3. Souřadnicové výpočty

Rozměr: px
Začít zobrazení ze stránky:

Download "3. Souřadnicové výpočty"

Transkript

1 3. Souřadncové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnc. 3.9 Volné stanovsko. 154GEY1 Geodéze 1 1

2 3. Souřadncové výpočty. Podkladem pro polohové měření jsou body polohového bodového pole. Poloha těchto bodů je dána pravoúhlým rovnným souřadncem Y,X v daném souřadncovém systému. V tomtéž systému se udává poloha nově určovaných bodů. Výpočty se odehrávají v rovně, přímo měřené hodnoty je nutno redukovat z nadmořské výšky a kartografckého zobrazení! Souřadncové rozdíly : x 12 = x 2 - x 1, y 12 = y 2 - y 1, x 21 = x 1 - x 2, y 21 = y 1 - y 2. 2

3 3.1 Délka. Vzdálenost dvou bodů, platí s 12 = s 21. Znaménko je vždy kladné. s = x12 + y12 Z pravoúhlého trojúhelníku lze odvodt další možnost výpočtu s. 3

4 3.2 Směrník. Směrník je orentovaný úhel, který svírá spojnce dvou bodů s rovnoběžkou s kladnou osou X souřadncové soustavy. Z obrázku vyplývá : σ 12 = 200 g + σ 21 tg ϕ 12 = y x Tabulkový úhel ϕ je třeba přepočítat do správného kvadrantu. 4

5 3.2 Směrník. Kvadranty I. II. III. IV. y x σ 12 = ϕ g - ϕ g + ϕ g - ϕ 12 5

6 3.2 Směrník. Tento postup výpočtu byl vytvořen pro výpočty z tabulek gonom. funkcí, kde byly hodnoty tabelovány pouze pro kladné argumenty. Př použtí kalkulačky je možný jednodušší výpočet, neboť funkce arctan(x) je jednoznačná v rozsahu (-100 gon, 100 gon). Pomocný úhel ϕ: 6

7 3.3 Polární metoda. Slouží k výpočtu souřadnc bodu P 3, je-l měřeno : měřená délka strany d 13, vodorovný úhel ω. Známo : Y,X bodů P 1 a P 2. Postup výpočtu: α 13 = σ 12 + ω, y 13 = d 13. sn α 13, x 13 = d 13. cos α 13, y 3 = y 1 + y 13, x 3 = x 1 + x 13. 7

8 3.4 Protínání vpřed z úhlů. Slouží k výpočtu souřadnc bodu P 3, je-l měřeno : vodorovné úhly ω 1, ω 2. Známo : Y,X bodů P 1 a P 2. s s = s = s sn sn ( ω ) 2 ( ω + ω ) sn 1 2 ( ω ) 1 ( ω + ω ) sn 1 2 Dále polární metoda, pro kontrolu se bod P 3 počítá z obou stanovsek. (P 1 : s 13,ω 1 ; P 2 : s 23,ω 2 ). 8

9 3.5 Protínání vpřed z délek. Slouží k výpočtu souřadnc bodu (P 3 ), je-l měřeno : vodorovné délky s 13, s 23. Známo : Y,X bodů P 1 a P 2. cos ( ω ) 1 = s + s s s s Dále polární metoda, pro kontrolu lze počítat z obou stanovsek. (P 1 : s 13,ω 1 ; P 2 : s 23,ω 2 ). 9

10 3.6 Polygonové pořady. Slouží k současnému určení souřadnc více bodů. Měří se délky všech stran a levostranné vrcholové úhly na všech polygonových bodech. Rozdělení : Jednostranně /oboustranně přpojený /nepřpojený, Orentovaný /neorentovaný. Vetknutý (oboustranně přpojený, neorentovaný). Uzavřený (začíná a končí na stejném bodě). Volný (jednostranně přpojený a orentovaný). 10

11 3.6 Polygonové pořady. Oboustranně přpojený a orentovaný. Známo : Y,X bodů A, B, 1, n. Měřeno : ω 1, ω 2 ω n ; d 12, d 23 d n-1,n. Určuje se : Y,X bodů 2, 3 n-1. 11

