Pohyb vody v porézních stavebních materiálech - VIII. Účinky evaporačního vysychání na rovnovážnou výšku kapilárního vzlínání ve stěnách

Podobné dokumenty
Pohyb vody v porézních stavebních materiálech III. Použití testu sorptivity u izolace proti vlhkosti injektáží chemických látek

Pohyb vody v porézních stavebních materiálech - VI. Evaporace a vysychání materiálů cihel a tvárnic

Pohyb vody v porézních stavebních materiálech -XI. Kapilární absorpce z hemisférické dutiny

Pohyb vody v porézních stavebních materiálech - VII. Sorptivita malt

Pohyb vody v porézních stavebních materiálech - V. Absorpce a odvádění deště povrchy staveb

Pohyb vody v porézních stavebních materiálech II. Nasávání vody a sorptivita cihel a ostatních zdících materiálů

pro t < t, a vztahem pro t > tj, kde S, f a AT jsou v daném pořadí sorptivita,

Pohyb vody v porézních stavebních materiálech - IX. Absorpce vody a sorptivita betonu

Pohyb vody v porézních stavebních materiálech -X. Absorpce z malé cylindrické dutiny

Sypaná hráz výpočet ustáleného proudění

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry

Building and Environment, svazek 16, č. 3, strany , /0

PoroMap VÝROBKY NA SANACI ZDĚNÝCH BUDOV NA BÁZI HYDRAULICKÉHO POJIVA S PUCOLÁNOVOU REAKCÍ NA OPRAVY ZDIVA.

Požární zkouška v Cardingtonu, ocelobetonová deska

Program KALKULÁTOR POLOHY HPV

Tepelně vlhkostní posouzení

RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

Rozvoj tepla v betonových konstrukcích

VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ A STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STAVEBNÍ PRAHA 1, DUŠNÍ 17. akreditovaný program TECHNOLOGIE STAVEB TÉMA: SANACE VLHKÉHO ZDIVA

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

1. Popis problému. Projekt Sanace vlhkého zdiva v RD pana Josefa SKOŘEPY, Procházkova 4, Praha 4 Podolí. 1.1 Situace

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

Hydromechanické procesy Obtékání těles

ÚVOD DO TERMODYNAMIKY

2 Tokové chování polymerních tavenin reologické modely

Experimentální realizace Buquoyovy úlohy

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

Testování fotokatalytické aktivity nátěrů FN z hlediska jejich schopnosti odbourávání polutantů ze vzduchu dle následujících ISO standardů:

Měření povrchového napětí

CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

Pohyb vody v porézních stavebních materiálech I. Teorie toku v nenasyceném prostředí a její aplikace

Obr. 19.: Směry zkoušení vlastností dřeva.

Ošetřování betonu. Ing. Vladimír Veselý. Moderní trendy v betonu III. Provádění betonových konstrukcí Praha

ROVNOVÁHA. 5. Jak by se změnila účinnost fiskální politiky, pokud by spotřeba kromě důchodu závisela i na úrokové sazbě?

SVOČ FST Bc. Václav Sláma, Zahradní 861, Strakonice Česká republika

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006

HYDRAULICKÉ PARAMETRY ZVODNĚNÝCH SYSTÉMŮ

Smyková pevnost zemin

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM - Základní materiálové parametry

TEPELNĚIZOLAČNÍ VLASTNOSTI V TEORII I V PRAXI

Vliv opakovaných extrémních zatížení na ohybovou únosnost zdiva

chemického modulu programu Flow123d

Popis softwaru VISI Flow

Pyrolýza a vznícení připálených materiálu pod přídavným tepelným prouděním

POČÍTAČOVÁ SIMULACE PLNĚNÍ DUTINY VSTŘIKOVACÍ FORMY SVOČ FST 2015

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy

TEPELNĚIZOLAČNÍ DESKY MULTIPOR

JEDNODUCHÝCH STAVEBNÍCH KONSTRUKCÍ. Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014

Příklady k T 2 (platí pro seminární skupiny 1,4,10,11)!!!

