Chemická vazba Menší energie atomů ve vázaném stavu než energie jednotlivých oddělených atomů Sdílení, předávání nebo redistribuce valenčních elektronů Model lokalizovaných elektronových párů (Lewis, VB, VSEPR, hybridizace) Model delokalizovaných elektronů (MO) 1
Typy chemických vazeb Kovalentní = sdílení elektronů (e páru, 1e H 2+ ) několika atomy (2, 3, 4...) Kovová = sdílení elektronů mezi mnoha atomy, pásová teorie Iontová = předání elektronů, tvorba iontů, Coulombovské přitažlivé síly mezi opačně nabitými ionty Van der Waalsova = Coulombovské přitažlivé síly mezi dočasnými náboji (dipóly) Topologická = mechanické spojení molekul (rotaxeny, katenany, karcerandy) 2
Chemická vazba 3
4
M n+ A m- částečný kovalentní charakter Žádná vazba není zcela iontová. Přechod od kovalentní k iontové vazbě je spojitý a většina sloučenin leží mezi oběma extrémy χ = (χ A χ B ) i = 1 exp [ 0.21(χ A χ B ) 2 ] polárně kovalentní vazba i 1 0,5 1 2 3 X A X X B 5
Iontová a kovalentní vazba LiCl > NaCl > KCl > RbCl > CsCl Stoupá kovalence NaI > NaBr > NaCl > NaF Stoupá kovalence AlN > MgO > NaF Stoupá iontovost 6
Iontová a kovalentní vazba χ = (χ A χ B ) 7
Elektronegativita podle Paulinga 8
Různé typy chemické vazby v jedné sloučenině CdI 2 kovalentní Van der Waalsova 9
Různé typy chemické vazby v jedné sloučenině Kovalentní Iontová K + a (C 60 ) 3 10
Různé typy chemické vazby v jedné sloučenině SrTl 2 = Sr 2+ (Tl 2 ) 2 Kovalentní mezi Tl-Tl Iontová mezi Sr 2+ a (Tl 2 ) 2 11
Topologická vazba: rotaxeny, katenany, karcerandy 12
Iontová vazba Na(s) + ½ Cl 2 (g) NaCl(s) H 0 f = 410.9 kj mol 1 13
NaCl - iontová sloučenina Neexistuje molekula NaCl Vzorcová jednotka Nekonečná mřížka uspořádaných kationtů a aniontů 14
Mřížková energie, L Mřížková energie je energie, která se uvolní při vytvoření jednoho molu pevné iontové sloučeniny z iontů v plynném stavu Coulombovská přitažlivá síla F = 1/4πε 0 (Z + Z e2 /r 2 ) Mřížková energie [kj mol 1 ] L = k (Z + Z ) /r 15
Mřížkové energie halogenidů alkalických kovů L [kj mol -1 ] F Cl Br I Li 1037 862 785 729 Na 918 788 719 670 K 817 718 656 615 Rb 784 694 634 596 Cs 729 672 603 568 L = k (Z + Z ) /r 16
Mřížkové energie a fyzikální vlastnosti L [kj mol -1 ] T t [ 0 C] L [kj mol -1 ] T t [ 0 C] NaF 913 996 KF 808 857 NaCl 778 801 KCl 703 770 NaBr 737 747 KBr 674 742 NaI 695 660 KI 636 682 L [kj mol -1 ] T t [ 0 C] Mohs MgCl 2 2326 714 - MgO 3920 2642 6.0 CaO 3513 2570 4.5 SrO 3283 2430 3.5 BaO 3114 1925 3.3 ScN 7547 - - 17
Mechanické vlastnosti iontových sloučenin 18
Born Haberův cyklus Na + (g) + Cl (g) IE(Na) Na (g) + Cl (g) EA(Cl) Na + (g) + Cl (g) ½ D(Cl-Cl) Na (g) + ½ Cl 2 (g) H subl. L(NaCl) Na (s) + ½ Cl 2 (g) H sluč NaCl (s) 19
Born Haberův cyklus Na(s) Na(g) H subl. = 107.3 kj mol -1 ½ Cl 2 (g) Cl(g) ½ D(Cl-Cl) = 122 kj mol -1 Na(g) Na + (g) + e - IE(Na) = 496 kj mol -1 Cl(g) + e - Cl - (g) EA(Cl) = 349 kj mol -1 Na + (g) + Cl - (g) NaCl(s) L(NaCl) = 778 kj mol -1 Na (s) + ½ Cl 2 (g) NaCl(s) H sluč = 401.7 kj mol -1 20
