Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1



Podobné dokumenty
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Tvorba trendové funkce a extrapolace pro roční časové řady

Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.

6. T e s t o v á n í h y p o t é z

19. Testy dobré shody

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost

Pravděpodobnost a aplikovaná statistika

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

Hodnocení způsobilosti procesu. Řízení jakosti

12. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

POSOUZENÍ VÝVOJE RYCHLOSTI ZA INFORMATIVNÍ TABULÍ NA ULICI ŽELATOVSKÁ V PŘEROVĚ

Poznámky k předmětu Aplikovaná statistika, 9.téma

PRAVDĚPODOBNOST A STATISTIKA OPAKOVÁNÍ, pro rozpoznávání

{ } Kombinace II. Předpoklady: =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ. 11. cvičení

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

Univerzita Pardubice Fakulta Ekonomicko- správní. Testy hypotéz s využitím programu MS EXCEL. Tomáš Borůvka

Nerovnice s absolutní hodnotou

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

3.2.4 Podobnost trojúhelníků II

1.1.1 Kvadratické rovnice (dosazení do vzorce) I

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y.

Pravděpodobnost a statistika: řešené příklady 2014 Tomáš Kroupa

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

Kvadratické rovnice pro učební obory

Svobodná chebská škola, základní škola a gymnázium s.r.o. Zlomky sčítání a odčítání. Dušan Astaloš. samostatná práce, případně skupinová práce

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30

1. Pravděpodobnost a statistika (MP leden 2010)

MSI LS 2006/2007 Ing. Pavla Hošková, Ph.D., 2. test

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

M - Rovnice - lineární a s absolutní hodnotou

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

2.7.2 Mocninné funkce se záporným celým mocnitelem

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

You created this PDF from an application that is not licensed to print to novapdf printer (

3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Příklady k třetímu testu - Matlab

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba

Lokální a globální extrémy funkcí jedné reálné proměnné

Praktikum II Elektřina a magnetismus

9.2.5 Sčítání pravděpodobností I

Průvodce k programu Statgraphics. Část 2. Lenka Šimonová

4EK211 Základy ekonometrie

Numerická integrace. 6. listopadu 2012

Biostatistika a matematické metody epidemiologie- stručné studijní texty

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

Finanční matematika Vypracovala: Mgr. Zuzana Kopečková

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE

Soustavy lineárních rovnic

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.

STATISTICKÉ TESTY VÝZNAMNOSTI

Ing. Michael Rost, Ph.D.

Isingův model. H s J s s h s

Kvadratické rovnice pro studijní obory

4.6.6 Složený sériový RLC obvod střídavého proudu

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

12. cvičení z PST. 20. prosince 2017

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Úvod. Analýza závislostí. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer

4ST201 STATISTIKA CVIČENÍ Č. 7

Filmy a jejich diváci

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

Testování výškové přesnosti navigační GPS pro účely (cyklo)turistiky

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

STATISTICKÉ TESTY VÝZNAMNOSTI

4ST201 STATISTIKA CVIČENÍ Č. 8

11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.

Zpráva o průběhu bakalářského přijímacího řízení pro akademický rok 2014/15 na Fakultě stavební ČVUT v Praze

NEPARAMETRICKÉ TESTY

Všechny možné dvojice ze čtyř možností, nezáleží na uspořádání m (všechny výsledky jsou rovnocenné), 6 prvků. m - 5 prvků

Zápočtová práce STATISTIKA I

1 Průběh funkce. Pomůcka pro cvičení: 1. semestr Bc studia Průběh funkce - ruční výpočet

1.3.1 Kruhový pohyb. Předpoklady: 1105

Funkce více proměnných

Základní chemické pojmy a zákony

Př. 3: Dláždíme čtverec 12 x 12. a) dlaždice 2 x 3 12 je dělitelné 2 i 3 čtverec 12 x 12 můžeme vydláždit dlaždicemi 2 x 3.

Statistika, Biostatistika pro kombinované studium. Jan Kracík

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

10. Polynomy a racionálně lomenné funkce

Cvičení ze statistiky - 6. Filip Děchtěrenko

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

BYTY TRŽNÍ CENA NEMOVITOSTI. xxx 000 Kč/m 2. Informace o nemovitosti, pro kterou je zobrazena tržní cena NA PRODEJ TRŽNÍ CENA NEMOVITOSTI

Diferenciální počet funkcí jedné proměnné

Řešení 3. série. typ čtverce o kolik se zvýší počet 1 x 1 2k x 2 2k 1 3 x 3 2k 3. . k x k 3 (k + 1) x (k + 1) 1

Kapitola 7: Integrál. 1/14

Stručný úvod do testování statistických hypotéz

Jednofaktorová analýza rozptylu

1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše.

