Dědičnost pohlaví Genetické principy základních způsobů rozmnožování



Podobné dokumenty
REPRODUKCE A ONTOGENEZE Od spermie s vajíčkem až po zralého jedince. Co bylo dřív? Slepice nebo vejce?

Genetika pohlaví genetická determinace pohlaví

Dědičnost pohlaví a znaků s pohlavím souvisejících

Dědičnost a pohlaví. KBI/GENE Mgr. Zbyněk Houdek

Genetický polymorfismus

Genetická kontrola prenatáln. lního vývoje

Genetika přehled zkouškových otázek:

Genetika na úrovni mnohobuněčného organizmu

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Determinace pohlaví a evoluce pohlavních chromosomů

DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová

Dědičnost pohlaví a znaků s pohlavím souvisejících

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)

Základní pravidla dědičnosti

Genetické určení pohlaví

Inovace studia molekulární a buněčné biologie

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA

GENETIKA. Dědičnost a pohlaví

EMBRYOLOGIE Učebnice pro studenty lékařství a oborů všeobecná sestra a porodní asistentka

Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně

Evoluce pohlaví a determinace pohlaví. Marie Ošlejšková

Vytvořilo Oddělení lékařské genetiky FN Brno

Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl

Tematický plán učiva BIOLOGIE

Mendelistická genetika

GENETIKA A JEJÍ ZÁKLADY

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Základní škola a Mateřská škola G.A.Lindnera Rožďalovice. Za vše mohou geny

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Spermatogeneze saranče stěhovavé (Locusta migratoria)

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Výukový materiál zpracován v rámci projektu EU peníze školám

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Genetika člověka - reprodukce

Zvyšování kvality výuky technických oborů

Chromozomová teorie dědičnosti. KBI / GENE Mgr. Zbyněk Houdek

Výukový materiál zpracován v rámci projektu EU peníze školám

10. oogeneze a spermiogeneze meióza, vznik spermií a vajíček ovulační a menstruační cyklus antikoncepční metody, oplození

Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK

Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková

MENDELOVSKÁ DĚDIČNOST

GENETICKÁ INFORMACE - U buněčných organismů je genetická informace uložena na CHROMOZOMECH v buněčném jádře - Chromozom je tvořen stočeným vláknem chr

Bi8240 GENETIKA ROSTLIN

Environmentální výchova základní podmínky života, ekosystémy, lidské aktivity a problémy životního prostředí, vztah člověka k prostředí

BIO: Genetika. Mgr. Zbyněk Houdek

ROZMNOŽOVÁNÍ A VÝVIN MNOHOBUNĚČNÝCH, TKÁNĚ

Deoxyribonukleová kyselina (DNA)

ZÁKLADY BIOLOGIE a GENETIKY ČLOVĚKA

GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost

Genetika - maturitní otázka z biologie (2)

Rozmnožování a vývoj živočichů

Nondisjunkce v II. meiotickém dělení zygota

Vypracované otázky z genetiky

Populační genetika II

Výukový materiál zpracován v rámci projektu EU peníze školám

6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?

orientuje se v přehledu vývoje organismů a rozliší základní projevy a podmínky života

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

ZÁKLADNÍ ŠKOLA ÚPICE-LÁNY PALACKÉHO 793, ÚPICE ABSOLVENTSKÁ PRÁCE ŠKOLNÍ ROK RADIM ČÁP 9.B

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

ANATOMIE A FYZIOLOGIE ÈLOVÌKA Pro humanitní obory. doc. MUDr. Alena Merkunová, CSc. MUDr. PhDr. Miroslav Orel

IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány

2.ročník - Zoologie. Rozmnožování Zárodečné listy (10)

Gonosomální dědičnost

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

Modul IB. Histochemie. CBO Odd. histologie a embryologie. MUDr. Martin Špaček

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů

GENETIKA V MYSLIVOSTI

EPIGENETIKA reverzibilních změn funkce genů, Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická

Prezentace je využitelná i při přípravě studentů na MZ, u příslušného maturitního okruhu Pohlavní soustava.

Digitální učební materiál

11.4. Fyziologická kontrola reprodukce

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Učební osnovy předmětu Biologie

Polymorfismus délky restrikčních fragmentů

Tematické okruhy k SZZ v bakalářském studijním oboru Zdravotní laborant bakalářského studijního programu B5345 Specializace ve zdravotnictví

Chromosomy a karyotyp člověka

GENETIKA 1. Úvod do světa dědičnosti. Historie

Crossing-over. over. synaptonemální komplex

Molekulární diagnostika pletencové svalové dystrofie typu 2A

Předmět:: Přírodopis. Savci funkce základních orgánů. Savci - anatomie a morfologie typických zástupců skupin živočichů, funkce orgánů