Kovalentní vazba 21
22
23
Kovalentní vazba Atomy se sdílením elektronových párů snaží doplnit svou valenční sféru na elektronový oktet Gilbert N. Lewis (1875-1946) F F F F 24
Oktetové pravidlo He 1s 2 Ne [He] 2s 2 2p 6 Ar [Ne] 3s 2 3p 6 Kr [Ar] 3d 10 4s 2 4p 6 Xe [Kr] 4d 10 5s 2 5p 6 1902 Rn [Xe] 4f 14 5d 10 6s 2 6p 6 25
Lewisovy struktury 26
Lewisovy struktury Tvorba stabilní sloučeniny (n atomů) = atomy dosáhnou konfigurace vzácného plynu. Sečti valenční elektrony všech atomů, ± náboj = E. Pro oktety potřebujeme 8n elektronů. 8n E musí být sdíleno. Použij dvojice elektronů k vytvoření jednoduchých vazeb mezi atomy (= S). Zbývající sdílené elektrony (P = 8n E S) umísti tak, aby byl vytvořen duet pro H atomy a oktet pro C, N, O, F. Nesdílené elektrony rozmísti jako volné elektronové páry. Sloučeniny prvků skupiny Be a B mohou být elektronově deficitní. Prvky 3. a vyšších period mohou překročit oktet. Elektrony převyšující oktet umísti na centrální atom. 27
Lewisovy struktury Cl Cl C Cl O Cl H C H H C C H H H C H O H H H C H H C H C H H C N 28
Rezonanční struktury Poloha jader se nemění, umístění elektronů je odlišné. Popis skutečné situace není ani jedna z možných struktur, není to ani rychlý přechod mezi jednotlivými strukturami, ale superpozice všech. 1O O O 3 O 3 O 1O 29
Formální náboj Oxidační číslo = všechny e k elektronegativnějšímu prvku Formální oxidační stav pro výpočet výměny e v redoxních reakcích Není to skutečný náboj na daném atomu. Formální náboj = rozdíl mezi počtem valenčních elektronů na volném atomu a valenčními elektrony přiřazenými atomu v molekule: volné páry patří celé danému atomu, vazebné páry jsou rozděleny mezi partnery. Atomy se snaží dosáhnout minimálního formálního náboje, nejlépe 0. Negativní formální náboj je umístěn na nejelektronegativnějším atomu. Součet formálních nábojů v molekule (iontu) musí být roven celkovému náboji na dané částici. 30
Formální náboj v H 3 O +, CH 3 O -, CH 3+, CO, N 3 - H H O H O: 6-5 = +1 H H C H O C: 4-4 = 0 O: 6-7 = -1 H H C H C: 4-3 = +1 C O 1 2 3 N N N 1 2 3 N N N C: 4-5 = -1 O: 6-5 = +1 N 1 : 5-5 = 0 N 2 : 5-4 = +1 N 3 : 5-7 = -2 N 1 : 5-6 = -1 N 2 : 5-4 = +1 N 3 : 5-6 = -1 31
Formální náboj 32
Molekuly s nepárovými elektrony. : N.. O.... : O... N.. O.. Dimerizace NO 2. 2 NO 2 (g) N 2 O 4 (g) K c = 210 33
VSEPR VSEPR = valence shell electron repulsion Odpuzování elektronových párů ve valenční vrstvě Empirický soubor pravidel, podle kterého lze snadno určit tvar koordinační sféry atomů a tedy tvar molekul, iontů a molekulových fragmentů prvků hlavních skupin nebo přechodných kovů s elektronovou konfigurací d 0 nebo d 10. 34