RETC UNSODA ROSETTA. Určování hydraulických charakteristik. 2. cvičení

Kvízové otázky Obecná ekonomie I. Teorie firmy

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy

Vlastnosti kapalin. Povrchová vrstva kapaliny

KEIM Seccopor. Systémová regulace vlhkosti

Měření odporu ohmovou metodou

Základy vakuové techniky

Potrubí a armatury. Potrubí -slouží k dopravě kapalin, plynů, sypkých hmot i kusového materiálu

2 Nd:YAG laser buzený laserovou diodou

MAKROEKONOMIE. Blok č. 4: SPOTŘEBA

MECHANIKA HORNIN A ZEMIN


NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Popis zeminy. 1. Konzistence (pro soudržné zeminy) měkká, tuhá apod. Ulehlost (pro nesoudržné zeminy)

TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

Millikanův experiment

Interakce mezi kapalinou a vlákenným materiálem

KONSOLIDACE ZEMIN. Pod pojmem konsolidace se rozumí deformace zeminy v čase pod účinkem vnějšího zatížení.

Simulace proudění vody nenasyceným půdním prostředím - Hydrus 1D

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Dodatečné zesilování a stabilizace tlačených stěn z cihelného zdiva pásy uhlíkové tkaniny

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU

Měření odporu transportních cest, stupně jejich integrace a embolizace

Autokláv reaktor pro promíchávané vícefázové reakce

2 Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost kapalin 7

Doba života LED a LED svítidel a její značení. Jakub Černoch

Trumf, renovace a sanace, s.r.o.

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace

4+5. Cvičení. Voda v zeminách Napětí v základové půdě

Školení DEKSOFT Tepelná technika 1D

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI

PROCESY V TECHNICE BUDOV cvičení 3, 4

VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE

Navrhování betonových konstrukcí na účinky požáru. Ing. Jaroslav Langer, PhD Prof. Ing. Jaroslav Procházka, CSc.

Zděné konstrukce podle ČSN EN : Jitka Vašková Ladislava Tožičková 1

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport kapalné vody

Numerická simulace přestupu tepla v segmentu výměníku tepla

Laboratorní úloha Diluční měření průtoku

Holistický přístup k povrchovým a podzemním vodám

Název: Transport vlhkosti ve stavebních materiálech

Transkript:

