI> <CHEI> <YKGLI> <ZKI> <CKEI> <YKIN> <VEC> <ZNE> <ZKE> <ZHI> <VEC> <YPO4I> <YSO4I> <YORGI> <GFR> <TBEOX> <VB> <HB> <A> <PCO2A> <VEC> <YTA> <YNH4> <YCO3> <YKHI> <YNHI> <YCO3IN> <YHIN> <MRH> <ZBEEC> <BEOX> <QIN> <QVIN> <QIWL> <QMWP> <QWU> <QLF> <CFC> <PICO> <PPCO> <PC> <PIF> <CSM> <XNE> <XKE> <XGLE> <ZKI> <VRBC> <XHBER> <VIN> <VP> <VIF> <VIC> <VEC> <YCLI> <YNU> <YKU> <YNH4> <YCA> <YMG> <YSO4> <YCO3> <STPG> <ZCLE> <ZPO4E> <ZSO4E> <ZORGE> <VEC> <PAS> <XKE> <YNH> <PVP> <OSMP> <PPCO> yta ynh4 yco3 ALD GFR CPR THDF ynin PHA CBFI CHEI ykgli zki CKEI ykin vec ZNE ZKE ZHI vec vec ypo4i yso4i yorgi GFR TBEox VB HB A pco2a VEC yta ynh4 yco3 ykhi ynhi yco3in yhin MRH ZBEEC BEOX qin qvin qiwl qmwp qwu qlf CFC pico ppco pc pif CSM xne xke xgle zki vrbc xhber VIN VP VIF VIC ycli ynu yku ynh4 yca ymg yso4 yco3 STPG ZCLE ZPO4E ZSO4E ZORGE vec pas xke ynh pvp OSMP ppco Acid bae metabolic balance Body fluid volume balance Sodium and potaium balance Phophate ulphate and organic acid balance HB HB HT HT vb VB vp VP vec VEC vif VIF vtw VTW vic VIC zcle ZCLE xcle XCLE yclu YCLU zpo4e ZPO4E xpo4 XPO4 ypo4 YPO4 zso4e ZSO4E xso4 XSO4 yso4 YSO4 zorge ZORGE xorge XORGE yorg YORG BEox BEOX BEEC BEEC GFR GFR ALD ALD ADH ADH THDF THDF Blood acid bae balance Calcium and magneium balance Diurei and urine omolarity ynu YNU ynh YNH ynd YND xne XNE zne ZNE ynhi YNHI ykhi YKHI zki ZKI zke ZKE yku YKU ykd YKD xke XKE O2 and CO2 exchange Protein balance <BEOX> <HB> BEOX HB PCO2A <PCO2A> <PO2A> <VEC> <YCAI> <GFR> <YMGI> PO2A vec ycai GFR ymgi zcae <ZCAE> zmge <ZMGE> <ADH> <OSMP> <YND> <YKD> <YGLU> <YURU> <YMNU> <YNU> <YKU> <VIF> <QLF> <PC> <YPLIN> <VP> <ZPG> <ZPIF> <ZPP> <ZPLG> <VA> <PO2A> <PCO2A> <PHA> <AH> mrco2 <MRCO2> uco2a <UCO2A> VTW <VTW> mro2 <MRO2> uo2a <UO2A> QCO <QCO> PBA <PBA> fco2i <FCO2I> VAL <VAL> VA <VA> fo2i <FO2I> UCO2V <UCO2V> UO2V <UO2V> FCO2A <FCO2A> FO2A <FO2A> vif qlf pc YPLIN vp ZPG ZPIF ZPP ZPLG VA po2a pco2a pha AH ADH OSMP ynd ykd yglu yuru ymnu ynu yku Blood glucoe control Cardiovacular block Intertitial preure and lymph flow rate Plama omolarity Renal acid bae control Chloride balance zcae ZCAE xcae XCAE yca YCA zmge ZMGE xmge XMGE ymg YMG pico PICO xpif XPIF zpif ZPIF zpp ZPP xpp XPP ppco PPCO VA VA XHB XHB STBC STBC BE BE AH AH PHA PHA XCO3A XCO3 UCO2A UCO2A UO2A UO2A qwd QWD qwu QWU OSMU OSMU uco2v UCO2V uo2v UO2V pco2a PCO2A fco2a FCO2A po2a PO2A fo2a FO2A A <TPHA> <PHA> <YORG> <YPO4> <YTA> <ALD> <TPHU2> <TPHU> <YNH4> <QWU> <PCO2A> <GFR> <XCO3> <PHA> <PHU2> <PHU> <VTW> <YURI> <GFR> <YMNI> <VEC> <ZUR> <ZMNE> Controller of renal function <TYINT> <XGL> <CGL> <CGL2> <YINS> <CGL3> <YGLI> <VEC> <GFR> <YINT> TPHA PHA yorg ypo4 yta ALD TPHU2 TPHU ynh4 qwu pco2a GFR xco3 PHA PHU2 PHU vtw yuri GFR ymni vec ZUR ZMNE TYINT xgl CGL CGL2 yins CGL3 ygli vec GFR YINT ZGLE <ZGLE> <VB> <RTOT> <RTOP> <KL> <KR> <DEN> <KRAN> <XMNE> <XURE> <XGLE> <XNE> <XKE> <VIF> <VIF> <QLF> VB RTOT RTOP KL KR DEN KRAN xmne xure xgle xne xke VIF VIF QLF Repiration control OSMP OSMP zur ZUR xure XURE yuru YURU zmne