VSEPR Molekula = centrální atom + ligandy + volné elektronové páry ligandy = jiné atomy nebo skupiny Ligandy mají obvykle vyšší elektronegativitu než centrální atom (ne H nebo kovy) Valenční elektrony uspořádány do dvojic: Vazebné elektronové páry Volné (nevazebné) elektronové páry 35
Centrální atom - ligand CH 3 COO H O H H C C O 36
VSEPR Pro určení základního tvaru koordinační sféry atomu je důležitý počet obsazených směrů = počet volných elektronových párů a počet vazeb (bez ohledu na násobnost!!) 37
VSEPR Každý elektronový pár zaujímá určitý prostor kolem centrálního atomu a zabraňuje přístupu ostatním elektronům (odpuzuje je) = Pauliho princip výlučnosti. Elektronové páry se uspořádají v prostoru kolem centrálního atomu co nejdále od sebe, aby se co nejméně odpuzovaly. Volné elektronové páry zaujímají větší část prostoru kolem centrálního atomu a jsou mu blíže než vazebné elektronové páry. 38
Tetraedrická molekula methanu CH 4 Umístit 4 body na povrchu koule tak, aby měly mezi sebou maximální vzdálenost tetraedr 39
VSEPR Volné elektronové páry a jednotlivé vazby zaujmou v prostoru kolem centrálního atomu uspořádání s nejnižší energií, tj. s nejmenším odpuzováním mezi elektronovými páry: centrální atom + 2 ligandy centrální atom + 3 ligandy centrální atom + 4 ligandy centrální atom + 5 ligandů centrální atom + 6 ligandů centrální atom + 7 ligandů lineární rovnostranný trojúhelník tetraedr trigonální bipyramida nebo čtvercová pyramida oktaedr pentagonální bipyramida 40
AX 6 AEX 5 AE 2 X 4 AX 5 AEX 4 AE 2 X 3 AE 3 X 2 AX 4 AEX 3 AE 2 X 2 AX 3 AEX 2 AX 2 41
VSEPR Pro pojmenování výsledného tvaru molekuly uvažujeme jen polohy jader, NE volné elektronové páry Objem obsazený vazebnými el.páry klesá v řadě : trojná vazba > dvojná vazba > jednoduchá vazba. Odpuzování mezi el.páry klesá v řadě: volný-volný > volný-vazebný > vazebný-vazebný 42
Změny vazebných úhlů 43
AX 2 Vazebný úhel =180 44
AX 3 : Vazebný úhel =120 AEX 2 : Vazebný úhel < 120 45
AX 4 Tetraedrický vazebný úhel =109.5 46
Deformace vazebných úhlů Tetraedr Trojboká pyramida Lomená 47
Trigonální bipyramida TBP má dva různé typy vrcholů = dva chemicky odlišné typy substituentů, pozic Dvě axiální Tři ekvatoriální Volné elektronové páry a násobné vazby obsazují vždy ekvatoriální polohy 48
O F S F F F Volné elektronové páry a násobné vazby obsazují vždy ekvatoriální polohy 49
Trigonální bipyramida PF 5 SF 4 Výsledný název tvaru molekuly určuje poloha jader, neuvažujeme volné elektronové páry ClF 3 ClF 3 I 3 Tvar T Lineární 50
Trigonální bipyramida (TBP) a čtvercová pyramida (SP) 51
Oktaedr 52
Oktaedr Čtvercová pyramida Čtverec 53
Překryv orbitalů Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β Podmínky překryvu: Vhodná symetrie, znaménko vlnové funkce Vhodná energie, srovnatelná, ne velmi rozdílná 54
Typy překryvu orbitalů Sigma vazba, σ Elektronová hustota lokalizována na spojnici jader Spojnici jader obvykle značíme jako osu z s s s p p p Pi vazba, π Elektronová hustota lokalizována mimo spojnici jader Jedna uzlová rovina p p p d 55