12 3.6 Polygonové pořady. Přblžný výpočet souřadnc s odděleným vyrovnáním uhlů a souřadncových rozdílů. Postup výpočtu : 1. Výpočet směrníků na orentační body. 2. Úhlové vyrovnání. 3. Výpočet směrníků v polygonu. 4. Výpočet souřadncových rozdílů. 5. Souřadncové uzávěry. 6. Výpočet opravených souřadncových rozdílů. 7. Výpočet souřadnc polygonových bodů. 12

13 3.6 Polygonové pořady. 1. Výpočet směrníků na orentační body σ 1A, σ nb. 2. Úhlové vyrovnání Úhlový uzávěr : ( ) g Oω = σ nb σ A + 1 ω n Nesmí překročt mezní hodnotu Oω um ω g u = 0 ω, 01 n + 3 M Rozdělení úhlové odchylky se provádí vždy úměrně počtu vrcholů: = O ω δω ω n, n počet bodů pořadu. ω = ω + δ 13

14 3.6 Polygonové pořady. 3. Výpočet směrníků v polygonu : α 12 = σ 1A + ω 1, α 23 = α 12 + ω 2 ± 200 g, α n-1,n = α n-2,n-1 + ω n-1 ± 200 g, α nb = α n-1,n + ω n ± 200 g = σ nb. Kontrola! 4. Výpočet souřadncových rozdílů y 12 = d 12.sn α 12, x 12 =d 12.cos α 12, y n-1,n = d n-1,n.sn α n-1,n, x n-1,n = d n-1,n.cos α n-1,n. 14

15 3.6 Polygonové pořady. 5. Souřadncové uzávěry : Souřadncové uzávěry : O = y y, y 1n O = x x. x 1n Polohový uzávěr : O = O + O. 2 2 p x y u = 0, 01 d + 0, 10; M p p O u. M p 15

16 3.6 Polygonové pořady. 6. Výpočet opravených souřadncových rozdílů : (úměrně souřadncovým rozdílům) δ y Oy = y y, δ x Ox = x x.. Opravené souřadncové rozdíly : y = y + δ, y x = x + δ. x Kontrola! y = y 1n x = x1n 16

17 3.6 Polygonové pořady. 7. Výpočet souřadnc y 1 = dáno, x 1 = dáno, y 2 = y 1 + y 12, x 2 = x 1 + x 12, y n = y n-1 + y n-1,n, x n = x n-1 + x n-1,n.. Kontrola! 17

18 3.6 Polygonové pořady. O. O ω ω Uzavřený polygonový pořad : Známo : Y,X bodů A (orentace), P 1. Měřeno : ω 1, ω 2 ω n ; d 12, d 23 d n-1,n. Určuje se : Y,X bodů 2, 3 n-1. Úhlový uzávěr : pro vntřní úhly ( n 2) 200 = ω pro vnější úhly ( n 2) 200 = + ω Musí platt : Σ x = Σ y =0. Výpočet podle dříve popsaného postupu. 18

19 3.6 Polygonové pořady. O. O ω ω Uzavřený polygonový pořad (lokální soustava): Voleno : Y,X např. bodu P 1, souřadncový systém. Měřeno : ω 1, ω 2 ω n ; d 12, d 23 d n-1,n. Určuje se : Y,X bodů 2, 3 n-1. Úhlový uzávěr : pro vntřní úhly ( n 2) 200 = ω pro vnější úhly ( n 2) 200 = + ω Musí platt : Σ x = Σ y =0. Výpočet podle dříve popsaného postupu. 19

20 3.7 Protínání zpět z úhlů. Slouží k výpočtu souřadnc bodu (P 4 ), je-l na určovaném bodě měřeno : vodorovné úhly α, β. Je známo : Y,X bodů P 1, P 2, P 3. Dvojí protínání z úhlů - Úhly nad tětvou jsou totožné. 1. Souřadnce Collnsova bodu C protínáním z úhlů z 1, 3 (α,β). 2. Výpočet úhlů u bodu C (ze směrníků na body 1, 2, Souřadnce bodu 4 protínáním z úhlů z A,C (ϕ, ψ). 1 β ϕ α ψ C 2 β ϕ α ψ

21 3.8 Transformace souřadnc (lneární). Posunutí + otočení + (změna měřítka) +Y x a b +B y +A +X 21

22 3.8 Transformace souřadnc - otočení +Y x +B b ω ω b y a ω x = a.cos(ω) + b.sn(ω) y = b.cos(ω) - a.sn(ω) +X +A 22

