3. Souřadnicové výpočty
|
|
- Luboš Marek
- před 8 lety
- Počet zobrazení:
Transkript
1 3. Souřadncové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnc. 3.9 Volné stanovsko. 154GEY1 Geodéze 1 1
2 3. Souřadncové výpočty. Podkladem pro polohové měření jsou body polohového bodového pole. Poloha těchto bodů je dána pravoúhlým rovnným souřadncem Y,X v daném souřadncovém systému. V tomtéž systému se udává poloha nově určovaných bodů. Výpočty se odehrávají v rovně, přímo měřené hodnoty je nutno redukovat z nadmořské výšky a kartografckého zobrazení! Souřadncové rozdíly : x 12 = x 2 - x 1, y 12 = y 2 - y 1, x 21 = x 1 - x 2, y 21 = y 1 - y 2. 2
3 3.1 Délka. Vzdálenost dvou bodů, platí s 12 = s 21. Znaménko je vždy kladné. s = x12 + y12 Z pravoúhlého trojúhelníku lze odvodt další možnost výpočtu s. 3
4 3.2 Směrník. Směrník je orentovaný úhel, který svírá spojnce dvou bodů s rovnoběžkou s kladnou osou X souřadncové soustavy. Z obrázku vyplývá : σ 12 = 200 g + σ 21 tg ϕ 12 = y x Tabulkový úhel ϕ je třeba přepočítat do správného kvadrantu. 4
5 3.2 Směrník. Kvadranty I. II. III. IV. y x σ 12 = ϕ g - ϕ g + ϕ g - ϕ 12 5
6 3.2 Směrník. Tento postup výpočtu byl vytvořen pro výpočty z tabulek gonom. funkcí, kde byly hodnoty tabelovány pouze pro kladné argumenty. Př použtí kalkulačky je možný jednodušší výpočet, neboť funkce arctan(x) je jednoznačná v rozsahu (-100 gon, 100 gon). Pomocný úhel ϕ: 6
7 3.3 Polární metoda. Slouží k výpočtu souřadnc bodu P 3, je-l měřeno : měřená délka strany d 13, vodorovný úhel ω. Známo : Y,X bodů P 1 a P 2. Postup výpočtu: α 13 = σ 12 + ω, y 13 = d 13. sn α 13, x 13 = d 13. cos α 13, y 3 = y 1 + y 13, x 3 = x 1 + x 13. 7
8 3.4 Protínání vpřed z úhlů. Slouží k výpočtu souřadnc bodu P 3, je-l měřeno : vodorovné úhly ω 1, ω 2. Známo : Y,X bodů P 1 a P 2. s s = s = s sn sn ( ω ) 2 ( ω + ω ) sn 1 2 ( ω ) 1 ( ω + ω ) sn 1 2 Dále polární metoda, pro kontrolu se bod P 3 počítá z obou stanovsek. (P 1 : s 13,ω 1 ; P 2 : s 23,ω 2 ). 8
9 3.5 Protínání vpřed z délek. Slouží k výpočtu souřadnc bodu (P 3 ), je-l měřeno : vodorovné délky s 13, s 23. Známo : Y,X bodů P 1 a P 2. cos ( ω ) 1 = s + s s s s Dále polární metoda, pro kontrolu lze počítat z obou stanovsek. (P 1 : s 13,ω 1 ; P 2 : s 23,ω 2 ). 9
10 3.6 Polygonové pořady. Slouží k současnému určení souřadnc více bodů. Měří se délky všech stran a levostranné vrcholové úhly na všech polygonových bodech. Rozdělení : Jednostranně /oboustranně přpojený /nepřpojený, Orentovaný /neorentovaný. Vetknutý (oboustranně přpojený, neorentovaný). Uzavřený (začíná a končí na stejném bodě). Volný (jednostranně přpojený a orentovaný). 10
11 3.6 Polygonové pořady. Oboustranně přpojený a orentovaný. Známo : Y,X bodů A, B, 1, n. Měřeno : ω 1, ω 2 ω n ; d 12, d 23 d n-1,n. Určuje se : Y,X bodů 2, 3 n-1. 11
12 3.6 Polygonové pořady. Přblžný výpočet souřadnc s odděleným vyrovnáním uhlů a souřadncových rozdílů. Postup výpočtu : 1. Výpočet směrníků na orentační body. 2. Úhlové vyrovnání. 3. Výpočet směrníků v polygonu. 4. Výpočet souřadncových rozdílů. 5. Souřadncové uzávěry. 6. Výpočet opravených souřadncových rozdílů. 7. Výpočet souřadnc polygonových bodů. 12