B Kvantitativní test. Semestrální práce TUR. Novotný Michal

Kvantové počítače algoritmy (RSA a faktorizace čísla)

CERTIFIKOVANÉ TESTOVÁNÍ (CT) Výběrové šetření výsledků žáků 2014

VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová

Transkript:

Testování statistických hypotéz Ing. Michal Dorda, Ph.D.

Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 00. Střední hodnota prvního základního souboru se rovná střední hodnotě druhého základního souboru. Statistické hypotézy dělíme na parametrické a neparametrické hypotézy. Ing. Michal Dorda, Ph.D.

Úvodní poznámky Parametrická hypotéza je hypotéza o parametrech rozdělení základního souboru, zde patří: Hypotézy o parametru jednoho základního souboru o střední hodnotě, mediánu, rozptylu atd. Hypotézy o parametrech dvou základních souborů (srovnávací testy) rovnost středních hodnot, rovnost rozptylů atd. Hypotézy o parametrech tří a více základních souborů. Ing. Michal Dorda, Ph.D. 3

Úvodní poznámky Neparametrickáhypotéza je hypotéza o jiných vlastnostech základního souboru (tvar rozdělení, závislost proměnných atd.) Statistické testy dělíme na parametrickéa neparametrické testy. Parametrickým testem rozumíme takový test, pro jehož odvození je nutno specifikovat typ rozdělení, případně jeho parametry. Nejčastěji se setkáváme s předpokladem normality dat. Ing. Michal Dorda, Ph.D. 4

Úvodní poznámky Neparametrickýmtestem rozumíme takový test, pro jehož odvození není nutno specifikovat typ rozdělení. Při testování hypotéz proti sobě stojí hypotézy nulová a alternativní hypotéza. Nulová hypotéza H 0 vyjadřuje tvrzení o základním souboru, které je bráno jako předpoklad při testování (rovnovážný stav). Ing. Michal Dorda, Ph.D. 5

Úvodní poznámky Alternativní hypotéza H (resp. H A ) stojí proti nulové hypotéze a představuje porušení rovnovážného stavu. Rozlišujeme 3 typy alternativních hypotéz: Levostranná alternativní hypotéza. Pravostranná alternativní hypotéza. Oboustranná alternativní hypotéza. Ing. Michal Dorda, Ph.D. 6

Úvodní poznámky Např. H 0 střední hodnota základního souboru μ= 00. Levostranná H A μ<00. Pravostranná H A μ>00. Oboustranná H A μ 00. Příslušná alternativní hypotéza se volí na základě pozorování chování výběrového souboru. Ing. Michal Dorda, Ph.D. 7

Úvodní poznámky Testování hypotéz je založeno na následujícím principu: Pokud výběrový soubor neukáže na statisticky významný rozpor s nulovou hypotézou, pak nesmíme nulovou hypotézu zamítnout. Jelikož na základě chování výběrového souboru (tedy pouze vzorku populace) usuzujeme o chování celé populace (základního souboru), můžeme se při rozhodování dopustit chyby. Ing. Michal Dorda, Ph.D. 8

Úvodní poznámky Výsledek testu Platí H 0 Platí H Platí H 0 Správné rozhodnutí, pravděpodobnost α (spolehlivost testu) Chyba I. druhu, pravděpodobnost α(hladina významnosti) Skutečnost Platí H Chyba II. druhu, pravděpodobnost β Správné rozhodnutí, pravděpodobnost β(síla testu) Ing. Michal Dorda, Ph.D. 9

Úvodní poznámky Snahou je samozřejmě minimalizovat obě chyby, což však není možné, neboť snížením β vzroste αa naopak. Při statistickém testování hypotéz se volí hodnota α(nejčastěji 0,05 nebo 0,0), neboť chyba I. druhu je významnější než chyba II. druhu. Chybu II. druhu lze snížit volbou vhodného testu nebo zvětšením rozsahu výběrového souboru. Ing. Michal Dorda, Ph.D. 0

Klasický test Při klasickém testu hypotéz postupujeme v několika krocích: ) Formulace nulové a alternativní hypotézy. ) Volba testové statistiky a jejího rozdělení při platnosti nulové hypotézy (tzv. nulové rozdělení). Testová statistika a její nulové rozdělení je dána pro konkrétní test. Ing. Michal Dorda, Ph.D.