23 3.8 Transformace souřadnc - posunutí +Y Tx x a Ty b +B y +A +X 23

24 3.8 Transformace souřadnc výpočet bez vyrovnání 1. Nejméně 2 body ve dvou soustavách (tzv. dentcké) - P 1 (x 1, y 1 ; a 1, b 1 ), P 2 (x 2, y 2 ; a 2, b 2 ); souřadnce dalších bodů P3(a 3, b 3 ), P4(a 4, b 4 ),. 2. Redukce všech bodů o P 1 v obou soustavách (x r = x x 1, ; a r = a a 1, ). 3. Výpočet směrníků (P 1, P 2 ) v obou soustavách, jejch rozdíl je úhel otočení ω. 4. Výpočet x = a r. cos(ω)+ b r. sn(ω) + T x (T x = x 1, T y = y 1 ) 5. Výpočet y = b r. cos(ω) a r. sn(ω) + T y Změna měřítka: x = m.(a r. cos(ω)+ b r. sn(ω)) + T x y = m.(b r. cos(ω) a r. sn(ω)) + T y (Řešení bez redukce na více dentckých bodů MNČ.) 24

25 3.9 Volné stanovsko. 1 2 Slouží k výpočtu souřadnc stanovska, jel zde měřena osnova vodorovných směrů a délek na body o známých souřadncích. Řeší se vyrovnáním MNČ (vz. další odborné předměty)

26 KONEC 26

2. Bodové pole a souřadnicové výpočty

2. Bodové pole a souřadnicové výpočty 2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné

Více

Předloha č. 1 výpočty v bodovém poli

Předloha č. 1 výpočty v bodovém poli Předloha č. 1 výpočty v bodovém poli 1. Zadání 2. Zápisníky 3. Stručný návod Groma 4. Protokol Groma 5. Stručný návod Geus 6. Protokol Geus 7. Stručný návod Kokeš 8. Protokol Kokeš 1 Zadání 1) Vložte dané

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. 1 Zaměření a vyrovnání rovinné sítě

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. 1 Zaměření a vyrovnání rovinné sítě ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ - OBOR GEODÉZIE, KARTOGRAFIE A GEOINFORMATIKA KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu GEODÉZIE 1 číslo úlohy název úlohy 1 Zaměření a vyrovnání rovnné

Více

2. Bodové pole a souřadnicové výpočty

2. Bodové pole a souřadnicové výpočty 2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I. Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází

Více

souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem

souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem kartézský souřadný systém Z Y X kartézský souřadný systém Z Y X kartézský souřadný systém Z x y Y X kartézský souřadný systém

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

1.3.1 Kruhový pohyb. Předpoklady: 1105

1.3.1 Kruhový pohyb. Předpoklady: 1105 .. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň

Více

SYLABUS 7. a 8. PŘEDNÁŠKY Z GEODÉZIE 2 (Podrobné polohopisné měření)

SYLABUS 7. a 8. PŘEDNÁŠKY Z GEODÉZIE 2 (Podrobné polohopisné měření) SYLABUS 7. a 8. PŘEDNÁŠKY Z GEODÉZIE 2 (Podrobné polohopisné měření) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. duben 2016 1 Geodézie 2 přednáška

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

Různostranné obecné Rovnoramenné Rovnostranné. třetí, základna, je různá

Různostranné obecné Rovnoramenné Rovnostranné. třetí, základna, je různá Trojúhelník Trojúhelník - AB určují tři body A, B,, které neleží na jedné přímce. Trojúhelník je rovněž možno považovat za průnik tří polorovin nebo tří konvexních úhlů. γ, γ, γ Body A, B,, se nazývají

Více

Analytická geometrie (3. - 4. lekce)

Analytická geometrie (3. - 4. lekce) Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky

Více

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě

Více

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ

Více

Cvičení č. 4 : Tachymetrie s TS postup, výpočet, zpracování, podklad

Cvičení č. 4 : Tachymetrie s TS postup, výpočet, zpracování, podklad Cvičení č. 4 : Tachymetrie s TS postup, výpočet, zpracování, podklad Obsah: 1 STRUČNÉ SEZNÁMENÍ S METODOU TACHYMETRIE...2 2 POLOHOVÉ A VÝŠKOVÉ PŘIPOJENÍ S TS PŘI TACHYMETRII...2 2.1 URČENÍ NOVÉHO BODU

Více

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na

Více

Sada 2 Geodezie II. 11. Určování ploch z map a plánů

Sada 2 Geodezie II. 11. Určování ploch z map a plánů S třední škola stavební Jihlava Sada 2 Geodezie II 11. Určování ploch z map a plánů Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 7. POLOHOVÉ VYTYČOVACÍ SÍTĚ Vytyčení je součástí realizace

Více

Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy

Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy - Tercie Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo

Více

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm Vlnění a akustika 1/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) =.10 3 m, 5π s 1 t. Napište rovnici vlnění, které se šíří bodovou řadou v kladném smyslu osy x rychlostí 300 m.s 1. c =

Více

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y.