13 3.6 Polygonové pořady. 1. Výpočet směrníků na orentační body σ 1A, σ nb. 2. Úhlové vyrovnání Úhlový uzávěr : ( ) g Oω = σ nb σ A + 1 ω n Nesmí překročt mezní hodnotu Oω um ω g u = 0 ω, 01 n + 3 M Rozdělení úhlové odchylky se provádí vždy úměrně počtu vrcholů: = O ω δω ω n, n počet bodů pořadu. ω = ω + δ 13
14 3.6 Polygonové pořady. 3. Výpočet směrníků v polygonu : α 12 = σ 1A + ω 1, α 23 = α 12 + ω 2 ± 200 g, α n-1,n = α n-2,n-1 + ω n-1 ± 200 g, α nb = α n-1,n + ω n ± 200 g = σ nb. Kontrola! 4. Výpočet souřadncových rozdílů y 12 = d 12.sn α 12, x 12 =d 12.cos α 12, y n-1,n = d n-1,n.sn α n-1,n, x n-1,n = d n-1,n.cos α n-1,n. 14
15 3.6 Polygonové pořady. 5. Souřadncové uzávěry : Souřadncové uzávěry : O = y y, y 1n O = x x. x 1n Polohový uzávěr : O = O + O. 2 2 p x y u = 0, 01 d + 0, 10; M p p O u. M p 15
16 3.6 Polygonové pořady. 6. Výpočet opravených souřadncových rozdílů : (úměrně souřadncovým rozdílům) δ y Oy = y y, δ x Ox = x x.. Opravené souřadncové rozdíly : y = y + δ, y x = x + δ. x Kontrola! y = y 1n x = x1n 16
17 3.6 Polygonové pořady. 7. Výpočet souřadnc y 1 = dáno, x 1 = dáno, y 2 = y 1 + y 12, x 2 = x 1 + x 12, y n = y n-1 + y n-1,n, x n = x n-1 + x n-1,n.. Kontrola! 17
18 3.6 Polygonové pořady. O. O ω ω Uzavřený polygonový pořad : Známo : Y,X bodů A (orentace), P 1. Měřeno : ω 1, ω 2 ω n ; d 12, d 23 d n-1,n. Určuje se : Y,X bodů 2, 3 n-1. Úhlový uzávěr : pro vntřní úhly ( n 2) 200 = ω pro vnější úhly ( n 2) 200 = + ω Musí platt : Σ x = Σ y =0. Výpočet podle dříve popsaného postupu. 18
19 3.6 Polygonové pořady. O. O ω ω Uzavřený polygonový pořad (lokální soustava): Voleno : Y,X např. bodu P 1, souřadncový systém. Měřeno : ω 1, ω 2 ω n ; d 12, d 23 d n-1,n. Určuje se : Y,X bodů 2, 3 n-1. Úhlový uzávěr : pro vntřní úhly ( n 2) 200 = ω pro vnější úhly ( n 2) 200 = + ω Musí platt : Σ x = Σ y =0. Výpočet podle dříve popsaného postupu. 19
20 3.7 Protínání zpět z úhlů. Slouží k výpočtu souřadnc bodu (P 4 ), je-l na určovaném bodě měřeno : vodorovné úhly α, β. Je známo : Y,X bodů P 1, P 2, P 3. Dvojí protínání z úhlů - Úhly nad tětvou jsou totožné. 1. Souřadnce Collnsova bodu C protínáním z úhlů z 1, 3 (α,β). 2. Výpočet úhlů u bodu C (ze směrníků na body 1, 2, Souřadnce bodu 4 protínáním z úhlů z A,C (ϕ, ψ). 1 β ϕ α ψ C 2 β ϕ α ψ
21 3.8 Transformace souřadnc (lneární). Posunutí + otočení + (změna měřítka) +Y x a b +B y +A +X 21
22 3.8 Transformace souřadnc - otočení +Y x +B b ω ω b y a ω x = a.cos(ω) + b.sn(ω) y = b.cos(ω) - a.sn(ω) +X +A 22
23 3.8 Transformace souřadnc - posunutí +Y Tx x a Ty b +B y +A +X 23
24 3.8 Transformace souřadnc výpočet bez vyrovnání 1. Nejméně 2 body ve dvou soustavách (tzv. dentcké) - P 1 (x 1, y 1 ; a 1, b 1 ), P 2 (x 2, y 2 ; a 2, b 2 ); souřadnce dalších bodů P3(a 3, b 3 ), P4(a 4, b 4 ),. 2. Redukce všech bodů o P 1 v obou soustavách (x r = x x 1, ; a r = a a 1, ). 3. Výpočet směrníků (P 1, P 2 ) v obou soustavách, jejch rozdíl je úhel otočení ω. 4. Výpočet x = a r. cos(ω)+ b r. sn(ω) + T x (T x = x 1, T y = y 1 ) 5. Výpočet y = b r. cos(ω) a r. sn(ω) + T y Změna měřítka: x = m.(a r. cos(ω)+ b r. sn(ω)) + T x y = m.(b r. cos(ω) a r. sn(ω)) + T y (Řešení bez redukce na více dentckých bodů MNČ.) 24