Klasický test 3) Sestrojení kritického oboru a oboru přijetí obor všech možných hodnot testové statistiky rozdělíme na dva disjunktní obory obor přijetí (takové hodnoty testové statistiky svědčící pro nezamítnutí nulové hypotézy) a kritický obor (takové hodnoty testové statistiky, které svědčí pro zamítnutí nulové hypotézy). Hranice mezi obory se nazývá kritická hodnota testu (x krit ). Kritický obor je tak velký, aby pravděpodobnost, že testová statistika leží v kritickém oboru při předpokladu platnosti nulové hypotézy, byla rovna α. Ing. Michal Dorda, Ph.D.

Levostranná alternativní hypotéza α Klasický test f(x) α Obor přijetí Kritická hodnota testu 0 x Kritický obor Ing. Michal Dorda, Ph.D. 3

Klasický test f(x) Pravostranná alternativní hypotéza α α Obor přijetí 0 x Kritická hodnota testu Kritický obor Ing. Michal Dorda, Ph.D. 4

Oboustranná alternativní hypotéza Klasický test f(x) α α α Obor přijetí Kritická hodnota testu 0 x Kritická hodnota testu Kritický obor Ing. Michal Dorda, Ph.D. 5

Klasický test 4) Výpočet pozorované hodnoty testové statistiky x obs. 5) Formulace závěru testu: Leží-li x obs v oboru přijetí, potom nezamítáme nulovou hypotézu. Leží-li x obs v kritickém oboru, potom zamítáme nulovou hypotézu ve prospěch alternativní hypotézy. Ing. Michal Dorda, Ph.D. 6

Testování normality dat Jelikož nejpoužívanější parametrické testy předpokládají normalitu dat, je nejprve vhodné se zabývat otázkou, jak otestovat, že data získaná náhodným výběrem pocházejí z populace řídící se normálním rozdělením s parametry μa σ. K tomuto slouží tzv. testy dobré shody, zaměřme se na Pearsonůvχ test dobré shody. Ing. Michal Dorda, Ph.D. 7

Pearsonůvχ test dobré shody Tento test slouží k testování nulové hypotézy v obecném tvaru: Náhodný výběr pochází z konkrétního rozdělení pravděpodobnosti s konkrétními parametry. Alternativní hypotéza neguje nulovou hypotézu: Náhodný výběr nepochází z konkrétního rozdělení pravděpodobnosti s konkrétními parametry. Neznáme-li parametry příslušného rozdělení, je nutno je na základě náhodného výběru odhadnout, např. pomocí metody maximální věrohodnosti. Ing. Michal Dorda, Ph.D. 8

Pearsonůvχ test dobré shody Tento test umožňuje otestovat náhodný výběr i na jiná rozdělení než je normální rozdělení! Pro testování normality lze dále použít i jiné testy, např. Kolmogorovův Smirnovůvtest dobré shody, Shapiro Wilkůvtest, testy založené na šikmosti a špičatosti atd. Tyto testy jsou součástí specializovaných statistických software. Ing. Michal Dorda, Ph.D. 9

Pearsonůvχ test dobré shody Pro testovou statistiku G platí: G ( ) k n = i n π 0, i χk h kde: n π i= 0, i, k počet tříd, n rozsah souboru, n i počet pozorování v i-té třídě (pozorované četnosti), n π 0,i teoretické (očekávané) četnosti, h počet odhadovaných parametrů rozdělení. Ing. Michal Dorda, Ph.D. 0

Pearsonůvχ test dobré shody Aby bylo nulové rozdělení dobře aproximováno rozdělením χ, je třeba, aby byly teoretické četnosti ve všech třídách větší než 5. Není-li tento předpoklad pro všechny třídy splněn, je nutno příslušné třídy vhodně sloučit (toto má za následek pokles stupňů volnosti rozdělení χ ). Ing. Michal Dorda, Ph.D.