Building and Environment, svazek 21, č. 3/4, strany 195-200, 1986 036-1323/86 $3.00 +0.00 Vytištěno ve Velké Británii. Pergamon Journals Ltd. Pohyb vody v porézních stavebních materiálech - VIII. Účinky evaporačního vysychání na rovnovážnou výšku kapilárního vzlínání ve stěnách S. J. I'ANSON*Ϯ W. D. HOFF* V tomto materiálu je předložena teoretická analýza vlivu nepřetržitého úbytku vody evaporací na rovnováhu vzlínající vlhkosti ve zděných stěnách. Analýza predikuje výšku kapilárního vzlínání ve shodě s praktickým pozorováním u stěn bez účinného ošetření proti vlhkosti. 1. ÚVOD VZLÍNAJÍCÍ vlhkost je jedním z nejčastějších problémů souvisejících s vodou ve starších budovách. Důvodem je kapilární sání porézním materiálem stěny, které natahuje vodu ze země v úrovni nebo pod úrovní terénu. Tímto způsobem absorbovaná voda ve stěně stoupá působením kapilárních sil a může způsobit poškození zdiva a degradaci budovy. V některých případech obsahuje podzemní voda značené množství rozpuštěných solí. Způsobují solné výkvěty a jiná poškození zdiva stěny. Takové extrémní případy se vyskytují v částech Austrálie, kde je "slaná vlhkost" dobře známým problémem způsobeným kapilárním vzlínáním vody. Vytvořený výkvět je v takových případech důkazem značného množství kapilární vody, která odchází ze stěn evaporací. Při zohlednění celkové kvality stěny je nutné poznamenat, že stěna zasažená vzlínající vlhkostí je také významným zdrojem vodní páry [1] a může způsobit nepřijatelné mikroklimatické podmínky uvnitř budovy. Obecně je závažnost problému vzlínající vody závislá na rovnováze mezi tokem vody směrem nahoru nasáváním stěnou ze základů a úbytkem vody evaporací ze zdiva stěny. Tak se v podmínkách intenzivního vysoušení může snížit obsah vody způsobený kapilární vzlínavostí, zatímco nevhodné podmínky mohou problém zhoršovat. Vezmeme-li v úvahu tyto vlivy, je zajímavé poznamenat, že je široce rozšířen názor [2], že se v praxi viditelné a závažné dopady vzlínající vlhkosti obvykle omezují na výšku cca 1 m nad terénem navzdory skutečnosti, že u většiny cihelných a kamenných zdicích materiálů může trvale dosahovat výška * Department of Building Engineering, UMIST (Stavební fakulta, Vědecký a technologický institut Univerzity v Manchesteru), PO Box 88, Manchester, M60 IQD, UK. Ϯ Nyní při Department of Paper Science, UMIST, PO Box 88, Manchester, M60 IQD, UK. kapilárního vzlínání hodnot o jeden nebo dva řády vyšší [3]. V tomto materiálu předkládáme teoretickou analýzu vlivu vysychání na rovnovážný stav vzlínající vlhkosti. Tato analýza predikuje výšku kapilárního vzlínání ve shodě s praktickým pozorováním u stěn bez účinného ošetření proti vlhkosti. 2. ROVNOVÁHA KAPILÁRNÍHO VZLÍNÁNÍ 2.1. Základní koncepce Aplikace teorie toku v nenasyceném prostředí pro analýzu pohybu vody v porézních stavebních materiálech byla diskutována Gummersonem et al. [3] a také v dřívějších publikacích této řady (např. [4]). Síly působící na vodu zadržovanou v porézních pevných látkách lze zařadit do dvou oblastí a to gravitační síly a sací síly. Gravitační síly jsou obvykle charakterizovány gravitačním potenciálem, který je vyjádřen výškou z nad definovanou referenční hladinou. Kapilární síly jsou charakterizovány kapilárním potenciálem gψ, který je definován jako energie na odstranění jednotky vody z porézní pevné látky do volného stavu na stejné úrovni. Kapilární potenciál je vhodné vyjadřovat spíše pomocí Ψ než gψ, protože Ψ má rozměr [délku]. Tak -Ψ lze vizualizovat jako napětí vodního sloupce h t, které může být udržováno kapilárou o průměru rovnajícímu se střednímu průměru pórů na rozhraní vzduch-voda. Stav vody v částečně nasycené porézní pevné látce lze definovat z hlediska celkového tlaku vodního sloupce h = h t + z. Pohyb vody v porézní pevné látce je způsoben rozdílem v tlaku vodního sloupce mezi různými oblastmi v pevné látce. Tento koncept vede následně k definování stavu rovnováhy kapilárního vzlínání při absenci evaporace a v tomto bodě odkazujeme na plný rozbor této problematiky v publikaci