Mendelistická genetika

Monitorování hladiny metalothioneinu a thiolových sloučenin u biologických organismů vystavených působení kovových prvků a sloučenin

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky

CZ.1.07/1.5.00/ Člověk a příroda

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/

RŮST A VÝVOJ ROSTLIN. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_11_BI1

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.6 ČLOVĚK A PŘÍRODA PŘÍRODOPIS - Přírodopis - 7. ročník

Savci. ZÁŘÍ 8h. přírodniny a jejich pozorování bezpečnost práce v laboratoři a při pozorování v terénu. Savci. ŘÍJEN 7h

Metody studia historie populací. Metody studia historie populací

S v a z c h o v a t e l ů k o n í K i n s k ý c h

7. Regulace genové exprese, diferenciace buněk a epigenetika

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Souhrnný test - genetika

Molekulární genetika. DNA = deoxyribonukleová kyselina. RNA = ribonukleová kyselina

Transkript:

Dědičnost pohlaví Vznik pohlaví (pohlavnost), tj. komplexu znaků, vlastností a funkcí, které vymezují exteriérové i funkční diference mezi příslušníky téhož druhu, je výsledkem velmi komplikované série vývojových změn pod hormonální a genetickou kontrolou. Pohlavnost se objevuje až na určitém stupni fylogenetického vývoje, udržuje a rozvíjí se do řady forem pro svůj pozitivní důsledek zvyšování genetické variability. Vznik pohlaví tedy úzce souvisí s fylogenetickým vývojem způsobů rozmnožování, jejichž obecným smyslem je zachování druhu. Genetické principy základních způsobů rozmnožování V průběhu evolučního vývoje se mechanismy reprodukce buňky i mnohobuněčných organismů vyvinuly do celé řady geneticky determinovaných forem. Přitom u fylogeneticky vyšších forem bylo předpokladem jejich vzniku a fixace vždy vytvoření specifických genetických mechanismů genů, které příslušný způsob rozmnožování determinovaly. Malým příkladem je např. sex - faktor bakterií umožňující jejich konjugaci a vzájemnou výměnu genetického materiálu, u mnohobuněčných organismů pak existence řady specifických genů v jejich genomu determinujících pohlavní dimorfismus v plné jeho šíři. Nepohlavní rozmnožování (amixis) je typické pro některé nižší organismy, ale i pro organismy systematicky výše postavené, některé druhy rostlin apod. Jde při něm o přímé pokračování jedince bez možnosti přímého vzniku genotypových změn u potomků. Pohlavní rozmnožování (amfimix) je způsob fylogeneticky vyšší a dokonalejší. Dochází při něm ke splynutí samčí a samičí pohlavní buňky gamety, které vznikají ve zvláštních orgánech gonádách. Vytváří-li oba typy pohlavních buněk jeden jedinec, hovoříme o hermafroditech. Při odděleném pohlaví hovoříme o gonochoristech. V procesu tvorby pohlavních buněk dochází k redukci diploidního počtu chromozómů na haploidní, procesu crossing-over a vzniku genových rekombinací, následné volné kombinovatelnosti vloh uložených v jednotlivých chromozómech, což jednoznačně vede ke zvýšení genotypové variability. Vývin tohoto způsobu rozmnožování ve fylogenezi sehrál proto jistě důležitou úlohu. Apomixis je zvláštním typem rozmnožování, při kterém nedochází ke splynutí pohlavních buněk. U některých druhů je normálním zjevem (některé druhy hmyzu), jindy k němu dochází jen při narušení normálního pohlavního rozmnožování. Zpravidla nový jedinec vzniká z neoplozené samičí gamety - partenogeneze, popřípadě z jiné buňky samičího pohlavního aparátu - apogametie. Apomiktických způsobů rozmnožování je celá škála. Všimněme si alespoň tzv. fakultativní partenogeneze u tzv. diplohaploidních organizmů, kam patří např. včely. U nich se z neoplozených vajíček líhnou haploidní trubci a z oplozených vajíček diploidní dělnice a matky. V embryu se tedy vyvíjí oplozené i neoplozené vajíčko. Apomixis proto narozdíl od amfimixis omezuje genotypovou variabilitu v rámci daného druhu.