Pearsonůvχ test dobré shody f(x) -α α S rostoucí hodnotou testové statistiky roste rozpor naměřených dat s nulovou hypotézou, od určité hodnoty (kritická hodnota testu) je tento rozpor statisticky významný, zamítneme tedy nulovou hypotézu ve prospěch alternativní hypotézy. 0 Kritická hodnota testu Obor přijetí Kritický obor x Ing. Michal Dorda, Ph.D.

Pearsonůvχ test dobré shody Kritickou hodnotu testu získáme jako 00 ( α)%-ní kvantil rozdělení χ s příslušným počtem stupňů volnosti. Hodnotu můžeme odečíst z tabulek nebo ji můžeme vypočítat pomocí Excelu: x krit χ( α ); k h = CHIINV ( α; k h ). = Ing. Michal Dorda, Ph.D. 3

Test hypotézy o střední hodnotě Test lze použít, pokud se základní soubor řídí normálním rozdělením (je tedy splněna normalita), jedná se tedy o parametrický test. Test slouží k ověření hypotézy, že střední hodnota populace se rovná konkrétní hodnotě, tedy: µ = µ 0. Ing. Michal Dorda, Ph.D. 4

Test hypotézy o střední hodnotě U alternativní hypotézy máme na výběr tři možnosti (pro konkrétní alternativní hypotézu se rozhodujeme na základě výběrového průměru): ) µ < µ, 0 ) µ > µ, 0 3) µ µ. 0 Ing. Michal Dorda, Ph.D. 5

Test hypotézy o střední hodnotě Volba testové statistiky závisí na tom, zda známe či neznáme směrodatnou odchylku základního souboru σ. ) Známe-li σ, potom: Z = x µ σ 0 n N ( 0,), testová statistika se tedy řídí normovaným normálním rozdělením. Ing. Michal Dorda, Ph.D. 6

Test hypotézy o střední hodnotě ) Neznáme-li σ, potom: T x µ s 0 n = n tn, kde sje výběrová směrodatná odchylka. Testová statistika se v tomto případě řídí Studentovým rozdělením s n stupni volnosti. V případě výběru velkého rozsahu (n 30) lze Studentovo rozdělení aproximovat normovaným rozdělením pravděpodobnosti. Ing. Michal Dorda, Ph.D. 7

Test hypotézy o střední hodnotě Kritickou hodnotu testu získáme: ) Jako příslušný kvantil normovaného rozdělení pravděpodobnosti buď z tabulek a nebo s využitím funkce Excel NORMSINV: Levostranná alternativa = z = NORMSINV ( ) = z, x krit α α α Pravostranná alternativa x krit = z = NORMSINV ( ), α α Oboustranná alternativa x krit α α, L = zα = NORMSINV = z α, xkrit, P = z α = NORMSINV. Ing. Michal Dorda, Ph.D. 8

Test hypotézy o střední hodnotě ) Jako příslušný kvantil Studentova rozdělení s n stupni volnosti buď z tabulek a nebo s využitím funkce Excel TINV: Levostranná alternativa x = t = TINV ( α; n ) = t, krit = α ; n α ; n Pravostranná alternativa x krit = TINV ( α; n ), = t α ; n Oboustranná alternativa x = t = TINV ( α; n ) = t, x = t = TINV ( α; n ). krit, L α α krit, P α ; n ; n ; n Ing. Michal Dorda, Ph.D. 9

Test hypotézy o střední hodnotě Př. : Simulací byl získán statistický soubor o rozsahu 40 pozorování. Výpočtem bylo zjištěno, že výběrový průměr je roven 36,7 a výběrová směrodatná odchylka 0. Na hladině významnosti 0,05 a za předpokladu, že data pochází z normálního rozdělení, otestujte hypotézu, že střední hodnota je rovna 30. Ing. Michal Dorda, Ph.D. 30

Test hypotézy o střední hodnotě V tomto případě sice neznáme směrodatnou odchylku celé populace, ale máme výběr velkého rozsahu, proto můžeme Studentovo rozdělení aproximovat normálním rozdělením (výběrová směrodatná odchylka bude odhadem směrodatné odchylky populace). Ing. Michal Dorda, Ph.D. 3

Test hypotézy o střední hodnotě Stanovme si obě hypotézy: H 0 Střední hodnota populace je rovna 30. H Střední hodnota populace je vyšší než 30 (vypovídá o tom provedený náhodný výběr). Dosazením do předpisu pro testovou statistiku získáme pozorovanou hodnotu testu: Z x µ 0 36,7 30 = n = 40 = & s 0 4,4. Ing. Michal Dorda, Ph.D. 3