S. J. I'Anson a W. D. Hoff od Gummersona et al. [3]. V tomto ideálním případě musí veškerý tok ustat a proto celková výška vodního sloupce h je nulová v každém bodě (jinak by se vyskytoval spád u h a tudíž i tok). Tento stav rovnováhy kapilárního vzlínání je proto definován jako h t = -z. 2.2. Experimentální data Kolísání tlaku vodního sloupce h t s obsahem vody θ - vodní charakteristika - může být stanoven experimentálně. V praxi obvykle dostaneme dvě charakteristické vodní křivky: křivka vlhnutí, která definuje obsah vody dosahovaný při vlhnutí původně suché pevné látky působením hydraulického napětí a křivka vysychání, která definuje obsah vody jako následek odtékání pod tlakem h t z původně nasycené pevné látky. Takováto hystereze mezi vlhnutím a vysycháním vyplývá z povahy zaplňování a vyprazdňování pórů. Z diskuze v kapitole 2.1 je jasné, že křivka vlhnutí u vodní charakteristiky definuje přesně rovnováhu rozdělení obsahu vody a výšky, která se vyskytuje v porézní pevné látce jako výsledek kapilárního vzlínání při absenci evaporace, protože h t a z mají stejnou číselnou hodnotu. Obrázek 1 ukazuje charakteristické vodní křivky u obyčejné hliněné cihly změřené v naší laboratoři s použitím standardního přístroje s tlakovou membránou používaného v půdoznalství. (Tyto výsledky byly poprvé publikovány v literatuře [3].) Skutečnost, že cihlová zeď je kompozitní struktura z cihel a malty neznehodnocuje vodní charakteristiku jako měřítko idealizované rovnováhy kapilárního vzlínání, protože rozdělení obsahu vody v závislosti na výšce v každém komponentu stěny bude stejná, jaká by byla při absenci druhé složky. Je nutné ovšem uznat, že kompozitní povaha stěny může ztěžovat tok vody a tím prodlužovat čas k dosažení rovnováhy u kapilárního vzlínání. Z vodní charakteristiky na obrázku 1 a studia vodních charakteristik jiných zdicích materiálů je jasné, že materiály použité při stavbě stěn obecně mají dostatečně jemnou porézní strukturu, aby byly schopny zadržovat velký objem vody až do výšky mnoha metrů. Toto u reálných stěn nepozorujeme, protože evaporace má řídicí vliv na množství vody zadržované ve stěně. 3. VLIV EVAPORACE NA ROVNOVÁHU KAPILÁRNÍHO VZLÍNÁNÍ 3.1. Teoretické aspekty Jak bylo zmíněno v kapitole 2, umožní-li se, aby obsah vody ve stěně, která je ve styku s nasyceným podkladem dosáhl rovnovážného stavu kapilárního vzlínání při absenci jakékoli evaporace, bude se u vodní charakteristiky rozdělení obsahu vody v závislosti na výšce ve stěně řídit křivkou vlhnutí. Samozřejmě by bylo možné toho dosáhnout pouze zamezením jakékoli evaporace ze stěny a proces by obecně trval velmi dlouhou dobu [3]. Pokud může evaporace probíhat z jedné strany stěny, bude každá část stěny ztrácet vodu evaporací rychlostí závisející jak na okolních podmínkách, tak i na obsahu vody v materiálu stěny v místě odpařování [5]. Faktory prostředí (teplota, relativní vlhkost, rychlost vzduchu) lze považovat za konstantní na celém povrchu stěny a kolísání obsahu vody je jediným faktorem, který bude ovlivňovat rychlost evaporace v různých místech povrchu stěny. Definujeme e(θ) jako funkci závislosti rychlosti evaporace za neměnných podmínek prostředí na obsahu vody. Uvažujme inkrementální vrstvu z počátečního obsahu vody θ ve výšce z ve stěně (obr. 2). Množství odpařované vody Obr. 1. Vodní charakteristika obyčejné hliněné cihly: kapilární potenciál Ψ versus obsah vody θ. Křivka W je charakteristika vlhnutí a křivka D je charakteristika vysychání. Obr. 2. Diagram znázorňující vypařování z elementu stěny ve výšce z.