ZMNE xmne XMNE ymnu YMNU STPG STPG yta YTA yta YTA PHU PHU ynh4 YNH4 yco3 YCO3 yco3r YCO3R PIF PIF QLF QLF yint YINT ygls YGLS ykgli YKGLI zgle ZGLE xgle XGLE yglu YGLU INPUTS QCO QCO PAP PAP PAS PAS pc PC PVS PVS PVP PVP Urea and mannitol balance ACID BASE METABOLIC BALANCE TBEOX - (*Time contant*) VB - (*Blood Volume [l]*) HB (fore XHB) - (*Blood hemoglobin concentration [g/ ml]*) A [] - (* vector of coeficient, ee "Blood Acid Bae Balance" *) pco2a - (*CO2 tenion in arterial blood [Torr]*) VEC - (*Extracelular fluid volume [l]*) yta - (*Renal excretion rate of titratable acid [meq/min]*) ynh4 - (*Renal excretion rate of ammonium [meq/min]*) yco3 - (*Renal excretion rate of bicarbonate [meq/min]*) ykhi - (*Potaium ion flow rate from ECF into ICF exchanged with hydrogen ion [meq/min]*) ynhi - (*Hydrogen ion flow rate from ECF into ICF exchanged with odium ion [meq/min]*) BEox - (** Bae exce in fully oxygenated blood [meq/l]*) BEEC - (*ECF Bae exce concentration U(E) BLOOD ACID BASE BALANCE Selector BEOX - Bae Exce in fully oxygenated blood [mmol/l] HB - Hemoglobin concentration [g/dl] PCO2A - CO2 tenion in arterial blood [torr] PO2A - Oxygen tenion in arterial blood [torr] XHB - Vector of coefficient derived from hemoglobin concentration STBC - Standard bicarbonate concentration [mmol/l] BE - Bae Exce concentration in arterial blood AH - Hydrogen ion concentration [nmol/l] PHA - arterial plama ph - Oxygen hemoglobin aturation in arterial blood (expreed a ratio from to ) XCO3 - Actual bicarbonate concentration in arterial blood UCO2A - Content of CO2 in arterial blood [l STPD/l] UO2A-Content of O2 in arterial blood [l STPD/l] Blood Acid Bae Balance Scope2 BLOOD GLUCOSE CONTROL TYINT - time contant of inulin ecretion xgl - reference value of ECF glucoe concentration CGL - parameter of glucoe metabolim CGL2 - parameter of glucoe metabolim yins - intake rate of inulin[unit/min] CGL3 - parameter of glucoe metabolim ygli - intake rate of glucoe [g/min] vec - ECF volume [l] GFR - glomerular filtration rate [l/min] yint - inulin ecretion [unit/min] ygls - glucoe flow rate from ECF into cell [meq/min] ykgli - K flow rate from ECF to ICF accompanying ecretion of inulin [meq/min] zgle - ECF glucoe content [meq] xgle - ECF glucoe concentration [meq] yglu - renal excretion rate of glucoe [meq/min] 2.8.2 Blood Glucoe Control Acid Bae Metabolic Balance Scope Scope Scope3 BODY FLUID VOLUME BALANCE qin - drinking rate [l/min] qvin - intravenou water input [l/min] qiwl - inenible water lo [l/min] qmwp - metabolic water production [l/min] qwu - urine output [l/min] qlf - lymph flow rate [l/min] CFC - capillary filtration coefficient [l/min/torr] pico - intertitial colloid omotic preure [torr] ppco - plama colloid omotic preure [torr] pc - capillary preure [torr] pif - intertitial preure [torr] CSM - tranfer coeff. of water from ECF to ICF xne - ECF Na concentration [meq/l] xke - ECF K concentration [meq/l] xgle - ECF glucoe conc. [meq/l] zki - ICF K content [meq] vrbc - volume of red