Výroková a predikátová logika - IX

Podobné dokumenty
Výroková a predikátová logika - IX

Výroková a predikátová logika - X

Výroková a predikátová logika - IX

Výroková a predikátová logika - IV

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VII

Výroková a predikátová logika - XI

Výroková a predikátová logika - VII

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16

Výroková a predikátová logika - XIII

Výroková a predikátová logika - XII

Výroková a predikátová logika - VI

Výroková a predikátová logika - II

Výroková a predikátová logika - III

Výroková a predikátová logika - III

Matematická logika. Rostislav Horčík. horcik

Výroková a predikátová logika - XII

Výroková a predikátová logika - X

Výroková a predikátová logika - II

Výroková a predikátová logika - V

Výroková a predikátová logika - XIV

Výroková a predikátová logika - II

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. prvního řádu

Predikátová logika. Z minula: 1. jazyk logiky 1. řádu. 2. term a formule. 3. interpretace jazyka (relační struktura) 4. Tarského definice pravdy

Základy logiky a teorie množin

Systém přirozené dedukce výrokové logiky

Řešení: Ano. Řešení: Ne.

Hilbertovský axiomatický systém

Matematická logika. Rostislav Horčík. horcik

1 Pravdivost formulí v interpretaci a daném ohodnocení

Predikátová logika [Predicate logic]

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka

Matematická logika. Miroslav Kolařík

Logika Libor Barto. Výroková logika

2.2 Sémantika predikátové logiky

4.2 Syntaxe predikátové logiky

2.5 Rezoluční metoda v predikátové logice

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Cvičení ke kursu Klasická logika II

IA008 Computational logic Version: 6. května Formule je v konjunktivní normální formě (CNF), pokud má tvar α 1... α n,

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek

Rezoluční kalkulus pro logiku prvního řádu

platné nejsou Sokrates je smrtelný. (r) 1/??

Základy matematické logiky

Matematická logika. Miroslav Kolařík

Logika. 6. Axiomatický systém výrokové logiky

Logické programy Deklarativní interpretace

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika - opakování

Matematická logika. Rostislav Horčík. horcik

Sémantika predikátové logiky

Modely Herbrandovské interpretace

Převyprávění Gödelova důkazu nutné existence Boha

Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1

Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17

Formální systém výrokové logiky

Okruh č.3: Sémantický výklad predikátové logiky

Matematická logika. Miroslav Kolařík

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Základní pojmy matematické logiky

Skolemizace. x(x + f(x) = 0). Interpretace f unární funkce, která pro daný

Úvod do výrokové a predikátové logiky

Cvičení ke kursu Logika II, část III

Rezoluce v predikátové logice

Rezoluce v predikátové logice

teorie logických spojek chápaných jako pravdivostní funkce

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7

verze 29/9/09 textu o logice, aritmetice a M. Bizzarrimu.

Matematická logika. Rostislav Horčík. horcik

Predikátová logika: Axiomatizace, sémantické stromy, identita. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13

Logika a logické programování

7 Jemný úvod do Logiky

Základy logiky a teorie množin

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Predikátová logika dokončení

Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20

Základy logiky a teorie množin

Výroková logika dokazatelnost

MATEMATICKÁ LOGIKA. Petr Hájek a Vítězslav Švejdar. Praha, listopad (povrchní typografická revize v červnu 99)

Výroková logika syntaxe a sémantika

Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23

Základy teorie množin

Výroková a predikátová logika - I

Matematická analýza 1

LITERATURA. Čechák V.: Základy logiky a metodologie. Praha Eupress 2007

Abstrakt Text je určen jako doplňkový k přednášce Matematická logika a Paradigmata programování 4.

Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží

1. Predikátová logika jako prostedek reprezentace znalostí

Základy teorie množin

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz

Úvod do informatiky. Miroslav Kolařík

Úvod do logiky (PL): negace a ekvivalence vět mimo logický

1. Matematická logika

Výroková a predikátová logika - I

Cvičení ke kursu Vyčíslitelnost

Transkript:

Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 1 / 16

Tablo metoda v PL Důsledky úplnosti Vlastnosti teorií Zavedeme syntaktické varianty již definovaných sémantických pojmů. Necht T je teorie jazyka L. Je-li sentence ϕ dokazatelná z T, řekneme, že ϕ je věta (teorém) teorie T. Množinu vět teorie T označme Thm L (T ) = {ϕ Fm L T ϕ}. Řekneme, že teorie T je sporná, jestliže je v T dokazatelný (spor), jinak je bezesporná, kompletní, jestliže není sporná a každá sentence je v ní dokazatelná či zamítnutelná, tj. T ϕ či T ϕ. extenze teorie T jazyka L, jestliže L L a Thm L (T ) Thm L (T ), o extenzi T teorie T řekneme, že je jednoduchá, pokud L = L, a konzervativní, pokud Thm L (T ) = Thm L (T ) Fm L, ekvivalentní s teorií T, jestliže T je extenzí T a T je extenzí T. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 2 / 16