Test hypotézy o střední hodnotě H : μ>μ 0 x krit = z α = z 0,95 = = &,645. f(x) α α Obor přijetí 0 x X krit =,645 X obs = 4,4 Kritický obor Ing. Michal Dorda, Ph.D. 33

Test hypotézy o střední hodnotě Z obrázku vidíme, že pozorovaná hodnota testové statistiky leží v kritickém oboru, výsledek testu je tedy takový, že na hladině významnosti 0,05 zamítáme nulovou hypotézu ve prospěch alternativní, střední hodnota je tedy vyšší než 30. Ing. Michal Dorda, Ph.D. 34

Test hypotézy o shodě dvou středních hodnot Tento test slouží ke srovnání středních hodnot dvou populací, test opět předpokládá normalitu obou populací, jedná se tedy o parametrický test. Nulová hypotéza je ve tvaru: µ = µ ( µ µ 0). = Ing. Michal Dorda, Ph.D. 35

Test hypotézy o shodě dvou středních hodnot U alternativní hypotézy máme na výběr ze 3 variant (pro vhodnou variantu se rozhodujeme na základě obou náhodných výběrů): ) µ < µ ( µ µ < 0), ( µ µ > 0) ) µ > µ, 3) µ µ ( µ µ 0). Ing. Michal Dorda, Ph.D. 36

Test hypotézy o shodě dvou středních hodnot Volba testové statistiky opět závisí na tom, zda známe či neznáme směrodatnou odchylku obou základních souborů σ a σ. ) Známe-li směrodatné odchylky, potom: Z ( x x ) ( µ µ ) = N σ σ n + n ( 0,), testová statistika se tedy řídí normovaným normálním rozdělením. Ing. Michal Dorda, Ph.D. 37

Test hypotézy o shodě dvou středních hodnot ) Neznáme-li směrodatné odchylky, ale víme, že platí (příslušný test bude uveden dále), potom: ( ) ( ), + = + t n n s x x T n n r µ µ σ σ = testová statistika se tedy řídí Studentovým rozdělením pravděpodobnosti s počtem volnosti rovným součtu rozsahů obou náhodných výběrů sníženým o. Ing. Michal Dorda, Ph.D. 38 ( ) ( ), kde + + = n n s n s n s n n r r

Test hypotézy o shodě dvou středních hodnot 3) Neznáme-li směrodatné odchylky a víme, že nelze předpokládat rovnost rozptylů, potom lze použít testovou statistiku ( ) ( ), = t s s x x T v µ µ σ σ Ing. Michal Dorda, Ph.D. 39. kde + + + n s n n s n n s n s v n s n s

Test hypotézy o shodě dvou středních hodnot Počet stupňů volnosti je nutno zaokrouhlit na celé číslo. Testová statistika se tedy řídí Studentovým rozdělením pravděpodobnosti s počtem volnosti rovným zaokrouhlenému číslu v. Kritické hodnoty testu stanovíme analogickým způsobem jako u jednovýběrovéhotestu střední hodnoty. Ing. Michal Dorda, Ph.D. 40

Test o shodě dvou rozptylů (F-test) Mějme dva náhodné výběry pocházející ze dvou populací s normálním rozdělením s neznámými parametry. Naším úkolem je otestovat rovnost rozptylů těchto dvou populací, nulovou hypotézu tedy formulujeme ve tvaru: σ. σ = σ = σ Ing. Michal Dorda, Ph.D. 4

Test o shodě dvou rozptylů (F-test) Jelikož testové Fischer-Snedecorovorozdělení není symetrické, přichází v úvahu pouze jednostranné alternativní hypotézy: σ Ing. Michal Dorda, Ph.D. 4. ), ) > > < < σ σ σ σ σ σ σ σ

Test o shodě dvou rozptylů (F-test) Testová statistika je ve tvaru: F s = F n, n s, testová statistika se tedy řídí Fisher- Snedecorovýmrozdělením s n - stupni volnosti v čitateli a n - stupni volnosti ve jmenovateli. Ing. Michal Dorda, Ph.D. 43