25 3.9 Volné stanovsko. 1 2 Slouží k výpočtu souřadnc stanovska, jel zde měřena osnova vodorovných směrů a délek na body o známých souřadncích. Řeší se vyrovnáním MNČ (vz. další odborné předměty)
26 KONEC 26
2. Bodové pole a souřadnicové výpočty
2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.
Více3. Souřadnicové výpočty
3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné
VícePředloha č. 1 výpočty v bodovém poli
Předloha č. 1 výpočty v bodovém poli 1. Zadání 2. Zápisníky 3. Stručný návod Groma 4. Protokol Groma 5. Stručný návod Geus 6. Protokol Geus 7. Stručný návod Kokeš 8. Protokol Kokeš 1 Zadání 1) Vložte dané
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. 1 Zaměření a vyrovnání rovinné sítě
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ - OBOR GEODÉZIE, KARTOGRAFIE A GEOINFORMATIKA KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu GEODÉZIE 1 číslo úlohy název úlohy 1 Zaměření a vyrovnání rovnné
Více2. Bodové pole a souřadnicové výpočty
2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.
Více3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
VíceKapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází
Vícesouřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem
souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem kartézský souřadný systém Z Y X kartézský souřadný systém Z Y X kartézský souřadný systém Z x y Y X kartézský souřadný systém
Více4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
Více1.3.1 Kruhový pohyb. Předpoklady: 1105
.. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň
VíceSYLABUS 7. a 8. PŘEDNÁŠKY Z GEODÉZIE 2 (Podrobné polohopisné měření)
SYLABUS 7. a 8. PŘEDNÁŠKY Z GEODÉZIE 2 (Podrobné polohopisné měření) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. duben 2016 1 Geodézie 2 přednáška
Více15 s. Analytická geometrie lineárních útvarů
5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý
VíceSTEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113
STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu
VíceRůznostranné obecné Rovnoramenné Rovnostranné. třetí, základna, je různá
Trojúhelník Trojúhelník - AB určují tři body A, B,, které neleží na jedné přímce. Trojúhelník je rovněž možno považovat za průnik tří polorovin nebo tří konvexních úhlů. γ, γ, γ Body A, B,, se nazývají
VíceAnalytická geometrie (3. - 4. lekce)
Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky
VíceDopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě
VíceKONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ
VíceCvičení č. 4 : Tachymetrie s TS postup, výpočet, zpracování, podklad
Cvičení č. 4 : Tachymetrie s TS postup, výpočet, zpracování, podklad Obsah: 1 STRUČNÉ SEZNÁMENÍ S METODOU TACHYMETRIE...2 2 POLOHOVÉ A VÝŠKOVÉ PŘIPOJENÍ S TS PŘI TACHYMETRII...2 2.1 URČENÍ NOVÉHO BODU
VíceVěty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu
Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky
Více(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.