Pohyb vody v porézních stavebních materiálech - VIII 197 z jednotky délky na jedné straně této stěny se rovná e(θ) z. Tento evaporační úbytek způsobí změnu obsahu vody θ, která následně vyvolá změnu hydraulického napětí h t v tomto bodě. Tato změna h t, bude mít snahu vyvolat tok vody k nahrazení úbytku způsobeného evaporací. Velikost h t, úměrnou poklesu obsahu vody θ, lze nalézt podle vodní charakteristiky materiálu stěny. Protože změna hydraulického napětí ve výšce z je výsledkem vysychání, nemůže tato změna h t probíhat podle křivky vlhnutí, ale musí sledovat malou křivku vysychání zobrazenou na obr. 3. Diskuzi takovéto kapilární hystereze představující křivky tohoto typu provedl Morrow [6]. Inkrementální průtoková rychlost jednotkou délky stěny vyvolaná změnou napětí h t se řídí Darcyho zákonem. Tak kde k je průměrná hydraulická konduktivita stěny až do výšky z, Q je objemová průtoková rychlost na jednotku délky a d je tloušťka stěny. Hydraulická konduktivita k(θ) se obvykle mění exponenciálně s obsahem vody, ale pro účely této analýzy je postačující uvažovat průměrnou hodnotu k(θ). Je-li Q dostatečně velký, aby nahradil úbytek vody evaporací, vrátí se hydraulický potenciál h t do své původní polohy na křivce vlhnutí přes křivku b a rovnováha bude zachována. Tento proces je ve skutečnosti nepřetržitý a teorie toto zohledňuje tím, že povoluje nekonečně malé θ, h t, t a z. Definujeme funkci f (z) definující poměr tok/evaporace tak, že na jednotku délky stěny. Je zřejmé, že při f(z) menší než 1 nebude rovnováha zachována a obsah vody ve stěně ve výšce z bude klesat - tj. stěna ve výšce z bude vysychat. Podmínka f (z) = 1 představuje rovnovážný stav a z podmínky f (z) > 1 vyplývá, že obsah vody bude udržován na úrovni definované vodní charakteristikou ve větší výšce než z. Obr. 3. Kapilární hystereze během stoupání vlhkosti. Úsek a u malé hysterezní smyčky platí pro inkrementální vysychání, úsek b platí při opětovném obnovení rovnováhy obsahu vody v důsledku vnikání vody u základu stěny. Substitucí vhodného výrazu pro inkrementální rychlost toku dostáváme Pro malé θ, h t, z můžeme psát Výraz (dz/dθ) θ je gradient křivky vlhnutí při obsahu vody θ a je proto snadno měřitelný. Výraz (dh t/dθ) θ je gradient malé hysterezní křivky, kde se setkává s křivkou vlhnutí při obsahu vody θ. Toto je na první pohled obtížné kvantifikovat, protože principiálně je každá hysterezní křivka odlišná. Ovšem podle práce Morrowa je to přibližně konstantní u křivky vlhnutí a rovná se gradientu křivky vysychání při nasycení (θ r = 1). Při definování funkce g(θ) jako můžeme psát drying curve wetting curve a z tohoto výrazu snadno vypočítat výšku rovnováhy kapilárního vzlínání v podmínkách evaporace. 4. APLIKACE TEORIE 4.1. Výpočet poměru tok/evaporace Funkci f (z) lze vypočítat za předpokladu, že jsou známy hydraulické parametry konduktivity a vodní charakteristiky porézní pevné látky a za předpokladu, že byly stanoveny ztráty evaporací jako funkce obsahu vody. Rychlost evaporace jako funkce obsahu vody byla měřena pro řadu podmínek prostředí a úpravy povrchu v programu prací prováděných ve stavebních laboratořích UMIST a obr. 4 od Plattena [7] ukazuje typické výsledky pro dva typy povrchů, jeden z obyčejných hliněných cihel a druhý z obyčejných hliněných cihel se základní omítkou z cementu a písku v poměru 1 : 6 v tloušťce 10 mm. Funkce f (z) byla vypočítána pro řadu podmínek vysychání a výsledky pro dva typické případy jsou uvedeny na obrázích 5 a 6. Oscilace na vypočítané křivce (plná čára) pro omítnuté cihlové zdivo nejsou považovány za významné, ale jsou výsledkem chyb vzniklých z problematického přesného definování funkce e(θ) z laboratorních dat. V tomto případě se na čerchovanou křivku pohlíží jako na realističtější znázornění f (z). Významným rysem těchto křivek, který také