Test o shodě dvou rozptylů (F-test) f(x) Levostranná alternativní hypotéza α -α 0 Kritická hodnota testu Kritický obor Obor přijetí x Ing. Michal Dorda, Ph.D. 44

Test o shodě dvou rozptylů (F-test) f(x) Pravostranná alternativní hypotéza -α α 0 Kritická hodnota testu Obor přijetí Kritický obor x Ing. Michal Dorda, Ph.D. 45

Test o shodě dvou rozptylů (F-test) Kritickou hodnotu testu získáme jako příslušný kvantil Fisher-Snedecorovarozdělení s příslušnými stupni volnosti v čitateli a jmenovateli buď pomocí tabulek nebo pomocí funkce Excel FINV: Levostranná alternativa x krit Pravostranná alternativa x krit FINV ( α; n ; n ), = F α ; n ; n = FINV ( α n ; n ). = F ; α ; n ; n = Ing. Michal Dorda, Ph.D. 46

Test hypotézy o shodě dvou středních hodnot Př. : Simulací jsme získali dva statistické soubory. Soubor Soubor Rozsah 35 45 Výběrový průměr 38,7 4,4 Výběrová směrodatná odchylka 7,9 0, Za předpokladu, že oba výběry pocházejí z normálního rozdělení, otestujte na hladině významnosti 0,05 hypotézu o rovnosti středních hodnot. Ing. Michal Dorda, Ph.D. 47

Test hypotézy o shodě dvou středních hodnot V tomto případě je zřejmé, že neznáme směrodatné odchylky populací (máme pouze jejich odhady). Proto musíme nejdříve přistoupit k otestování, zda lze očekávat shodné rozptyly obou populací či nikoliv. K tomu použijeme F-test, budeme uvažovat hladinu významnosti rovnu 0,05. Ing. Michal Dorda, Ph.D. 48

Test hypotézy o shodě dvou středních hodnot Stanovme si obě hypotézy k F-testu: H 0 Rozptyl populace je roven rozptylu populace, tedy σ = σ H Rozptyl populace je menší než rozptyl populace (vypovídají o tom oba náhodné výběry), tedy σ <. σ Dosazením do vztahu pro testovou statistiku dostaneme: F s 7,9 = = & s 0, = 0,6.. Ing. Michal Dorda, Ph.D. 49

Test hypotézy o shodě dvou středních hodnot Nyní musíme stanovit kritickou hodnotu testu, pro kterou v případě zvolené levostranné alternativy platí: x krit = F α ; n = ; ; = FINV ( α n n ) ; n = FINV ( 0,95;34;44 ) = & 0,58. Jelikož z výsledků testu vidíme, že pozorovaná hodnota testové statistiky leží v oboru přijetí, nezamítáme nulovou hypotézu o rovnosti rozptylů obou populací. Ing. Michal Dorda, Ph.D. 50

Test hypotézy o shodě dvou středních hodnot Nyní můžeme přistoupit k testování rovnosti středních hodnot dvou populací, použijeme variantu. Stanovme si obě hypotézy: H 0 Střední hodnota populace je rovna střední hodnotě populace, tedy µ =. µ H Střední hodnota populace je menší než střední hodnota populace (vypovídají o tom oba náhodné výběry), tedy µ <. µ Ing. Michal Dorda, Ph.D. 5

Test hypotézy o shodě dvou středních hodnot Dosazením do předpisu pro testovou statistiku získáme pozorovanou hodnotu testu: ( x x ) ( µ µ ) T = = ( n ) s + ( n ) s = n + n ( 38,7 4,4) ( 35 ) 7,9 + ( 45 ) 35 + 45 0 0, n + n 35 + 45 = &,78. Ing. Michal Dorda, Ph.D. 5

Test hypotézy o shodě dvou středních H : μ <μ x krit = t = t α ; n α ; n = t = &,66. α + n + n 0,99;78 = = hodnot f(x) Obor přijetí α X obs = -,78 X krit = -,66 Kritický obor 0 x Ing. Michal Dorda, Ph.D. 53

Test hypotézy o shodě dvou středních hodnot Z obrázku vidíme, že pozorovaná hodnota testové statistiky leží v kritickém oboru, výsledek testu je tedy takový, že na hladině významnosti 0,05 zamítáme nulovou hypotézu, střední hodnoty obou populací se nerovnají, střední hodnota první populace je nižší než střední hodnota druhé populace. Ing. Michal Dorda, Ph.D. 54