I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n
VíceÚlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na
VíceSada 2 Geodezie II. 11. Určování ploch z map a plánů
S třední škola stavební Jihlava Sada 2 Geodezie II 11. Určování ploch z map a plánů Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2
VíceSYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G
SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 7. POLOHOVÉ VYTYČOVACÍ SÍTĚ Vytyčení je součástí realizace
VíceMatematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy
- Tercie Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo
Více12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm
Vlnění a akustika 1/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) =.10 3 m, 5π s 1 t. Napište rovnici vlnění, které se šíří bodovou řadou v kladném smyslu osy x rychlostí 300 m.s 1. c =
VíceŘešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y.
VII. Transformace náhodné veličiny. Náhodná veličina X má exponenciální rozdělení Ex(; ) a náhodná veličina Y = X. a) Určete hustotu a distribuční funkci náhodné veličiny Y. b) Vypočtěte E(Y ) a D(Y ).
Více1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.
Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr
Více2.4.11 Nerovnice s absolutní hodnotou
.. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na
Více4.4 Exploratorní analýza struktury objektů (EDA)
4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk
VíceGEOMETRIE NÁPRAV. Kontrolní a seřizovací podmínky. Výšky vozidla v referenční poloze
Správný tlak vzduchu v pneumatikách. GEOMETRIE NÁPRAV Kontrolní a seřizovací podmínky Uvedení vozidla do referenční výškové polohy. Výšky vozidla v referenční poloze Výška vpředu H1 = Vzdálenost mezi zónou
VíceDovednosti/Schopnosti. - samostatně vyhledává postupy stanovení totožnosti a čistoty kyseliny vinné v ČL. Chemikálie:
Jednotka učení 2: Stanovení optické otáčivosti kyseliny vinné 1. diferencování pracovního úkolu Handlungswissen Charakteristika pracovní činnosti Pracovní postup 2. HINTERFRAGEN 3. PŘIŘAZENÍ... Sachwissen
VíceSYLABUS 6. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE
SYLABUS 6. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě, Polohové vytyčování) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. listopad 2015
VíceFunkce více proměnných
Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu
Více2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_16 ŠVP Podnikání RVP 64-41-L/51
VíceSvobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů
METODICKÝ LIST DA46 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Obvod a obsah I. - obrazce Astaloš Dušan Matematika šestý frontální, fixační,
Více4.4.2 Kosinová věta. Předpoklady: 4401
44 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější
VícePomůcka pro demonstraci momentu setrvačnosti
Pomůcka pro demonstraci momentu setrvačnosti Cílem pomůcky je pochopit význam geometrických charakteristik pro pohybové chování těles na něž působí vnější síly. Princip pomůcky je velmi jednoduchý, jde
VíceAndroid OpenGL. Animace a ovládání pomocí dotykové obrazovky
Android OpenGL Animace a ovládání pomocí dotykové obrazovky Principy animace Animace udává pohyb objektů v čase Může být reprezentována mnoha způsoby Procedurální Pozice objektů se počítá přímo v programu
VíceVzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky
Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Seminář z matematiky Ročník: 7. Výstupy - kompetence Učivo Průřezová témata,přesahy, a další poznámky - převádí jednotky délky, času,
VíceGeodetické polohové a výškové vytyčovací práce
Geodézie přednáška 3 Geodetické polohové a výškové vytyčovací práce Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Geodetické vytyčovací práce řeší úlohu
VíceRadka Hamříková VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA SBÍRKA ÚLOH Z MATEMATIKY Radka Hamříková Vtvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.0..0/..5./006 Studijní opor s převažujícími