S. J. I'Anson a W. D. Hoff Obr. 4. Grafy zobrazující normalizovanou rychlost evaporace ẽ (tj. rychlost vysychání jako zlomek maximální hodnoty) proti sníženému obsahu vody θ r. Křivka A ukazuje vysychání neomítnuté hliněné cihly a křivka B ukazuje vysychání podobné cihly s omítkou z cementu a písku v poměru 1:6 v tloušťce 10 mm. vyplývá z ostatních křivek, které jsme spočítali pro řadu podmínek prostředí, je rychlý nárůst hodnoty f(z) pro výšku z menší než cca 1 m. Jak bylo uvedeno dříve, podmínka f(z)= 1 představuje rovnovážný stav, kdy kapilární vzlínání je právě vyrovnáno evaporačními ztrátami. Hodnoty z odpovídající f(z) = 1 jsou uvedeny v tabulce 1 pro několik podmínek vysychání. Tyto výsledky ukazují, že v praxi by se očekávalo, že evaporace by měla řídit výšku kapilárního vzlínání do úrovně řádově 1 m a toto je v souladu s pozorováním ve většině situací v praxi. Použití cementových omítek snižuje rychlost evaporace z povrchu stěn a dle očekávání by toto mohlo zvýšit výšku pro rovnovážný stav kapilárního vzlínání. Křivky f(z) versus z toto podporují. 4.2. Časový harmonogram procesu kapilárního vzlínání V literatuře [3] je uvedena úplná diskuze postupu výpočtu od Philipa [8], podle níž lze stanovit časové období k dosažení rovnovážného stavu kapilárního vzlínání při absenci evaporace. V této analýze Obr. 6. Graf zobrazující funkci f(z) versus z pro vysychání cihlové stěny omítnuté maltou z cementu a písku v poměru 1 : 6 v tloušťce 10 mm se stejnými podmínkami vysychání jako u obr. 5. se počítá charakteristický čas t v představující dobu nutnou k dosažení cca 95 % rovnovážného stavu obsahu vody. Tak kde S je sorptivita získaná z diagramu absorpce vody t 1/2 a i celkový rovnovážný volumetrický obsah vody na jednotku plochy průřezu až do výšky z 1, je dáno kde φ je efektivní poréznost materiálu. Je zřejmé, že lze spočítat podobný čas t v pro dosažení nižšího obsahu vody, než jaký předpokládáme najít ve stěnách, když dochází k evaporaci a tyto hodnoty t v jsou uvedeny v tabulce 1. Je ovšem nutné podotknout, že tyto hodnoty budou výrazně podhodnocovat čas potřebný k dosažení rovnováhy, protože při procesu kapilárního vzlínání dochází k evaporaci, která nevyhnutelně zpozdí dosažení evaporací kontrolované rovnováhy. 4.3. Rozložení obsahu vody Obrázek 7 je schematický diagram rozložení obsahu vody v cihlové stěně následkem vzlínající vlhkosti, jak Obr. 5. Graf zobrazující funkci f(z) versus z pro vysychání neomítnuté cihlové stěny s podmínkami vysychání 10 C, 80% relativní vlhkost, rychlost vzduchu 0,1 m s -1. Obr. 7. Graf zobrazující teoretické rozdíly obsahu vody θ r v závislosti na z u stěny z obyčejných cihel v podmínkách dosažení rovnovážné výšky 0,5 m.