blood cell [l] xhber - hemoglobin concentration in the red blood cell [g/ ml] CALCIUM AND MAGNESIUM BALANCE vec - ECF volume [l] ycai - calcium intake [meq/min] ymgi -magneium intake [meq/min] GFR - glomerular filtration rate [l/min] zcae - ECF calcium content [meq] xcae - ECF calcium contentration [meq/l] yca - calcium renal excretion rate [meq/min] zmge - ECF magneium content [meq] xmge - ECF magneium contentration [meq/l] ymg - magneium renal excretion rate [meq/min] INITIAL CONDITIONS: zcae - ECF calcium content [meq] zmge - ECF magneium content [meq] 3.7.2 CARDIOVASCULAR BLOCK VB - Blood volume [l] RTOT - Total reitance in ytemic circulation [Torr * Min / l] (norm.=2) RTOP - Total reitance in pulmonary circulation [Torr * Min /l] (norm. =3) KL - Parameter of the left heart performance [l/min/torr] (norm.=.2) KR - Parameter of the right heart performance [l/min/torr] (norm.=.3) DEN - Proportional contant between QCO AND VB [/min] (norm.=) KRAN - Parameter of capillary preure (norm.=.93) QCO - Cardiac output [l/min] PAP - Pulmonary arterial preure [torr] PAS - Sytemic arterial preure [torr] pc - Capillary preure [Torr] PVS - Central venou preure [torr] PVP - Pulmonary venou preure [torr] 24.8.2 edited by Tom Kripner HB - blood hemoglobin concentration [g/ ml] HT - hematocrit vb - blood volume [l] vp -plama volume [l] vec - ECF volume [l] vif - intertitial fluid volume [l] vtw - total body fluid volume [l] vic - ICF volume [l] 24.8.2 Calcium and Magneium Balance Cardiovacular Block Scope Scope4 Body Fluid Volume Balance Scope6 CHLORIDE BALANCE vec - ECF volume [l] ycli - chloride intake [meq/min] ynu - Na renal excretion rate [meq/min] yku - K renal excretion rate [meq/min] ynh4 - ammonium renal excretion rate [meq/min] yca - calcium renal excretion rate [meq/min] ymg - magneium renal excretion rate [meq/min] yso4 - ulphate renal excretion rate [meq/min] yco3 - bicarbonate excretion rate [meq/min] STPG - ummary renal excretion rate of phophate and org. acid related to arterial ph [meq/min] zcle - ECF chloride content [meq] xcle - ECF chloride concentration [meq/l] yclu - chloride renal excretion rate [meq/min] 3.7.2 Scope7 DIURESIS AND URINE OSMOLARITY ADH - effect of antidiuretic hormone [x normal] OSMP - plama omolality [mom/l] ynd - odium excretion rate in dital tubule [meq/min] ykd - potaium excretion rate in dital tubule [meq/min] yglu - renal excretion rate of glucoe [meq/min] yuru - renal excretion rate of urea [meq/min] ymnu - renal excretion rate of mannitol [meq/min] ynu - odium renal excretion rate [meq/min] yku - potaium renal excretion rate [meq/min] qwd - rate of urinary excretion in dital tubule [l/min] qwu - urine output [l/min] OSMU - urine omolality [mom/l] 7.8.2 Diurei and Urine Omolarity INTERSTITIAL PRESSURE AND LYMPH FLOW RATE vif - normal intertitial fluid volume [l] vif - intertitial fluid volume [l] qlf - normal lymph flow rate [l/min] pif - intertitial preure [torr] qlf - lymph flow rate [l/min] 6.8.2 Intertitial Preure and Lymph Flow Rate