VícePRUŽNOST A PEVNOST 2 V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ PRUŽNOST A PEVNOST V PŘÍKLADECH doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. Richard Klučka Ing. Josef Sedlák
VíceKótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran
Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran 1. Kótování oblouků veškeré oblouky kružnic se kótují poloměrem a jedním z těchto rozměrů: - středovým úhlem - délkou tětivy - délkou
Vícehttp://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Elektronické obvody, vy_32_inovace_ma_42_06
VíceTvarovací obvody. Vlastnosti RC článků v obvodu harmonického a impulsního buzení. 1) RC článek v obvodu harmonického buzení
Tvarovací obvody ) RC článek v obvodu harmonického buzení V obvodech harmonického buzení jsme se seznámili s pojmem integrační a derivační článek... Integrační článek v obvodu harmonického buzení Budeme-li
VícePraktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Matyáš Řehák stud.sk.:
Více4. Nelineární rovnice o jedné neznámé praktické příklady. jaro 2012
1/22 4. Nelineární rovnice o jedné neznámé praktické příklady Aleš Křenek jaro 2012 2/22 K sestavení kluzného ložiska uložení ocelové mostní konstrukce je třeba na místě zasunout čep o vnějším průměru
VíceZateplovací systémy Baumit. Požární bezpečnost staveb PKO - 14-001 PKO - 14-002 PKO - 13-011
Zateplovací systémy Baumit Požární bezpečnost staveb PKO - 14-001 PKO - 14-002 PKO - 13-011 www.baumit.cz duben 2014 Při provádění zateplovacích systémů je nutno dodržovat požadavky požárních norem, mimo
VíceA[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
VíceM - Rovnice - lineární a s absolutní hodnotou
Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme
VíceMřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky
-1-1-H Vyústka do kruhového potrubí - Jednořadá 1 Dvouřadá 2 L x H Typ regulačního ústrojí 1) R1, RS1, RN1 R2, RS2, RN2 R, RS, RN Lamely horizontální 2) H vertikální V Provedení nerez A- A-16 Povrchová
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu Geodézie v podzemních prostorách 10 úloha/zadání U1-U2/190-4 název úlohy Připojovací
VícePosouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.
Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný
VíceINMED 2013. Klasifikační systém DRG 2014
INMED 2013 Klasifikační systém DRG 2014 Anotace Příspěvek bude sumarizovat připravené změny v klasifikačním systému DRG pro rok 2014. Dále bude prezentovat datovou základnu produkčních dat v NRC a popis
VíceLABORATORNÍ CVIČENÍ Elektrotechnika a elektronika
VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.
VíceEl.náboj,napětí,proud,odpor.notebook. October 23, 2012
1 JAKÝ ELEKTRICKÝ NÁBOJ PROJDE PRŮŘEZEM VODIČE ZA 5 MINUT,PROCHÁZÍ LI JÍM PROUD 800mA? ( sestav z nabídky správné řešení a zkontroluj na následující stránce ) Q = 800. 300 t = 5 min Q = 0,8. 300 Q = 240
Více( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501
..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného
VíceOtázky z kapitoly Stereometrie
Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14
VíceUčební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.
Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování
VíceKapitola 7: Integrál. 1/14
Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k
VíceJemný úvod do numerických metod
Jemný úvod do numerických metod Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MAG pondělí 24. listopadu 2014 verze:2014-11-24 16:35
VíceOptika. VIII - Seminář
Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení
VícePost-Processingové zpracování V módu post-processingu je možné s tímto přístrojem docílit až centimetrovou přesnost z běžné 0,5m.
Výjimečná EVEREST technologie Aplikovaná EVEREST technologie pro dobrou ochranu vícecestného šíření GNSS signálu a pro spolehlivé a přesné řešení. To je důležité pro kvalitní měření s minimální chybou.