Pohyb vody v porézních stavebních materiálech -- VIII 199 Tabulka 1. Rovnovážné výšky kapilárního vzlínání u neomítnutých a omítnutých cihlových stěn za různých podmínek spolu s vypočtenými hodnotami charakteristického času t v Podmínky vysychání Výška kapilárního vzlínání při dosažení rovnováhy (m) Charakteristický čas t v (rok) Relativní Rychlost Bez omítky S omítkou Bez omítky S Teplota ( C) vlhkost (%) vzduchu (m s -1 ) omítkou 5 10 10 80 80 90 0.1 0.1 0.1 0.8 0.5 0.9 1.3 0.9 2.0 2.9 1.1 3.7 7.7 3.7 18.3 předpovídá teorie uvedená v této kapitole. Z bodu A do bodu B sleduje rozdělení charakteristickou křivku vody pro obyčejnou cihlu. V podmínkách evaporace při 80% relativní vlhkosti, 10 C, rychlosti vzduchu 0,1 m s -1 předpokládá křivka f(z) rovnovážnou výšku přibližně 0,5 m. U výšek větších než 0,5 m nemůže být rovnováha udržována vzlínající vlhkostí a tak obsah vlhkosti klesá do bodu C. U ještě větších výšek se obsah vlhkosti přibližuje nízké hodnotě, která je v rovnováze s okolním vzduchem a pro většinu účelů použití lze tuto stěnu považovat za suchou. Obrázek 8 je překreslený z dat publikovaných Mamillanen a Bouineauem [9] při měření vzlínající vlhkosti u vápencových testovacích stěn. Obecný tvar této křivky se velice podobá tvaru na obr. 6. Mamillan and Bouineau se domnívají, že je to přítomnost prvního maltového spoje v jejich testovací stěně ve výšce cca 0,5 m, který je do značné míry odpovědný za rychlý pokles obsahu vody kolem této úrovně. Ovšem podle teorie uvedené v tomto materiálu se domníváme, že pozorované Obr. 8. Experimentální výsledky prezentované Mamillanem a Bouineauem [9] pro vzlínající vlhkost ve vápencové testovací stěně. Graf ukazuje rozdíly volumetrického obsahu vody θ v závislosti na výšce z. Tyto tři křivky byly získány při použití různých metod měření obsahu vody. rozdělení obsahu vody je způsobené vlivem evaporačního vysychání a že k velmi podobnému rozdělení by došlo i při absenci maltového spoje. Toto tvrzení podporuje i skutečnost, že měření provedená nad maltovým spojem vykazují obsah vody spíše klesající, než konstantní úrovně. 5. ZÁVĚRY V tomto materiálu je předkládána jednoduchá teorie popisující vliv evaporačního vysychání na rovnováhu u kapilárního vzlínání. Model i přes zjednodušující předpoklady provedené v analýze poskytuje předpovědi rovnovážných výšek v řádu 1 m pro kapilární vzlínání ve skutečných stěnách s probíhajícím evaporačním vysycháním. Toto je v dobré shodě s pozorováním vzlínající vlhkosti v praxi. Z této analýza dále plyne, že obsah vody klesá na velmi malé hodnoty ve výškách větších než je predikovaná rovnovážná výška, a toto se také ukázalo při praktickém pozorování. Na základě této analýzy lze také dospět k závěru, že v podmínkách silného vysychání lze zmírnit problém vzlínající vlhkosti a lze učinit různé praktické kroky na podporu takového vysychání. Mezi nimi může mít významný vliv ventilace z obou stran stěny, protože proudění vzduchu je hlavním faktorem pro nastavení dobrých podmínek vysychání. Naopak, postupy omezující evaporační vysychání, jako je použití dekorativních povrchů, lze považovat za ty, jež problém zhoršují. V tomto ohledu je nutné poznamenat, že i dekorativní povrchy a povlaky odpuzující vodu, které jsou propustné pro vodní páru, musí přesto snižovat rychlost vysychání na úrovně stupně II procesu vysychání, které jsou obecně mnohem nižší než rychlost evaporace volné vody vyskytující se ve stupni I [5]. Poděkování - Autoři děkují Radě pro vědecký a technický výzkum za finanční podporu. Rádi by také poděkovali Dr. C. Hallovi za jeho připomínky. LITERATURA 1. C. Hall and W. D. Hoff, Dampness in dwellings : performance requirements for remedial treatments, ASTM/CIB/RILEM Symposium on the Performance Concept in Building, Lisbon, Vol. I, pp. 503-512 (1982). 2. Building Research Establishment Digest 245, Rising damp in walls : diagnosis and treatment. HMSO, London (1981).

S. J. I'Anson a W. D. Hoff 3. R.J. Gummerson, C. Hall and W. D. Hoff, Capillary water transport in masonry structures ; building construction applications of Darcy's law. Constr. Papers 1, 17-27 (1980). 4. C. Hall, Water movement in porous building materials--i. Unsaturated flow theory and its applications. Bldg Envir. 12, 117-125 (1977). 5. C. Hall, W. D. Hoffand M. R. Nixon, Water movement in porous building materials--v1. Evaporation and drying in brick and block materials. Bldg Envir. 19, 13-20 (1984). 6. N.R. Morrow, Physics and thermodynamics of capillary action in porous media. Ind. Engny Chem. 62, 33 (1970). 7. A.K. Platten, Ph.D. thesis, University of Manchester (1986). 8. J.R. Philip, Theory of infiltration. Adv. Hydrosci. 5, 215-296 (1965). 9. M. Mamillan and A. Bouineau, Etude de l'asséchement des tours soumis á des remontées capillaires. Lithoclastia (numéro special) 77 81 ( [ 976).