Typy překryvu orbitalů Delta vazba, δ Elektronová hustota lokalizována mimo spojnici jader Dvě uzlové roviny d xy d xy 56
Typy překryvu orbitalů Překryv klesá 57
Sigma vazba, σ ss σ ss Elektronová hustota lokalizována na spojnici jader 58
Sigma vazba, σ sp z σ sp 59
Sigma vazba, σ pp z σ pp 60
Pi vazba, π Elektronová hustota lokalizována mimo spojnici jader Jedna uzlová rovina Stejně pro px a p y x z 2 x π pp y 61
Účinnost překryvu orbitalů Kratší vzdálenost = lepší překryv Při stejné vzdálenosti jader: σ > π > δ Pro σ: p z -p z > p z -s > s-s 62
Vazebné parametry Anion ClO ClO 2 ClO 3 ClO 4 ClO + 2 Řád vazby 1.0 1.50 1.67 1.75 2.0 Vazebná délka, Å 1.67 1.58 1.49 1.43 1.39 63
Vazebné parametry vazba C C C=C C C C O C=O C O N N N=N N N délka [Å] 1.54 1.34 1.20 1.43 1.23 1.13 1.47 1.24 1.10 energie [kj mol -1 ] 348 612 837 360 743 1074 163 409 944 64
Vazba E, kj mol 1 Polarita vazby H-H 431 Nepolární F-F 155 Nepolární H-F 565 Polární C-I 240 C-Br 276 C-Cl 339 Polarita vazby roste C-F 485 Ge-Ge 188 937 t. tání, o C Si-Si 226 1412 C-C 347 3827 65
Vazebné parametry Vazba E, kj mol 1 délka, Å C-I 240 2.16 C-Br 276 1.91 C-Cl 339 1.79 C-F 485 1.40 Pauling E D (AB) = {E D (AA) E D (BB)} ½ + = 96.48 (χ A χ B ) 2 Schomaker-Stevenson r AB = r A + r B 0.09 χ A χ B 66
Hybridizace Vazebné úhly 90 jsou vzácné (u prvků hlavních skupin), obvyklé úhly jsou 109, 120, 180 Energetické smíšení a směrové vyrovnání atomových orbitalů na stejném atomu 67
Hybridizace sp Základní stav Excitovaný stav Hybridizovaný stav 68
Hybridizace sp 69
Hybridizace sp 70
Hybridizace sp sp 71
Acetylen 2 σ vazby překryvem C(sp) H(s) 1 σ vazba překryvem C(sp) C(sp) 2 navzájem kolmé π-vazby (x, y) překryvem C(p) C(p) 72
Hybridizace sp 2 73
Hybridizace sp 2 74
Hybridizace sp 2 sp 2 75
Ethylen p x p x 4 σ vazby překryvem C(sp 2 ) H(s) 1 σ vazba překryvem C(sp 2 ) C(sp 2 ) 1 π-vazba překryvem C(p x ) C(p x ) 76
Benzen Každý C použije 3 sp 2 orbitaly pro 3 σ-vazby 2 C C vazby a 1 C H vazba 1 2p x orbital na každém C zůstane nepoužitý (pro σ-vazby) 77
Benzen + + + 6 C 2p x orbitalů použito pro 3 π-vazby + 78
Benzen 79
Hybridizace sp 3 80
Hybridizace sp 3 81
Hybridizace sp 3 s + p x +p y + p z 82
sp 3 83
Hybridizace sp 3 d sp 3 d 2 84
PES hν = IE + E kin hν E kin X-ray Fotoelektronová Spektroskopie (XPS) -měkké rtg. záření (200-2000 ev) vyráží vnitřní e UV Fotoelektronová Spektroskopie (UPS) - vakuové UV záření (10-45 ev) vyráží valenční e. 85
E = 0 E = 0 E kin hν = IE + E kin IE 86
PES methanu nesouhlasí s modelem 4 sp 3 Plocha = 3 Plocha = 1 87
Vazba v CO 3 2 a NO 3 + + 88
Vazba v C 2 H 6, CH 3 NH 2 a CH 3 OH C N O sp 3 H H H C C C N H H H H H H C H H O H H H H σ(sp 3 C + sp 3 C) σ(sp 3 C + sp 3 N) σ(sp 3 C + sp 3 O) 89
Vazba v HC N N sp H C N σ(sp C + sp N )+2π 90