Více1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S
1 Statické zkoušky 1.1 Zkouška tahem Zkouška tahem je základní a nejrozšířenější mechanická zkouška. Princip: Přetržení zkušební tyče a následné stanovení tzv. napěťových a deformačních charakteristik
VíceSYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE
SYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Plánování přesnosti měření v IG) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. říjen 2015 1 3. PLÁNOVÁNÍ
VíceSPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 2 Statistika a pravděpodobnost
VíceŠablona pro zadávání otázek pro přijímací řízení pro akademický rok 2008/2009
Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 008/009 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže
VíceSériově a paralelně řazené rezistory. Tematický celek: Elektrický proud. Úkol:
Název: Sériově a paralelně řazené rezistory. Tematický celek: Elektrický proud. Úkol: Zopakujte si, co platí pro sériově a paralelně řazené rezistory. Sestrojte elektrické obvody dle schématu. Pomocí senzorů
VíceMotorizované zkušební zařízení momentu TSTMH-DCE horizontální
dodavatel vybavení provozoven firem www.abetec.cz Motorizované zkušební zařízení momentu TSTMH-DCE horizontální Obj. číslo: 106001174 Výrobce: Mark-10 Corporation Popis Maximální zatížení: 11,3 Nm (100
VíceMatematika 9. ročník
Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: PFFNINW) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy
VíceLineární a adpativní zpracování dat. 4. Lineární filtrace: Z-transformace, stabilita
Lineární a adpativní zpracování dat 4. Lineární filtrace: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
Více+ 420 495 535 671 / /
regulační šroub Princip Regulační šroub MARCOVIS EiSYS byl navržen tak, aby se v maximální možné míře snížil počet tepelných mostů způsobených kovovými částmi nosné konstrukce fasády. Při použití tohoto
Více. Opakovací kurs středoškolské matematiky podzim 2015
. Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
VíceOvěření výpočtů geometrické optiky
z 8 13.11.2008 17:33 Ověření výpočtů geometrické optiky Měřící pracoviště se skládá z řádkové kamery s CCD snímačem L133, opatřeného objektivem, optické lavice a testu. Parametry použitého objektivu :
Více1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače;
. Úvod, odhad nejistot měření, chyba metody řesnost měření Základní kvantitativní charakteristika nejistoty měření Výpočet nejistoty údaje číslicových přístrojů Výpočet nejistoty nepřímých měření ozšířená
VíceMĚŘENÍ INDUKČNOSTI A KAPACITY
Úloha č. MĚŘENÍ NDKČNOST A KAPATY ÚKO MĚŘENÍ:. Změřte ndkčnost cívky bez jádra z její mpedance a stanovte nejstot měření.. Změřte na Maxwellově můstk ndkčnost cívky a rčete nejstot měření. Porovnejte výsledky
VíceZákladní chemické pojmy a zákony
Základní chemické pojmy a zákony LRR/ZCHV Základy chemických výpočtů Jiří Pospíšil Relativní atomová (molekulová) hmotnost A r (M r ) M r číslo udávající, kolikrát je hmotnost daného atomu (molekuly) větší
Více2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková
.. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.