Tablo metoda v PL Důsledky úplnosti Důsledky Z korektnosti a úplnosti tablo metody vyplývá, že předchozí pojmy se shodují se svými sémantickými variantami. Důsledek Pro každou teorii T a sentence ϕ, ψ jazyka L, T ϕ právě když T = ϕ, Thm L (T ) = θ L (T ), T je sporná, právě když není splnitelná, tj. nemá model, T je kompletní, právě když je sémanticky kompletní, tj. má až na elementární ekvivalenci jediný model, T, ϕ ψ právě když T ϕ ψ (Věta o dedukci). Poznámka Větu o dedukci lze dokázat přímo, transformací příslušných tabel. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 3 / 16

Tablo metoda v PL Důsledky úplnosti Existence spočetného modelu a kompaktnost Věta Každá bezesporná teorie T spočetného jazyka L bez rovnosti má spočetně nekonečný model. Důkaz Necht τ je systematické tablo z T s F v kořeni. Jelikož je dokončené a obsahuje bezespornou větev V, nebot není dokazatelný z T, existuje kanonický model A z V. Jelikož se A shoduje s V, jeho redukt na jazyk L je hledaným spočetně nekonečným modelem T. Poznámka Jde o slabou verzi tzv. Löwenheim-Skolemovy věty. Ve spočetném jazyce s rovností je kanonický model s rovností spočetný. Věta Teorie má model, právě když každá její konečná část má model. Důkaz Implikace zleva doprava je zřejmá. Pokud teorie T nemá model, je sporná, tj. je z ní dokazatelný systematickým tablem τ. Jelikož je τ konečné, je dokazatelný z nějaké konečné T T, tj. T nemá model. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 4 / 16

Tablo metoda v PL Důsledky úplnosti Nestandardní model přirozených čísel Necht N = N, S, +,, 0, je standardní model přirozených čísel. Označme Th(N) množinu všech pravdivých sentencí v N. Pro n N označme n term S(S( (S(0) ), tzv. n-tý numerál, kde S je aplikováno n-krát. Uvažme následující teorii T, kde c je nový konstantní symbol. T = Th(N) {n < c n N} Pozorování Každá konečná část teorie T má model. Tedy dle věty o kompaktnosti má T model A, jde o nestandardní model přirozených čísel. Každá sentence z Th(N) v něm platí, ale zároveň obsahuje prvek c A větší než každé n N (tj. hodnota termu n v A). Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 5 / 16

Rozšiřování teorií Extenze o definice Rozšiřování teorií Ukážeme, že zavádění nových pojmů má pomocný charakter. Tvrzení Necht T je teorie jazyka L, T je teorie jazyka L a L L. (i) T je extenze T, právě když redukt A každého modelu A teorie T na jazyk L je modelem teorie T, (ii) T je konzervativní extenze T, je-li T extenze T a každý model A teorie T lze expandovat do jazyka L na model A teorie T. Důkaz (i)a) Je-li T extenze T a ϕ libovolný axiom T, pak T = ϕ. Tedy A = ϕ a rovněž A = ϕ, z čehož plyne, že A je modelem T. (i)b) Je-li A modelem T a T = ϕ, kde ϕ je jazyka L, pak A = ϕ a rovněž A = ϕ. Z toho plyne, že T = ϕ a tedy T je extenze T. (ii) Je-li T = ϕ, kde ϕ je nad L, a A je model T, pak v nějaké jeho expanzi A = ϕ a tedy A = ϕ. Z čehož T = ϕ, tj. T je konzervativní. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 6 / 16

Rozšiřování teorií Extenze o definice Extenze o definovaný relační symbol Necht T je teorie jazyka L, ψ(x 1,..., x n ) je formule jazyka L ve volných proměnných x 1,..., x n a L je rozšíření L o nový n-ární relační symbol R. Extenze teorie T o definici R formulí ψ je teorie T vzniklá přidáním axiomu R(x 1,..., x n ) ψ(x 1,..., x n ) Pozorování Každý model teorie T lze jednoznačně expandovat na model T. Důsledek T je konzervativní extenze T. Tvrzení Pro každou formuli ϕ nad L existuje ϕ nad L, t.ž. T = ϕ ϕ. Důkaz Každou podformuli R(t 1,..., t n ) nahradíme za ψ (x 1 /t 1,..., x n /t n ), kde ψ je vhodná varianta ψ zaručující substituovatelnost všech termů. Např. symbol lze zavést v jazyce aritmetiky pomocí axiomu x y ( z)(x + z = y) Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 7 / 16