Elektronegativita a vazebné úhly Vazebný úhel Hybridizace NH 3 107.3 sp 3 PH 3 93.8 AsH 3 91.8 SbH 3 91.3 s + 3p NF 3 102.5 Rostoucí χ snižuje vazebné úhly OH 2 104.5 OF 2 103.2 91
Bentovo pravidlo Elektronegativnější substituenty preferují hybridní orbitaly s menším s podílem a naopak elektropozitivní substituenty (lepší donory) preferují hybridní orbitaly s větším s podílem. F F F O S F F H 3 C P F F H 3 C P F CH 3 Lepší donory obsazují ekvatoriální rovinu v TBP a bazální rovinu v SP. Volný elektronový pár je nejlepší donor = substituent s nulovou elektronegativitou F F F 92
Hybridizace a elektronegativita Hybridizace sp sp 2 sp 3 % s 50 33 25 % p 50 66 75 93
Symetrie Platonovská tělesa 94
Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavk 95
Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 96
Prvky a operace symetrie Značka Prvek Operace Pozn. E Identita Identita Bezezměny, = 1 i Střed symetrie (inverze) BOD Inverze Převrácení přes střed C n Rotační osa PŘÍMKA Pravá (vlastní) rotace Otočení o úhel 360/n σ Rovina symetrie, zrcadlová ROVINA Zrcadlení, reflexe Zrcadlení přes rovinu S n Zrcadlově-rotační osa PŘÍMKA Nepravá (nevlastní) rotace Otočení o úhel 360/a následované zrcadlením 97
Střed inverze 98
Střed inverze SF 6 CH 4 S = střed symetrie Nemá střed symetrie 99
z z z z x x x x y s y p x y p y y p z z z x x z y d xy z y d xz z Orbitaly s a d mají i p a f nemají i x x x y d d z 2 yz y dx 2 - y 2 y 100
Rotační osa C 2 101
Rotační osa C 3 Rotace o úhel 360/n Vzniklá situace je nerozlišitelná od výchozí 102
Rotační osa C 4 103
Rotační osa C n C 5,C 6,C 7,... C 104
Rovina symetrie σ F B F CH 3 F H 3 C CH 3 105
Roviny symetrie σ Každá planární molekula má rovinu symetrie ve které leží σ h = kolmá k hlavní rotační ose σ v = protíná nejvíce atomů σ d = kolmá k hlavní rotaní ose 106
Roviny symetrie σ 107
Zrcadlově-rotační osa S n S 1 = C 1 σ = σ S 2 = C 2 σ =i 108
Zrcadlově-rotační osa S n S 4 H H C H H 109
Prvky symetrie v molekule 110
Chiralita 111
Chiralita Podmínka chirality: v molekule není přítomna S n S 1 = σ S 2 =i 112
µ = q L Dipolový moment µ 1 D debye = 3.33564 10-30 C m proton a elektron vzdáleny100 pm µ = q L = (1.60 10-19 C)(1.00 10-10 m) = 1.60 10-29 Cm = 4.80 D dipolový moment 4.80 D je referenční hodnota, čisté +1 a -1 náboje vzdálené100 pm. Vazba mezi nimi je 100% iontová Peter Debye (1884-1966) 1936 NP za chemii Zahřívání v MW 113
Dipolový moment molekuly Dipolový moment molekuly = vektorový součet dipolových momentů vazeb a volných elektronových párů Rozložení náboje v molekule 114
Dipolové momenty diatomických molekul AH µ (debye) R(Å) LiH -6.002 1.595 BeH -0.282 1.343 BH 1.733 1.236 CH 1.570 1.124 NH 1.627 1.038 OH 1.780 0.9705 FH 1.942 0.9171 negativní nebo pozitivní znaménko pro µ = H je negativní nebo pozitivní konec dipolu. 115
116
Dipolový moment vazeb 117
Dipolový moment 118
119
120