VíceÍ š Ť š ň ň Í Ř Ť Ť ň Ť Ť š Ť š Ď š š š ň š š š š š Í Ť Ť š ň š Ť š š É š ť Í Ť š Ž Š Ť Ť Ť Ť š š š š š Ť š Ť Í š Ť š Ť š Í š Ě Í š ň Ť š Ť Ť Ó š š š š š Ť Ž Ť Í Ř Ř Ť š š ť Ť š Ť š Ó š Ť Ť ň Ť š š š Ť
VíceSYLABUS 1. - 3. PŘEDNÁŠKY Z GEODÉZIE 2 (Určování výšek)
SYLABUS 1. - 3. PŘEDNÁŠKY Z GEODÉZIE 2 (Určování výšek) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. únor 2016 1 Geodézie 2 přednáška č.1 URČOVÁNÍ
VíceINTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL,
INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, URČITÝ INTEGRÁL Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve
Vícedat měření do vnitřní paměti přístroje (k polohovému a Souřadnicový systém: S-JTSK, výškový systém: Bpv
Určení vodorovné a o b e c n é r o v n Úkolem je vpočítat pro aměřený rovnatý terén:. vodorovnou rovnu tak, ab celkový objem emních prací bl stejný násp = výkop, 2. najít obecnou rovnc rovn, která dobře
Více10.1.13 Asymptoty grafu funkce
.. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol
VícePRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XIV Název: Relaxační kmity Pracoval: Pavel Brožek stud. skup. 12 dne 5.12.2008 Odevzdal
Vícemikroskop objektivový mikrometr měřící okulár Difrakce světla na mřížce Postup :
A Difrce světl n mřížce Úoly : Postup : 1. Určete mřížovou onstntu vzorů difrčních mříže pomocí mirosopu s měřícím oulárem 2. Určete mřížovou onstntu vzorů difrčních mříže n záldě difrce světl n mřížce
VícePředpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace.
Předpokládané znalosti ze středoškolské matematiky 1. Matematická logika Výroky, složené výroky: konjunkce (, a zároveň ), disjukce (, nebo), negace výroků ( před nebo čárka nad označením výroku), implikace
VíceGoniometrie trigonometrie
Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických
VícePro vš echny body platí U CC = ± 15 V (pokud není uvedeno jinak). Ke kaž dému bodu nakreslete jednoduché schéma zapojení.
OPEAČNÍ ZESILOVAČ 304 4 Pro vš echny body platí U CC = ± 15 V (pokud není uvedeno jinak). Ke kaž dému bodu nakreslete jednoduché schéma zapojení. 1. Ověřte měření m některé katalogové údaje OZ MAC 157
VíceCOPY SPS. Návrh převodovky. Vypracoval Jaroslav Řezníček IV.B 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK
SPS 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK Návrh převodovky Vypracoval Jaroslav Řezníček IV.B 26.listopadu 2001 Kinematika Výpočet převodového poměru (i), krouticích momentů počet zubů a modul P 8kW n n 1
VíceSyntaxí řízený překlad
Překlad Syntaxí řízený překlad Miroslav Beneš Dušan Kolář Definice: Překlad je relace TRAN: L 1 -> L 2 L 1 Σ* Σ - vstupní abeceda L 2 * - výstupní abeceda L 1 jazyk infixových výrazů L 2 jazyk postfixových
VíceR 1 = 2 Ω, R 2 = 1 Ω R 3 = 0,5 Ω, R 4 = 1 Ω U = 2 V, I z = 2 A
A 4:00 hod. Elektrotechnika Metodou uzlových napětí (MN) vypočtěte napětí 0 a 0 v uvedeném obvodu. = Ω, = Ω 3 = 0,5 Ω, 4 = Ω = V, I z = A I = = A 4 G+ G + G4 G G4 0 I + I Z = G G4 G G3 G4 + + 0 I,5 0 4
VíceSouřadnicové výpočty. Geodézie Přednáška
Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických
VíceNAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 10. BŘEZNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH Přímá tyč je namáhána na tah, je-li zatíţena dvěma silami
Více= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)
.8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.
VíceIsingův model. H s J s s h s
Ising Isingův model H s J s s h s i, j Motivován studiem fázových přechodů a kritických jevů Užíva se popis pomocí magnetických veličin i j i i Vlastnosti pomocí partiční sumy počítej: měrné teplo, susceptibilitu
VíceKružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.
Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem
VíceKvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz
Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz 14. 4. 2004 1. Algoritmus RSA Asymetrické šifrování. Existuje dvojice tajného a veřejného klíče, takže není nutné předat klíč
VíceSvobodná chebská škola, základní škola a gymnázium s.r.o.
METODICKÝ LIST DA41 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Poměry III. postupný poměr Astaloš Dušan Matematika sedmý frontální, fixační samostatná práce upevnění znalostí
Více