V procesu evoluce organismů se diferencoval způsob pohlavního rozmnožování, který je typický pro většinu živočichů i řadu rostlinných druhů. V souvislosti s tím došlo i k diferenciaci zvláštních pohlavních chromozómů, (nebo také genozómů či heterochromozómů), které postupně akumulovaly vlohy zodpovědné za vznik pohlaví. Fylogenetický vývoj postupoval od nediferencovaných chromozómů přes geneticky diferencované až k morfologicky rozlišeným chromozómům pohlavním, označovaným následně symboly X a Y. Zřejmě vlivem pericentrických inverzí a crossing-overu došlo v průběhu evoluce k postupnému přemístění části chromozómové hmoty z Y chromozómu (který je menší) na X chromozóm. To potvrzuje i skutečnost, že mnoho lokusů je na X chromozómu homologních (determinující např. tutéž vlastnost) i u systematicky vzdálených druhů. Determinace pohlaví Determinací pohlaví rozumíme proces realizace řady mechanizmů podílejících se na určení pohlavnosti a vzniku konkrétního pohlaví. V podstatě můžeme rozlišit mechanizmy determinace pohlaví genetického a negenetického charakteru. Negenetické mechanismy determinace pohlaví jsou v biologii popsány v celé řadě forem, zejména u nižších živočichů. Převážně spočívají ve vlivu faktorů vnějšího prostředí na diferencující se indiferentní základ pohlaví. V závislosti na charakteru prostředí (teplota, světlo, ph a další) se z indiferentního základu diferencuje samčí nebo samičí pohlaví. U některých druhů želv, krokodýlů nebo ještěrek je již dlouho známo, že vznik pohlaví je závislý na teplotě v období inkubace zárodku ve vajíčku. takovéto typy determinace pohlaví lze považovat za primitivní formy předcházející určení pohlaví genetickými mechanismy. Genetické mechanismy determinace pohlaví jsou obecně založeny na existenci specifických genů, faktorů nebo pohlavních chromozómů, které se u jednotlivých pohlaví liší. Genové produkty těchto genů (proteiny, enzymy, hormony aj. produkty) jsou spoluzodpovědné za vznik pohlaví, pohlavních znaků (viz obr. č. 1).

Obr. č. 1: Model iniciace determinace gonád u savců Čas inhibice působení TDF genu pokud je přítomen působení Ovaria determinujícího genu (Od) gonády se vyvinou jako varlata gonády se vyvinou jako vaječníky samec samice Z naznačovaných skutečností je patrné, že za vznik pohlaví zodpovídá celá řada genů lokalizovaných jak na pohlavních chromozómech, tak i na autozómech. Již před znalostí těchto konkrétních genů, jejich lokalizace v genomu a dnes i nukleotidové sekvence, zobecněly základní teorie determinace pohlaví chromozómová a genotypová. Chromozómová teorie determinace pohlaví Podle této teorie je pohlaví jedince determinováno komplexem pohlavních chromozómů u samce a samice. Při tom se rozlišuje tzv. pohlaví homogametní, které má v somatických buňkách genotypické založení pohlavních chromozómů XX a pohlaví heterogamatní XY. Obě pohlaví vytvářejí v průběhu meioze pohlavní buňky s haploidním počtem chromozómů, to znamená že i heterochromozómový pár je v gametě zastoupen pouze jedním členem. Homogametní pohlaví vytváří proto jen jeden typ gamet, vždy pouze s chromozómem X, zatímco pohlaví heterogametní vytváří dva typy gamet, tj. gamety s chromozómem X a gamety s chromozómem Y. U některých živočišných druhů, např. ploštice, sarančata, mol, apod., chromozóm Y chybí a heterogametní pohlaví je potom dáno komplexem XO a vytváří rovněž dva typy gamet: gamety s chromozómem X a gamety bez pohlavního chromozómu. Při splynutí pohlavních buněk (oplození) mohou se podle zákona volné kombinovatelnosti jednotlivé typy gamet volně kombinovat (viz schéma) a dávat vznik opět homogametnímu a Samec X Y heterogametnímu pohlaví, přičemž Samice zastoupení obou pohlaví je 1:1. X XX XY X XX XY

Pohlavní typy Podle toho jaký komplex pohlavních chromozómů se na determinaci pohlaví podílí, a které pohlaví je homogametické nebo heterogametické, se rozlišují jednotlivé typy chromozómové determinace pohlaví. Základní typy jsou dva: a) Typ Drosophila (savčí) U tohoto typu homogametní je pohlaví samičí (XX) a heterogametní pohlaví samčí (XY). setkáváme se s ním u savců a většiny ryb, u dvoukřídlého hmyzu a také u dvoudomých rostlin. b) Typ Abraxas (ptačí) V tomto případě je homogametní pohlaví samčí (XX) a heterogametní samičí (XY). Tento způsob chromozómové determinace pohlaví je charakteristický pro ptáky, některé ryby a plazy, některé řády hmyzu apod. Obr. č. 2: Základní typy determinace pohlaví a jejich modifikace Vznik pohlaví a zajištění jeho stálého vyrovnaného poměru 1 : 1 ve sledu generací vyplývá z obr. č. 2. Genotypová teorie determinace pohlaví (teorie genové rovnováhy) Genotypová determinace pohlaví vychází ze skutečnosti, že pohlaví je vlastně komplexním fenotypem determinovaným řadou genů jak z pohlavních chromozómů, tak z autozómů, které se realizují pod vlivem vnějšího a vnitřního prostředí. Každá zygota je potencionálně bisexuální, o čemž svědčí indiferentní základ pohlavních žláz a jejich diferenciace až v průběhu embryonálního vývoje, jakož i možnost vzniku tzv. reverze pohlaví v ontogenezi za přirozených nebo experimentálních podmínek.

