Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Přednáška č. 11 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví
Vysoká škola technická a ekonomická V Českých Budějovicích ENS Zdroje chladu
Zdroje chladu Využívání elektrických spotřebičů a kancelářské techniky zvyšuje četnost výrazných teplotních extrémů požadavek na chlazení Chlazení v kancelářských budovách se považuje za nezbytné, tento trend se promítá i do bytové výstavby Potřeba chlazení musí být efektivně minimalizována již architektonickým a stavebním řešením (vhodná orientace vůči světovým stranám, vhodné stínění, využití okolní zeleně, vodní plochy, ) Zásadním předpokladem, který umožňuje udržet požadovanou tepelnou pohodu vnitřního prostředí je schopnost konstrukce akumulovat tepelnou energii a snižovat letní extrémy vnitřních teplot 3
Zdroje chladu Efektivita nasazení chladících zařízení se porovnává hodnotou provozního chladícího faktoru EER, který vyjadřuje poměr mezi dodaným chladem a potřebnou energií na provoz zdroje chladu Současně je nutné věnovat pozornost náročnosti chlazení z hlediska potřeby primární energie Pro účely chlazení se doporučuje využít některého ze způsobů nízkoenergetického chlazení a obnovitelných zdrojů chladu v kombinaci s vhodnou chladící soustavou, případně ve spolupráci s tradičními metodami strojního chlazení a vhodnou regulací výkonu 4
Kompresorové chlazení Kompresorové chladící zařízení je nejčastěji používaným zdrojem chladu Při parním oběhu výparník odnímá chlazené látce teplo a převádí ho na vyšší teplotní hladinu Takto přečerpávané teplo je z chladiva při kondenzaci v kondenzátoru odvedeno do venkovního prostředí Obecně platí, že chladící faktor jako poměr mezi produkovaným chladem a spotřebou elektrické energie na pohon kompresoru je tím vyšší, čím jsou teploty ve výparníku a kondenzátoru bližší Kondenzátory chladících soustav se doporučuje umístit do míst, která nejsou ovlivněna vysokou teplotou okolního vzduchu 5
Kompresorové chlazení 6
Sorpční chlazení Sorpční chlazení využívá pro přečerpávání tepla z chlazené látky také parní oběh Využití varu a kondenzace chladiva, avšak místo mechanického zařízení pro zvýšení tlaku a teploty využívá proces sorpce a desorpce v pracovní látce sorbentu, Sorbent může být kapalný (absorpce) nebo tuhý (adsorpce) Pohonnou energií sorpčního oběhu je tepelná energie o dostatečné teplotě, přiváděná pro vypuzení chladiva ze sorbentu v desorbéru Odpadní teplo je odváděno z kondenzátoru, v němž kondenzuje chladivo a z absorbéru, v němž dochází k sorpci chladiva a uvolnění sorpčního tepla 7
Sorpční chlazení Absorpční chladící zařízení s kapalným sorbentem využívají nejčastěji kombinace pracovních látek LiBr a LiCl jako sorbentu a vody jako chladiva, nebo vody ve funkci sorbentu s čpavkem jako chladivem Absorpce je fyzikální děj, při němž se rozpouští plynná fáze v kapalině. Kapalina se nazývá absorbent a plyn absorbát Absorpční chlazení vyžaduje vysoké pracovní teploty desorbéru Pro jednostupňový cyklus se pracovní teploty pohybují 80-100 C Pro dvoustupňový cyklus se pracovní teploty pohybují 120-170 C Typickými příklady použití absorpčních chladících jednotek jsou systémy trigenerace pro kombinované zásobování teplem, chladem a elektrickou energií 8
Sorpční chlazení 9