Chloride Balance Scope8 Scope9 SODIUM AND POTASSIUM BALANCE yta - Arterial ph dependent portion of titrable acid excretion rate ynh4 - ammonium renal excretion rate [meq/min] yco3r - bicarbonate reaborption rate [meq/min] ALD - aldotrone effect [x normal] GFR - glomerular filtration rate [l/min] CPR - excretion ratio of filterd load after proximal tubule THDF - effect of 3rd factor (natriuretic horm.) [x normal] ynin - odium intake [meq/min] PHA - Arterial blood ph CBFI - Parameter of intracellular buffer capacity CHEI - Tranfer coeff. of H ion from ECF to ICF ykgli - K flow rate from ECF to ICF accompanying ecretion of inulin [meq/min] zki - normal ICF K content [meq] CKEI - Tranfer coeff. of K ion from ECF into ICF (exchanged with H ion) ykin - K intake [meq/min] vec - ECF volume [l] ynu - Na renal excretion rate [meq/min] ynh - Na excretion in Henle loop [meq/min] ynd - Na excretion rate in dital tubule [meq/min] xne - ECF Na concentration [meq/l] zne - ECF Na content[meq] ynhi - H ion flow rate from ECF to ICF (exchanged w. Na) [meq/min] ykhi - K flow rate from ECF to ICF (exchanged w. H) [meq/min] zki - ICF K content [meq] zke - ECF K content [meq] yku - K renal excretion rate [meq/min] ykd - K excretion rate in dital tubule [meq/min] xke - ECF K concentration [meq/l] O2 and CO2 EXCHANGE mrco2 - (*Metabolic production rate of CO2 [l STPD/min]*) uco2a - (*Content of CO2 in arterial blood [l STPD/l]*) VTW - (*Total body fluid volume [l]*) mro2 - (*Metabolic conumption rate of O2 [l STPD/min]*) uo2a - (*Content of CO2 in arterial blood [l STPD/l]*) QCO - (*Cardiac output [l/min]*) PBA - (*Barometric preure*) fco2i - (*Volume fraction of CO2 in dry inpired ga*) VAL - (*Total alveolar volume (BTPS)*) VA - (*Alveolar ventilation [l BTPS/min]*) fo2i - (*Volume fraction of O2 in dry inpired ga*) uco2v - (** Content of CO2 in venou blood [l STPD/l]*) uo2v - (** Content of O2 in venou blood [l STPD / l*) pco2a - (*CO2 tenion alveoli [Torr]*) fco2a - (*Volume fraction of CO2 in dry alveoli ga*) po2a - (*O2 tenion in alveoli [Torr]*) fo2a - (*Volume fraction of O2 in dry alveoli ga*) 8..2 O2 and CO2 Exchange P L A S M A O S M O L A R I T Y INPUTS : XMNE - ECF mannitol concentration [mmol/l] XURE - ECF urea concentration [mmol/l XGLE - ECF glucoe concentration [mmol/l] XNE - ECF odium concentration [mmol/l] XKE - ECF potaium concentration [mmol/l] OUTPUT : OSMP - plama omolarity Plama omolarity calculation 27.7.2 Scope2 Na & K Balance Scope Scope PHOSPHATE, SULPHATE AND ORGANIC ACIDS BALANCE vec - ECF volume [l] ypo4i - phophate intake [meq/min] yso4i - ulphate intake [meq/min] yorgi - organic acid intake [meq/min] GFR - Glomerular filtration rate [l/min] zpo4e - ECF phophate content [meq] xpo4 - ECF phophate contentration [meq/l] ypo4 - Phophate renal excretion rate [meq/min] zso4e - ECF ulphate content [meq] xso4 - ECF ulphate contentration [meq/l] yso4 - ulphate renal excretion rate [meq/min] zorge - ECF organic acid content [meq] xorge - ECF organic acid contentration [meq/l] yorg - organic acid renal excretion rate [meq/min] 3.7.2 Phophate, Sulphate and Organic Acid Balance PROTEIN BALANCE vif intertitial fluid volume [l] qlf - lymph flow rate [l/min] pc - capillary preure [torr] YPLIN - rate of intravenou plama protein input [g/min] vp -plama volume [l] pico - intertitial colloid omotic preure [torr] xpif - intertitial protein concentration [g/l] zpif - intertitial protein content[g] zpp - plama protein content [g] xpp - plama protein concentration [g/l] ppco - plama colloid omotic preure [torr].7.2 Protein Balance ano XCO3 RENAL ACID BASE CONTROL TPHA - Time contant of titratable acid [/min] PHA - arterial ph yorg - Renal excretion rate of organic acid [meq/min] ypo4 - Renal excretion rate of phophate [meq/min] yta - Normal value of renal excretion rate of titratable acid [mmol/min] ALD - Aldoterone effect [x normal] TPHU - Time contant of ammonium ecretion [/min] TPHU2 - Time contant of titratable acid ecretion [/min] ynh4 - Normal value of ammonium renal excretion rate [mmol/min] qwu - Urine output [l/min] pco2a - Alveolar pco2 [torr] GFR - Glomerular filtration rate [l/min] xco3 - Actual bicarbonate concentration [mmol/l] OUTPUT VARIABLES: STPG - ummary renal excretion rate of titratable acid, phophate and org. acid [mmol/mi yta - renal excretion rate of titratable acid [mmol/min] yta - on arterial ph dependent portion of titratable acid ecretion rate [mmol/min] PHU - urine ph YNH4 - Ammonium renal excretion rate [mmol/min] YCO3 - Bicarbonate excretion rate [mmol/min] YCO3R - Bicarbonate reaborption rate [mmol/min] 24.7.2 Scope3 Scope4 Renal Acid Bae Control Scope CONTROLLER OF RENAL FUNCTION vec - ECF volume [l] pas - ytemic arterial preure [torr] xke - ECF K concentration [meq/l] ynh - Na excretion in Henle loop [meq/min] pvp - pulmonary venou preure [torr] OSMP - plama omolality [mom/l] ppco - plama colloid omotic preure [torr] GFR - glomerular filtration rate [l/min] ALD - aldoterone effect [x normal] ADH - effect of antidiuretic hormone [x normal] THDF - effect of 3rd factor (natriuretic horm.) [x normal] HIDDEN CONSTANTS: vec - normal ECF volume [l] GFR - normal glomerular filtration rate [l/min] 7.8.2 RESPIRATION CONTROL VA - normal value of alveolar ventilation [l BTPS/min] po2a - O2 partial preure in alveoli [Torr] pco2a - CO2 partial preure in alveoli Torr] pha - arterial blood ph AH - concentration of hydrogen ion in arterial blood [nm/l] VA - alveolar ventilation [l BTPS/min] 4..2 Repiration Control UREA AND MANNITOL BALANCE vtw - total body fluid volume [l] yuri - intake rate of urea [meq/min] GFR - glomerular filtration rate [l/min] ymni - intake rate of mannitol [meq/min] vec - ECF volume [l] zur - total body-fluid urea content [meq] xure - ECF urea concentration [meq/l] yuru - renal excretion rate of urea [meq/min] zmne - ECF mannitol content [meq] xmne - ECF mannitol concentration [meq] ymnu - renal excretion rate of mannitol [meq/min] 2.8.2 Urea and Mannitol Balance Controller of Renal Function Scope7 Scope6 Scope8-9