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y. VII. Transformace náhodné veličiny. Náhodná veličina X má exponenciální rozdělení Ex(; ) a náhodná veličina Y = X. a) Určete hustotu a distribuční funkci náhodné veličiny Y. b) Vypočtěte E(Y ) a D(Y ).

Více

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

4.4 Exploratorní analýza struktury objektů (EDA)

4.4 Exploratorní analýza struktury objektů (EDA) 4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk

Více

GEOMETRIE NÁPRAV. Kontrolní a seřizovací podmínky. Výšky vozidla v referenční poloze

GEOMETRIE NÁPRAV. Kontrolní a seřizovací podmínky. Výšky vozidla v referenční poloze Správný tlak vzduchu v pneumatikách. GEOMETRIE NÁPRAV Kontrolní a seřizovací podmínky Uvedení vozidla do referenční výškové polohy. Výšky vozidla v referenční poloze Výška vpředu H1 = Vzdálenost mezi zónou

Více

Dovednosti/Schopnosti. - samostatně vyhledává postupy stanovení totožnosti a čistoty kyseliny vinné v ČL. Chemikálie:

Dovednosti/Schopnosti. - samostatně vyhledává postupy stanovení totožnosti a čistoty kyseliny vinné v ČL. Chemikálie: Jednotka učení 2: Stanovení optické otáčivosti kyseliny vinné 1. diferencování pracovního úkolu Handlungswissen Charakteristika pracovní činnosti Pracovní postup 2. HINTERFRAGEN 3. PŘIŘAZENÍ... Sachwissen

Více

SYLABUS 6. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE

SYLABUS 6. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE SYLABUS 6. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě, Polohové vytyčování) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. listopad 2015

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_16 ŠVP Podnikání RVP 64-41-L/51

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů METODICKÝ LIST DA46 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Obvod a obsah I. - obrazce Astaloš Dušan Matematika šestý frontální, fixační,

Více

4.4.2 Kosinová věta. Předpoklady: 4401

4.4.2 Kosinová věta. Předpoklady: 4401 44 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Pomůcka pro demonstraci momentu setrvačnosti

Pomůcka pro demonstraci momentu setrvačnosti Pomůcka pro demonstraci momentu setrvačnosti Cílem pomůcky je pochopit význam geometrických charakteristik pro pohybové chování těles na něž působí vnější síly. Princip pomůcky je velmi jednoduchý, jde

Více

Android OpenGL. Animace a ovládání pomocí dotykové obrazovky

Android OpenGL. Animace a ovládání pomocí dotykové obrazovky Android OpenGL Animace a ovládání pomocí dotykové obrazovky Principy animace Animace udává pohyb objektů v čase Může být reprezentována mnoha způsoby Procedurální Pozice objektů se počítá přímo v programu

Více

Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky

Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Seminář z matematiky Ročník: 7. Výstupy - kompetence Učivo Průřezová témata,přesahy, a další poznámky - převádí jednotky délky, času,

Více

Geodetické polohové a výškové vytyčovací práce

Geodetické polohové a výškové vytyčovací práce Geodézie přednáška 3 Geodetické polohové a výškové vytyčovací práce Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Geodetické vytyčovací práce řeší úlohu

Více

Radka Hamříková VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

Radka Hamříková VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA SBÍRKA ÚLOH Z MATEMATIKY Radka Hamříková Vtvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.0..0/..5./006 Studijní opor s převažujícími

Více

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ PRUŽNOST A PEVNOST V PŘÍKLADECH doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. Richard Klučka Ing. Josef Sedlák

Více

Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran

Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran 1. Kótování oblouků veškeré oblouky kružnic se kótují poloměrem a jedním z těchto rozměrů: - středovým úhlem - délkou tětivy - délkou