Rozšiřování teorií Extenze o definice Extenze o definovaný funkční symbol Necht T je teorie jazyka L a pro formuli ψ(x 1,..., x n, y) jazyka L ve volných proměnných x 1,..., x n, y platí T = ( y)ψ(x 1,..., x n, y) (existence) T = ψ(x 1,..., x n, y) ψ(x 1,..., x n, z) y = z (jednoznačnost) Označme L rozšíření L o nový n-ární funkční symbol f. Extenze teorie T o definici f formulí ψ je teorie T vzniklá přidáním axiomu f (x 1,..., x n ) = y ψ(x 1,..., x n, y) Poznámka Je-li ψ tvaru t(x 1,..., x n ) = y, kde x 1,..., x n jsou proměnné termu t, podmínky existence a jednoznačnosti platí. Např. binární funkční symbol lze zavést pomocí + a unárního axiomem x y = z x + ( y) = z Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 8 / 16

Rozšiřování teorií Extenze o definice Extenze o definovaný funkční symbol (pokr.) Pozorování Každý model teorie T lze jednoznačně expandovat na model T. Důsledek T je konzervativní extenze T. Tvrzení Pro každou formuli ϕ nad L existuje ϕ nad L, t.ž. T = ϕ ϕ. Důkaz Stačí uvážit ϕ s jediným výskytem f. Má-li ϕ více výskytů f, lze postup aplikovat induktivně. Označme ϕ formuli vzniklou z ϕ nahrazením termu f (t 1,..., t n ) za novou proměnnou z. Za ϕ vezmeme formuli ( z)(ϕ ψ (x 1 /t 1,..., x n /t n, y/z)), kde ψ je vhodná varianta ψ zaručující substituovatelnost všech termů. Necht A je model T, e je ohodnocení, a = f A (t 1,..., t n )[e]. Díky oběma podmínkám platí A = ψ (x 1 /t 1,..., x n /t n, y/z)[e] právě když e(z) = a. Tedy A = ϕ[e] A = ϕ [e(z/a)] A = ϕ [e] pro každé ohodnocení e, tj. A = ϕ ϕ a tedy T = ϕ ϕ. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 9 / 16

Rozšiřování teorií Extenze o definice Extenze o definice Teorie T jazyka L je extenze teorie T jazyka L o definice, pokud vznikla z T postupnou extenzí o definici relačního či funkčního symbolu. Důsledek Necht T je extenze teorie T o definice. Pak každý model teorie T lze jednoznačně expandovat na model T, T je konzervativní extenze T, pro každou formuli ϕ nad L existuje ϕ nad L taková, že T = ϕ ϕ. Např. v teorii T = {( y)(x + y = 0), (x + y = 0) (x + z = 0) y = z} nad L = +, 0, s rovností lze zavést < a unární funkční symbol axiomy x = y x + y = 0 x < y x y (x = y) Pak formule x < y je v této extenzi o definice ekvivalentní formuli ( z)((z y (z = y)) x + z = 0). Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 10 / 16

Skolemizace Úvod Ekvisplnitelnost Ukážeme, že problém splnitelnosti lze redukovat na otevřené teorie. Teorie T, T jsou ekvisplnitelné, jestliže T má model T má model. Formule ϕ je v prenexním (normálním) tvaru (PNF), má-li tvar (Q 1 x 1 )... (Q n x n )ϕ, kde Q i značí nebo, proměnné x 1,..., x n jsou navzájem různé a ϕ je otevřená formule, zvaná otevřené jádro. (Q 1 x 1 )... (Q n x n ) je tzv. prefix. Speciálně, jsou-li všechny kvantifikátory, je ϕ univerzální formule. K teorii T nalezneme ekvisplnitelnou otevřenou teorii následujícím postupem. (1) Axiomy teorie T nahradíme za ekvivalentní formule v prenexním tvaru. (2) Pomocí nových funkčních symbolů je převedeme na ekvisplnitelné univerzální formule, tzv. Skolemovy varianty. (3) Jejich otevřená jádra budou tvořit hledanou teorii. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 11 / 16

Skolemizace Prenexní normální tvar Vytýkání kvantifikátorů Necht Q značí kvantifikátor nebo a Q značí opačný kvantifikátor. Pro každé formule ϕ, ψ takové, že x není volná ve formuli ψ, = (Qx)ϕ (Qx) ϕ = ((Qx)ϕ ψ) (Qx)(ϕ ψ) = ((Qx)ϕ ψ) (Qx)(ϕ ψ) = ((Qx)ϕ ψ) (Qx)(ϕ ψ) = (ψ (Qx)ϕ) (Qx)(ψ ϕ) Uvedené ekvivalence lze ověřit sémanticky nebo dokázat tablo metodou (přes generální uzávěr, není-li to sentence). Poznámka Předpoklad, že x není volná ve formuli ψ je v každé ekvivalenci (kromě té první) nutný pro nějaký kvantifikátor Q. Např. = (( x)p(x) P(x)) ( x)(p(x) P(x)) Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 12 / 16