Sorpční chlazení Trigenerace znamená kombinovanou výrobu elektřiny, tepla a chladu Technologicky se pak jedná o spojení kogenerační jednotky s absorpční chladicí jednotkou Toto spojení je výhodné z pohledu ekonomiky provozu kogenerační jednotky, kdy se snažíme o její max. roční využití a v letních měsících namísto často nepotřebné výroby tepla vyrábíme chlad 10
Nízkoenergetické chlazení Nízkoenergetické chlazení je vhodné kvůli omezenému výkonu a nízké regulaci v budovách s nižší tepelnou zátěží Návrh soustav nízkoenergetického chlazení vyžaduje podrobné znalosti o chování budovy a systému, podrobné analýzy klimatických dat a další informace Nízkoenergetické chlazení: Noční chlazení Adiabatické chlazení Využití chladu zemského polomasivu Noční radiační chlazení 11
Nízkoenergetické chlazení Noční chlazení je jednou ze základních metod nízkoenergetického chlazení budov Tepelné zisky jsou během dne akumulovány do tepelné hmoty budovy a odvedeny větráním v noci Hmota konstrukcí v budově se předchlazuje chladným nočním vzduchem a v následujícím dni se opět ohřívá Základní podmínky nočního chlazení jsou: Nízká venkovní teplota v nočních hodinách (minimální noční teploty pod 15 C, rozdíl denních a nočních teplot vyšší než 10 C) Dostatečná akumulační hmota konstrukcí Dobrá provětratelnost budovy Noční větrání může být přirozené nebo nucené Pasivní chlazení nepotřebuje energie, ale je nutné jej zpravidla kombinovat s jinými způsoby chlazení Nucené větrání je zajištěno ventilátory 12
Nízkoenergetické chlazení Princip nočního větrání 13
Nízkoenergetické chlazení Adiabatické chlazení funguje na principu přeměny citelného tepla chlazeného vzduchu na teplo vázané při odpařování vody Voda rozprašována do vzduchu se odpařuje a teplota vzduchu klesá, zatímco vlhkost roste Mezi základní metody adiabatického chlazení patří: Přímé ochlazování vzduchu přímo přiváděného do prostoru Nepřímé - přes teplosměnnou plochu je chlazen sekundární vzduch nebo chladící vody a tyto teplonosné látky jsou použity k další distribuci chladu 14
Nízkoenergetické chlazení Přímé adiabatické chlazení je vhodné zejména pro suché, horké a teplé klima. Nelze jej účinně využít ve vlhkých oblastech Přímé adiabatické chlazení umožňuje výrazně snížit tepelnou zátěž, ale není schopno celoročně zajistit požadovaný tepelný komfort s rostoucí vlhkostí vzduchu klesá pocit tepelné pohody Výhodou jsou nízké pořizovací náklady a kvalitní větrání Nevýhodou je riziko množení bakterií druhu legionella Schéma přímého adiabatického chlazení (vlevo) a kombinace nepřímého a přímého adiabatického chlazení (vpravo) 15
Nízkoenergetické chlazení Využití chladu zemského masivu zahrnuje zemní výměníky (vzduchu, kapalinové) a využití spodní i povrchové vody pro přímé chlazení Zemní výměníky i zdroje spodní vody využívají jako zdroje chladu celoročně stálé teploty zeminy Vlastní zemní výměník tepla je potrubní síť uložená v dostatečné hloubce pod povrchem terénu o délce dané požadovaným výkonem Zemský masiv působí jako velkoobjemový sezónní akumulátor tepla, do kterého je odváděno teplo odejmuté teplonosné látce procházející výměníkem Teplonosnou látkou může být vzduch nebo kapalina Vzduchové zemní výměníky lze použít v systémech: Přímé sání zemním výměníkem je nasáván venkovních vzduch do centrální vzduchotechnické jednotky za podmínek, kdy venkovní vzduch již nemá potřebný chladící efekt Cirkulační zemní výměníkem je tvořen přívodní a vratnou větví 16