Více

http://www.zlinskedumy.cz

http://www.zlinskedumy.cz Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Elektronické obvody, vy_32_inovace_ma_42_06

Více

Tvarovací obvody. Vlastnosti RC článků v obvodu harmonického a impulsního buzení. 1) RC článek v obvodu harmonického buzení

Tvarovací obvody. Vlastnosti RC článků v obvodu harmonického a impulsního buzení. 1) RC článek v obvodu harmonického buzení Tvarovací obvody ) RC článek v obvodu harmonického buzení V obvodech harmonického buzení jsme se seznámili s pojmem integrační a derivační článek... Integrační článek v obvodu harmonického buzení Budeme-li

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Matyáš Řehák stud.sk.:

Více

4. Nelineární rovnice o jedné neznámé praktické příklady. jaro 2012

4. Nelineární rovnice o jedné neznámé praktické příklady. jaro 2012 1/22 4. Nelineární rovnice o jedné neznámé praktické příklady Aleš Křenek jaro 2012 2/22 K sestavení kluzného ložiska uložení ocelové mostní konstrukce je třeba na místě zasunout čep o vnějším průměru

Více

Zateplovací systémy Baumit. Požární bezpečnost staveb PKO - 14-001 PKO - 14-002 PKO - 13-011

Zateplovací systémy Baumit. Požární bezpečnost staveb PKO - 14-001 PKO - 14-002 PKO - 13-011 Zateplovací systémy Baumit Požární bezpečnost staveb PKO - 14-001 PKO - 14-002 PKO - 13-011 www.baumit.cz duben 2014 Při provádění zateplovacích systémů je nutno dodržovat požadavky požárních norem, mimo

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Mřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky

Mřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky -1-1-H Vyústka do kruhového potrubí - Jednořadá 1 Dvouřadá 2 L x H Typ regulačního ústrojí 1) R1, RS1, RN1 R2, RS2, RN2 R, RS, RN Lamely horizontální 2) H vertikální V Provedení nerez A- A-16 Povrchová

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu Geodézie v podzemních prostorách 10 úloha/zadání U1-U2/190-4 název úlohy Připojovací

Více

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný

Více

INMED 2013. Klasifikační systém DRG 2014

INMED 2013. Klasifikační systém DRG 2014 INMED 2013 Klasifikační systém DRG 2014 Anotace Příspěvek bude sumarizovat připravené změny v klasifikačním systému DRG pro rok 2014. Dále bude prezentovat datovou základnu produkčních dat v NRC a popis

Více

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.

Více

El.náboj,napětí,proud,odpor.notebook. October 23, 2012

El.náboj,napětí,proud,odpor.notebook. October 23, 2012 1 JAKÝ ELEKTRICKÝ NÁBOJ PROJDE PRŮŘEZEM VODIČE ZA 5 MINUT,PROCHÁZÍ LI JÍM PROUD 800mA? ( sestav z nabídky správné řešení a zkontroluj na následující stránce ) Q = 800. 300 t = 5 min Q = 0,8. 300 Q = 240

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč. Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování

Více

Kapitola 7: Integrál. 1/14

Kapitola 7: Integrál. 1/14 Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k

Více

Jemný úvod do numerických metod

Jemný úvod do numerických metod Jemný úvod do numerických metod Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MAG pondělí 24. listopadu 2014 verze:2014-11-24 16:35

Více

Optika. VIII - Seminář

Optika. VIII - Seminář Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení

Více

Post-Processingové zpracování V módu post-processingu je možné s tímto přístrojem docílit až centimetrovou přesnost z běžné 0,5m.

Post-Processingové zpracování V módu post-processingu je možné s tímto přístrojem docílit až centimetrovou přesnost z běžné 0,5m. Výjimečná EVEREST technologie Aplikovaná EVEREST technologie pro dobrou ochranu vícecestného šíření GNSS signálu a pro spolehlivé a přesné řešení. To je důležité pro kvalitní měření s minimální chybou.