Skolemizace Prenexní normální tvar Převod na prenexní tvar Tvrzení Necht ϕ je formule vzniklá z formule ϕ nahrazením některých výskytů podformule ψ za formuli ψ. Jestliže T = ψ ψ, pak T = ϕ ϕ. Důkaz Snadno indukcí dle struktury formule ϕ. Tvrzení Ke každé formuli ϕ existuje ekvivalentní formule ϕ v prenexním normálním tvaru, tj. = ϕ ϕ. Důkaz Indukcí dle struktury ϕ pomocí vytýkání kvantifikátorů, náhradou podformulí za jejich varianty a využitím předchozího tvrzení o ekvivalenci. Např. (( z)p(x, z) P(y, z)) ( x)p(x, y) (( u)p(x, u) P(y, z)) ( x) P(x, y) ( u)(p(x, u) P(y, z)) ( v) P(v, y) ( u)((p(x, u) P(y, z)) ( v) P(v, y)) ( u)( v)((p(x, u) P(y, z)) P(v, y)) Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 13 / 16

Skolemizace Skolemova varianta Skolemova varianta Necht ϕ je sentence jazyka L v prenexním normálním tvaru, y 1,..., y n jsou existenčně kvantifikované proměnné ve ϕ (v tomto pořadí) a pro každé i n necht x 1,..., x ni jsou univerzálně kvantifikované proměnné před y i. Označme L rozšíření L o nové n i -ární funkční symboly f i pro každé i n. Necht ϕ S je formule jazyka L, jež vznikne z formule ϕ odstraněním ( y i ) z jejího prefixu a nahrazením každého výskytu proměnné y i za term f i (x 1,..., x ni ). Pak formule ϕ S se nazývá Skolemova varianta formule ϕ. Např. pro formuli ϕ ( y 1 )( x 1 )( x 2 )( y 2 )( x 3 )R(y 1, x 1, x 2, y 2, x 3 ) je následují formule ϕ S její Skolemovou variantou ( x 1 )( x 2 )( x 3 )R(f 1, x 1, x 2, f 2 (x 1, x 2 ), x 3 ), kde f 1 je nový konstantní symbol a f 2 je nový binární funkční symbol. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 14 / 16

Skolemizace Skolemova varianta Vlastnosti Skolemovy varianty Lemma Necht ϕ je sentence ( x 1 )... ( x n )( y)ψ jazyka L a ϕ je sentence ( x 1 )... ( x n )ψ(y/f (x 1,..., x n )), kde f je nový funkční symbol. Pak (1) redukt A každého modelu A formule ϕ na jazyk L je modelem ϕ, (2) každý model A formule ϕ lze expandovat na model A formule ϕ. Poznámka Na rozdíl od extenze o definici funkčního symbolu, expanze v tvrzení (2) tentokrát nemusí být jednoznačná. Důkaz (1) Necht A = ϕ a A je redukt A na jazyk L. Jelikož pro každé ohodnocení e je A = ψ[e(y/a)], kde a = (f (x 1,..., x n )) A [e], platí A = ϕ. (2) Necht A = ϕ. Pak existuje funkce f A : A n A taková, že pro každé ohodnocení e platí A = ψ[e(y/a)], kde a = f A (e(x 1 ),..., e(x n )), a tedy expanze A struktury A o funkci f A je modelem ϕ. Důsledek Je-li ϕ Skolemova varianta formule ϕ, obě tvrzení (1) a (2) pro ϕ, ϕ rovněž platí. Tedy ϕ, ϕ jsou ekvisplnitelné. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 15 / 16

Skolemizace Skolemova věta Skolemova věta Věta Každá teorie T má otevřenou konzervativní extenzi T. Důkaz Lze předpokládat, že T je v uzavřeném tvaru. Necht L je její jazyk. Nahrazením každého axiomu teorie T za ekvivalentní formuli v prenexním tvaru získáme ekvivalentní teorii T. Nahrazením každého axiomu teorie T za jeho Skolemovu variantu získáme teorii T rozšířeného jazyka L. Jelikož je redukt každého modelu teorie T na jazyk L modelem teorie T, je T extenze T. Jelikož i každý model teorie T lze expandovat na model teorie T, je to extenze konzervativní. Jelikož každý axiom teorie T je univerzální sentence, jejich nahrazením za otevřená jádra získáme otevřenou teorii T ekvivalentní s T. Důsledek Ke každé teorii existuje ekvisplnitelná otevřená teorie. Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 16 / 16