Klasické a moderní (DNA) metody identifikace pohlaví Identifikace pohlaví a s ním spojená možnost jeho regulace zajímá genetiky již několik desítek let. V současnosti existují dva přístupy: 1) Diferenciace spermií s X a Y chromozómem využívá základních fyzikálně-chemických rozdílů mezi spermiemi X a Y a) dělení podle různé hmotnosti spermie s Y chromozómem mají nižší hmotnost než spermie s chromozómem X, pro jejich oddělení lze použít např. centrifugaci b) dělení ne základě různé pohyblivosti v roztoku albuminu je předpokládán rychlejší pohyb lehčích Y spermií přes albumin, při použití této metody bylo ve vrchní frakci klony identifikováno 85% spermií s Y chromozómem c) dělení na základě specifické fluorescence Y chromozómu lze ji pozorovat pod mikroskopem při použití akridinových barviv d) dělení v elektrickém poli spermie s odlišným pohlavním chromozómem mají rozdílný elektrický náboj e) H-Y antigen podílí se na diferenciaci pohlaví, lze jej nalézt na spermiích, embryích a buňkách tkání (mimo erytrocytů a svalových buněk), protože gen pro H-Y antigen je uložen na Y chromozómu, lze předpokládat že spermie s tímto chromozómem mají na svém povrchu více antigenu a lze proto použít specifické protilátky f) dělení ne základě průtokové cytometrie (využití laserového paprsku) dává uspokojivé výsledky, je to však velice nákladná metoda a dochází k vyšší embryonální mortalitě po použití takto dělených spermií 2) Určení pohlaví u preimplantačních embryí využívá fyzikálně-chemické a imunologické rozdíly embryí různého pohlaví, k vyšetření využívá několik buněk získaných mikrobiopsií z embryí. a) analýza pohlavních chromozómů formou detekce sex chromatinu nebo určením karyotypu, chromozomální analýza je spolehlivá nejen při určení pohlaví, nýbrž i při stanovení aberací pohlavních chromozómů a jiných chromozomálních abnormalit, metoda je spolehlivá, ale zdlouhavá b) detekce H-Y antigenu pro detekci se obvykle používá cytotoxická reakce, jejímž cílem je usmrtit embrya s antigenem H-Y, při klonování embryí může být část takto vzniklých embryí použita pro určení pohlaví c) sexování embryí podle rozdílné rychlosti jejich vývoje využívá stanovení hladin enzymů (G-6-PD, HPRT) d) detekce pohlaví na základě hybridizací DNA, kdy pomocí značených DNA sond, komplementárních k sekvencím, které jsou jedinečné pro některé úseky Y chromozómu, je možné určit pohlaví, a to z několika buněk vydělených z časného embrya

Od roku 1990 je na Y chromozómu znám gen SRY. Tento gen lze metodami polymerázové řetězové reakce a polymorfismu délky restrikčních fragmentů stanovit z buněk oddělených z embrya. Protože SRY není na X chromozómu, je z výsledku PCR možné určit pohlaví embrya pokud se amplifikuje SRY gen, je embryo samčího pohlaví. V roce 1994 byla popsána další možnost identifikace pohlaví. Jedná se o gen amilogeninu, který se nachází v obou sex chromozómech. Identifikaci umožňuje delece 63bp v exonu tohoto genu na Y chromozómu. Amplifikací vznikají PCR produkty o různé velikosti, které jsou velmi snadno identifikovatelné metodou elektroforézy na agarozovém gelu. Problémy a diskusní otázky 1. Charakterizujte pohlavní a nepohlavní rozmnožování. 2. Znázorněte genotypový komplex chromozómů rodičů typu Drosophila u obou pohlaví (např. AAXX), vznik gamet a jejich možné kombinace. Stejnou analýzu proveďte i u typu Abraxas. Odvoďte shodu nebo rozdílnost při vzniku teoretického poměru pohlaví zygot u obou pohlavních typů. 3. Na příkladu včel vysvětlete způsob dědičnosti pohlaví u diplo-haploidních organismů a nakreslete schéma vzniku samce a samice, resp. trubce, matky a dělnice. 4. Charakterizujte podstatu chromozomální teorie dědičnosti pohlaví a rozdíl mezi jednotlivými typy. 5. Charakterizujte podstatu genové teorie dědičnosti pohlaví. 6. Popište některé metody identifikace pohlaví.