Více

1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S

1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S 1 Statické zkoušky 1.1 Zkouška tahem Zkouška tahem je základní a nejrozšířenější mechanická zkouška. Princip: Přetržení zkušební tyče a následné stanovení tzv. napěťových a deformačních charakteristik

Více

SYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE

SYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE SYLABUS 2. a 3. PŘEDNÁŠKY Z INŽENÝRSKÉ GEODÉZIE (Plánování přesnosti měření v IG) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. říjen 2015 1 3. PLÁNOVÁNÍ

Více

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 2 Statistika a pravděpodobnost

Více

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2008/2009

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2008/2009 Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 008/009 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže

Více

Sériově a paralelně řazené rezistory. Tematický celek: Elektrický proud. Úkol:

Sériově a paralelně řazené rezistory. Tematický celek: Elektrický proud. Úkol: Název: Sériově a paralelně řazené rezistory. Tematický celek: Elektrický proud. Úkol: Zopakujte si, co platí pro sériově a paralelně řazené rezistory. Sestrojte elektrické obvody dle schématu. Pomocí senzorů

Více

Motorizované zkušební zařízení momentu TSTMH-DCE horizontální

Motorizované zkušební zařízení momentu TSTMH-DCE horizontální dodavatel vybavení provozoven firem www.abetec.cz Motorizované zkušební zařízení momentu TSTMH-DCE horizontální Obj. číslo: 106001174 Výrobce: Mark-10 Corporation Popis Maximální zatížení: 11,3 Nm (100

Více

Matematika 9. ročník

Matematika 9. ročník Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: PFFNINW) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy

Více

Lineární a adpativní zpracování dat. 4. Lineární filtrace: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 4. Lineární filtrace: Z-transformace, stabilita Lineární a adpativní zpracování dat 4. Lineární filtrace: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

+ 420 495 535 671 / /

+ 420 495 535 671 / / regulační šroub Princip Regulační šroub MARCOVIS EiSYS byl navržen tak, aby se v maximální možné míře snížil počet tepelných mostů způsobených kovovými částmi nosné konstrukce fasády. Při použití tohoto

Více

. Opakovací kurs středoškolské matematiky podzim 2015

. Opakovací kurs středoškolské matematiky podzim 2015 . Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

Ověření výpočtů geometrické optiky

Ověření výpočtů geometrické optiky z 8 13.11.2008 17:33 Ověření výpočtů geometrické optiky Měřící pracoviště se skládá z řádkové kamery s CCD snímačem L133, opatřeného objektivem, optické lavice a testu. Parametry použitého objektivu :

Více

1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače;

1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače; . Úvod, odhad nejistot měření, chyba metody řesnost měření Základní kvantitativní charakteristika nejistoty měření Výpočet nejistoty údaje číslicových přístrojů Výpočet nejistoty nepřímých měření ozšířená

Více

MĚŘENÍ INDUKČNOSTI A KAPACITY

MĚŘENÍ INDUKČNOSTI A KAPACITY Úloha č. MĚŘENÍ NDKČNOST A KAPATY ÚKO MĚŘENÍ:. Změřte ndkčnost cívky bez jádra z její mpedance a stanovte nejstot měření.. Změřte na Maxwellově můstk ndkčnost cívky a rčete nejstot měření. Porovnejte výsledky

Více

Základní chemické pojmy a zákony

Základní chemické pojmy a zákony Základní chemické pojmy a zákony LRR/ZCHV Základy chemických výpočtů Jiří Pospíšil Relativní atomová (molekulová) hmotnost A r (M r ) M r číslo udávající, kolikrát je hmotnost daného atomu (molekuly) větší

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

Í š Ť š ň ň Í Ř Ť Ť ň Ť Ť š Ť š Ď š š š ň š š š š š Í Ť Ť š ň š Ť š š É š ť Í Ť š Ž Š Ť Ť Ť Ť š š š š š Ť š Ť Í š Ť š Ť š Í š Ě Í š ň Ť š Ť Ť Ó š š š š š Ť Ž Ť Í Ř Ř Ť š š ť Ť š Ť š Ó š Ť Ť ň Ť š š š Ť

Více

SYLABUS 1. - 3. PŘEDNÁŠKY Z GEODÉZIE 2 (Určování výšek)

SYLABUS 1. - 3. PŘEDNÁŠKY Z GEODÉZIE 2 (Určování výšek) SYLABUS 1. - 3. PŘEDNÁŠKY Z GEODÉZIE 2 (Určování výšek) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. únor 2016 1 Geodézie 2 přednáška č.1 URČOVÁNÍ

Více

INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL,

INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, URČITÝ INTEGRÁL Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve

Více

dat měření do vnitřní paměti přístroje (k polohovému a Souřadnicový systém: S-JTSK, výškový systém: Bpv

dat měření do vnitřní paměti přístroje (k polohovému a Souřadnicový systém: S-JTSK, výškový systém: Bpv Určení vodorovné a o b e c n é r o v n Úkolem je vpočítat pro aměřený rovnatý terén:. vodorovnou rovnu tak, ab celkový objem emních prací bl stejný násp = výkop, 2. najít obecnou rovnc rovn, která dobře

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XIV Název: Relaxační kmity Pracoval: Pavel Brožek stud. skup. 12 dne 5.12.2008 Odevzdal

Více

mikroskop objektivový mikrometr měřící okulár Difrakce světla na mřížce Postup :

mikroskop objektivový mikrometr měřící okulár Difrakce světla na mřížce Postup : A Difrce světl n mřížce Úoly : Postup : 1. Určete mřížovou onstntu vzorů difrčních mříže pomocí mirosopu s měřícím oulárem 2. Určete mřížovou onstntu vzorů difrčních mříže n záldě difrce světl n mřížce

Více

Předpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace.

Předpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace. Předpokládané znalosti ze středoškolské matematiky 1. Matematická logika Výroky, složené výroky: konjunkce (, a zároveň ), disjukce (, nebo), negace výroků ( před nebo čárka nad označením výroku), implikace

Více

Goniometrie trigonometrie

Goniometrie trigonometrie Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických

Více

Pro vš echny body platí U CC = ± 15 V (pokud není uvedeno jinak). Ke kaž dému bodu nakreslete jednoduché schéma zapojení.

Pro vš echny body platí U CC = ± 15 V (pokud není uvedeno jinak). Ke kaž dému bodu nakreslete jednoduché schéma zapojení. OPEAČNÍ ZESILOVAČ 304 4 Pro vš echny body platí U CC = ± 15 V (pokud není uvedeno jinak). Ke kaž dému bodu nakreslete jednoduché schéma zapojení. 1. Ověřte měření m některé katalogové údaje OZ MAC 157

Více

COPY SPS. Návrh převodovky. Vypracoval Jaroslav Řezníček IV.B 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK

COPY SPS. Návrh převodovky. Vypracoval Jaroslav Řezníček IV.B 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK SPS 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK Návrh převodovky Vypracoval Jaroslav Řezníček IV.B 26.listopadu 2001 Kinematika Výpočet převodového poměru (i), krouticích momentů počet zubů a modul P 8kW n n 1

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Překlad Syntaxí řízený překlad Miroslav Beneš Dušan Kolář Definice: Překlad je relace TRAN: L 1 -> L 2 L 1 Σ* Σ - vstupní abeceda L 2 * - výstupní abeceda L 1 jazyk infixových výrazů L 2 jazyk postfixových

Více

R 1 = 2 Ω, R 2 = 1 Ω R 3 = 0,5 Ω, R 4 = 1 Ω U = 2 V, I z = 2 A

R 1 = 2 Ω, R 2 = 1 Ω R 3 = 0,5 Ω, R 4 = 1 Ω U = 2 V, I z = 2 A A 4:00 hod. Elektrotechnika Metodou uzlových napětí (MN) vypočtěte napětí 0 a 0 v uvedeném obvodu. = Ω, = Ω 3 = 0,5 Ω, 4 = Ω = V, I z = A I = = A 4 G+ G + G4 G G4 0 I + I Z = G G4 G G3 G4 + + 0 I,5 0 4

Více

Souřadnicové výpočty. Geodézie Přednáška

Souřadnicové výpočty. Geodézie Přednáška Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických

Více

NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH

NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 10. BŘEZNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH Přímá tyč je namáhána na tah, je-li zatíţena dvěma silami

Více

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen) .8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.

Více

Isingův model. H s J s s h s

Isingův model. H s J s s h s Ising Isingův model H s J s s h s i, j Motivován studiem fázových přechodů a kritických jevů Užíva se popis pomocí magnetických veličin i j i i Vlastnosti pomocí partiční sumy počítej: měrné teplo, susceptibilitu

Více

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem

Více

Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz

Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz 14. 4. 2004 1. Algoritmus RSA Asymetrické šifrování. Existuje dvojice tajného a veřejného klíče, takže není nutné předat klíč

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o.

Svobodná chebská škola, základní škola a gymnázium s.r.o. METODICKÝ LIST DA41 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Poměry III. postupný poměr Astaloš Dušan Matematika sedmý frontální, fixační samostatná práce upevnění znalostí

Více