Nízkoenergetické chlazení Vzduchové výměníky lze v zimním období využít pro předehřev větracího vzduchu Kapalinové zemní výměníky jsou tvořeny vodní potrubní sítí V případě využití při zemním předehřevu je nutné potrubí naplnit nemrznoucí směsí Pro účely chlazení v letních měsících lze využít zemního výměníku tepelného čerpadla země voda V případě využití spodní vody se voda čerpá z hloubky 5 m kvůli celoročně stálé teplotě zemského masivu (9 12 C). Pro čerpání je nutné využít čerpací studny s potřebnou vydatností 17
Nízkoenergetické chlazení Vzduchový zemní výměník AWADUKT Thermo potrubí se speciální - antibakteriální úpravou 18
Vysoká škola technická a ekonomická V Českých Budějovicích ENS Klimatizační soustavy
Klimatizační soustavy Pojem klimatizace je znám především v souvislosti s chlazením vzduchu Termín má však širší význam, jedná se o úpravu vnitřního prostředí pro uspokojení základních požadavků osob jako je tepelná pohoda a kvalitní vzduch Klimatizační soustavy mají zajistit větrání, vytápění, chlazení a úpravu vlhkosti vzduchu Podle látky, kterou se přivádí teplo nebo chlad do prostoru se rozlišují soustavy vodní, vzduchové, chladivové, případně kombinované 20
Klimatizační soustavy Vzduchové soustavy jsou založeny na přivádění vzduchu, který je vhodně upraven v centrální vzduchotechnické jednotce. Využívají se především v prostorech s požadavky na vysoké průtoky čerstvého vzduchu (divadla, restaurace, kina) Vodní soustavy zajišťují přívod a odvod energie pomocí otopné nebo chladící vody. Jako koncové prvky jsou využity nízkoteplotní a vysokoteplotní chladící plochy s převažující sálavou složkou nebo otopná tělesa. Přívod čerstvého vzduchu a odvod škodlivin musí zajistit větrací soustava Chladivové soustavy využívají pro přenos energie přímo chladivo mezi venkovní jednotkou a vnitřními jednotkami. Přívod čerstvého vzduchu a odvod škodlivin musí zajistit větrací soustava 21
Větrací soustavy Větrání budov slouží k přívodu čerstvého venkovního vzduchu do vnitřních prostor k zajištění požadované kvality ve vnitřním prostředí Současně dochází k odvodu vzduchu znehodnoceného škodlivinami produkovanými ve vnitřním prostředí od osob, a nábytku, prachem z textilií, palivových článků, produktů z vaření, apod. U obytných budov se vychází z návrhové hodnoty čerstvého vzduchu od 15 do 25 m 3 /(h.os.) nebo doporučené intenzity větrání od 0,3 do 0,5 h -1 Čerstvý vzduch se přivádí do místa pobytu osob tak, aby negativně nepůsobil na osoby Znečištěný vzduch se odvádí z místností se zdroji znečišťujících látek 22
Větrací soustavy S ohledem na požadavek vysoké těsnosti obvodového pláště nelze považovat infiltraci spárami oken za účinné trvalé větrání Doporučuje se využít nuceného rovnotlakého větrání se zpětným získáváním tepla Větrací soustava by měla umožnit regulaci průtoků větracího vzduchu podle aktuálních provozních požadavků Prostory, v nichž jsou umístěny spotřebiče paliv v netěsném provedení (kamna, kotle) nesmějí být větrány podtlakově Obecně se použití spalovacích zařízení v budovách s vysokým stupně neprůvzdušnosti nedoporučuje, vyjma uzavřených spotřebičů s vlastním přívodem vzduchu Snížením energetické náročnosti větrání je možné dosáhnout zpětným získáváním tepla 23