<BEOX> <HB> <PCO2A> <PO2A> BEOX HB BLOOD ACID BASE BALANCE BEOX - Bae Exce in fully oxygenated blood [mmol/l] HB - Hemoglobin concentration [g/dl] PCO2A - CO2 tenion in arterial blood [torr] PO2A - Oxygen tenion in arterial blood [torr] PHA XHB - Vector of coefficient derived from hemoglobin concentration STBC - Standard bicarbonate concentration [mmol/l] BE - Bae Exce concentration in arterial blood PCO2A AH - Hydrogen ion concentration [nmol/l] PHA - arterial plama ph XCO3A - Oxygen hemoglobin aturation in arterial blood (expreed a ratio from to ) XCO3 - Actual bicarbonate concentration in arterial blood UCO2A - Content of CO2 in arterial blood [l STPD/l] UCO2A PO2A UO2A-Content of O2 in arterial blood [l STPD/l] Blood Acid Bae Balance XHB XHB U(E) Selector STBC STBC BE AH UO2A BE AH PHA XCO3 UCO2A UO2A A 2 Blood HB hemoglobin concentration Hb Hemoglobin Coefficient A B C N S T INPUT : Hb - blood hemoglobin concentration [g/dl] OUTPUTS : XHb - coefficient derived from hemoglobin concentration c[]..c[] a[]..a[] XHb Standard Bicarbonate Concentration S T B C B XHb INPUTS : XHb - coefficient derived from HCO3t hemoglobin concentration BE -blood Bae Exce [mmol/l] BE OUTPUT : HCO3t - tandard bicarbonate concentration [mmol/l] ST BCB STBC XHB 2 STBC PHA BEOX ABCNST Memory PCO2A XHb ph From Bae Exce B E I N V ph37 INPUTS : PHA BEox XHb - coefficient derived from concentration of hemoglobin in blood BEox - Bae Exce in fully oxygenated blood [mmol/l] SO237 - oxyhemoglobin aturation [expreed a ratio form to ] SO237 PCO237 - pco2 [torr] in blood at 37 C OUTPUTS : BE ph37 - plama ph at tandard temperature (37 C) PCO237 BE- current value of blood Bae Exce [mmol/l] ph From BE PHA PCO2A 37 Contant pht PCO2t temp Actual Bicarbonate Concentration A C B C B INPUTS : pht - plama ph at patient temperature PCO2t - PCO2 [torr] at body temperature temp - body temperature [ C] OUTPUT : HCO3 - actual bicarbonate concentration at body temperature AC BCB HCO3 XCO3A ^(9-u); Fcn 4 AH 7 XCO3A 3 BE XHb CO2 Blood Content C A R B PHA PCO2A PCO237 SO237 INPUTS : XHb - coefficient derived from conentration of hemoglobin in blood PCO237 - pco2 [torr] in blood at 37 C SO237 - oxyhemoglobin aturation [expreed a ratio form to ] ph37 - ph of plama at 37 C CO2 8 UCO2A 4 PO2A PO2A PO2A PO237 ph37 Oxyhemoglobin Saturation S A T U R INPUTS : PO237 - po2 [torr] in blood at 37 C PCO237 - pco2 [torr] in blood at 37 C ph37 - ph of plama at 37 C SO237 PHA ph37 OUTPUT : CO2 - blood CO2 content [expreed in l CO2 STPD/l ] CARB 3 PCO2A PCO2A pco237 OUTPUT : SO237 - oxyhemoglobin aturation (expreed a ratio form to ) SATUR PCO2A 6 XHb O2 Blood Content O X Y SO237 INPUTS : XHb - coefficient derived from concentration of hemoglobin in blood SO237 - oxyhemoglobin aturation 37 C (expreed a ratio form to ) PO237 - po2 (torr) in blood at 37 C O2 9 UO2A PO2A PO237 OUTPUT : O2 - blood O2 content [expreed in l CO2 STPD)/l ] OXY SIMULATION CHIP: BLOOD ACID BASE BALANCE u[] CO2 - part XHb 2 PCO237 ( u[2]*u[26] + u[3] ) / (u[26]*u[26]) CO2 - part2 u[4]*u[2]/u[26] CO2 - part3 [7.3882E-3 3.64474E-4 7.99977-2.3444E- -.47926 ] X... X4 3 SO237 SO2 >= ^ -3 f(u) D D=X*(SO237^X)*(pH37^X2) 4 *exp(x3*so237+x4*ph37); ph37 ^( 9 - u ) AH AH=^(9-pH37); u[]* ( -u[24] ) / ( (u[26]/u[2])^2 + u[26]*u[6] / u[2] + u[7] * u[23] ) CO2 - part4 u[8]* u[24] / ( (u[26]/u[2])^2 + u[26]*u[9] / u[2] + u[] * u[23] ) CO2 - part X=7.3882E-3 ; X=3.64474E-4 ; X2=7.99977 ; X3=-2.3444E- ; X4=-.47926 ; % if SO237== % SO237=E-3; % end; D=X*(SO237^X)*(pH37^X2)*exp(X3*SO237+X4*pH37); AH=^(9-pH37);.2226 Cont CO2= CO2 SIMULATION CHIP: CARB CO2 =.2226*PCO237*(XHb()+(XHb(2)*AH+XHb(3))/(AH*AH)+XHb(4)*D/AH... +XHb()*(-SO237)/((AH/D)^2+AH*XHb(6)/D+XHb(7)*PCO237)... +XHb(8)*SO237 /((AH/D)^2+AH*XHb(9)/D+XHb()*PCO237)); -

2

- - 3

V Aka auzální kone ektor: ReferencePo oint ExternalPreure V Compliance Vol Preure ExternalPreure Preure e <V <V V V Vol V StreedVolume V StreedVolume StreedVolume = max(vol-v,); Preure = (StreedVolume/Compliance) + ExternalPreure; ReferencePoint.Flow = der(vol) ReferencePoint.Preure Preure = Preure V V ; V 4

; ; V

[ 6

- 7

- 8

VacularCompartment SplanchnicVein - 9

2

2

- 22

- 23

[] [] 24

2

26

27

28