Větrací soustavy Pro zpětné získávání tepla lze v budovách využít především: Rekuperační deskové výměníky nejčastěji v provedení křížovém nebo protiproudém s teplotními faktory od 40 do 90 % podle poměru velikosti teplosměnné plochy a průtoku Regenerační rotační výměníky používají se především u velkých zařízení, akumulační hmota výměníku ve tvaru válce rotuje mezi proudem přiváděného a odváděného vzduchu, teplotní faktory se pohybují nad 60 % Kapalinové teplosměnné okruhy jsou tvořeny dvěma rekuperačními výměníky vzduch kapalina, oddělenými kapalinovým okruhem (voda, nemrznoucí směs) pro přenos tepla na větší vzdálenost, teplotní faktory od 30 do 50 %. 24
Větrací soustavy Schéma rotačního výměníku Deskový výměník s křížovým prouděním 25
Otopné soustavy Pro vytápění energeticky efektivních budov se doporučuje navrhovat nízkoteplotní otopné soustavy s teplotou otopné vody pod 40 C Nízkoteplotní otopné soustavy je vhodné realizovat s otopnými tělesy nebo velkoplošné se stěnovými, stropními a podlahovými otopnými plochami Omezeně lze nízkoteplotní vytápění realizovat jako teplovzdušné Otopná soustava by měla pružně reagovat na změnu potřebného výkonu vlivem proměnlivých klimatických podmínek Otopné soustavy musí vykazovat nízkou tepelnou setrvačnost danou malým objemem otopné vody 26
Chladící soustavy Z hlediska potřeby chladu a elektrické energie se na chlazení doporučuje používat sálavé chladící soustavy (sálavé stropy, sálavé stěny), které umožňují oproti běžným chladícím soustavám o 15 až 30 % nižší spotřebu energie Na povrchu chladící plochy nesmí docházet ke kondenzaci vodní páry 27
Rozvody tepla a chladu Rozvody tepla a chladu musí být opatřeny dostatečnou tepelnou izolací pro omezení energetických ztrát Tepelnou izolací je nezbytné opatřit i armatury, oběhová čerpadla či výměníky Tepelná izolace musí být souvislá včetně spojovacích prvků Rozvody tepla a chladu by měly být hydraulicky vyváženy vhodným zařízením s respektování dostatečné autority regulačních armatur 28
Vysoká škola technická a ekonomická V Českých Budějovicích ENS Příprava teplé vody
Příprava teplé vody Zařízení a tepelné soustavy pro přípravu teplé vody musí zajistit teplou vodu v požadovaném množství o požadované teplotě a hygienické kvalitě Teplota teplé vody by měla mít na výtoku 45 60 C Tepelné ztráty jsou dány ztrátami vlastní přípravy a ztrátami rozvodu Zásobníky teplé vody a její rozvody se opatřují tepelnou izolací Jedním z možných způsobů dosažení nízké energetické náročnosti přípravy teplé vody je využití tepla z odváděné odpadní vody pro předehřev přiváděné studené vody Tímto způsobem lze ušetřit 20 až 50 % potřebné energie 30
Zpětné získávání tepla Systém využívání tepla z odpadní vody může být: Centrální zařízení pro zpětné získávání tepla je instalováno před vstupem studené vody do centrální přípravy teplé vody (zásobníky) a zvyšuje její teplotu Decentrální zařízení pro zpětné získávání tepla je umístěno přímo u zařizovacího předmětu, mezi decentralizované způsoby patří např. horizontální výměník umístěný pod sprchovým koutem, omývaný odcházející vodou a předehřívající studenou vodu do baterie, která se mísí s teplou vodou. Průtočný odtékající odpadní vodou je přes teplosměnnou plochu přímo ohřívána přiváděná studená voda vstupující do baterie nebo do přípravy teplé vody, mezi průtočné způsoby patří výměník pod sprchou Akumulační využívá se centrální zásobník, v němž se odpadní voda zdrží po dobu, kdy dochází k odčerpávání tepla rekuperačním výměníkem nebo tepelným čerpadlem 31
Zpětné získávání tepla 32
Dotazy či připomínky: michal.kraus@vsb.cz ENS Děkuji za pozornost Ing. Michal Kraus, Ph.D. info@krausmichal.cz 33