STATISTICKÉ TESTY VÝZNAMNOSTI
|
|
- Milan Bárta
- před 6 lety
- Počet zobrazení:
Transkript
1 STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená to, že je velmi nepravděpodobné, že by tento výsledek byl způsobený pouhou náhodou. Rozhodování ve statistických testech má vždy povahu pravděpodobnostní nikdy si nejsme svým rozhodnutím beze zbytku jisti. Pravděpodobnost, že neoprávněně zamítneme nulovou hypotézu, se nazývá hladina významnosti (signifikance). Na druhé straně můžeme neoprávněně přijmout nulovou hypotézu, ačkoliv neplatí. Snižujeme-li riziko první chyby, zvětšuje se riziko druhé chyby a naopak.
2 DRUHY STATISTICKÝCH TESTŮ VÝZNAMNOSTI: Z hlediska náročnosti na znalost předpokladů o rozdělení dělíme testy do dvou základních skupin na testy: PARAMETRICKÉ, které předpokládají naši znalost charakteru rozdělení studovaného statistického znaku (náhodné veličiny, dále v textu NV) a týkají se jednoho nebo více parametrů daného rozdělení (aritmetického průměru, směrodatné odchylky,..) NEPARAMETRICKÉ, které jsou univerzálnější, robustnější, nevyžadují splnění žádných podmínek, ale nejsou tak silné.
3 Parametrické testy vyžadují splnění řady předpokladů, má-li být jejich užití oprávněné (nejčastěji se požaduje, aby rozdělení náhodné veličiny bylo normální). Jedná se o početně náročnější, avšak silné testy. Parametrické testy jsou však méně robustní než neparametrické testy. Robustnost Neparametrických testů můžeme chápat jako univerzálnost: pokud nejsou splněny předpoklady pro použití parametrických testů, musíme použít univerzálnější neparametrický test, který není tak silný, ale nevyžaduje splnění žádných podmínek.
4 NEPARAMETRICKÉ nevyžadují splnění žádných předpokladů o rozdělení náhodné veličiny. Obvykle se týkají nějaké obecné vlastnosti rozdělení a neparametrické se nazývají proto, že testované hypotézy neobsahují žádná tvrzení o průměrech nebo rozptylech. Můžeme je použít i v případě, že neznáme rozložení náhodné veličiny. Jsou tedy univerzálnější, ale mají menší statistickou účinnost, tj. schopnost rozpoznat malé odchylky od nulové hypotézy. Výpočetně jsou jednodušší a rychlejší. Obvykle vyžadují větší počet pozorování než parametrické.
5 Podle dalších hledisek dělíme testy na: TESTY JEDNOSTRANNÉ a OBOUSTRANNÉ Podle toho, jakým způsobem formulujeme alternativní hypotézu, resp. zda nás zajímá změna pouze v jednom nebo obou směrech TESTY JEDNOVÝBĚROVÉ, DVOUVÝBĚROVÉ a VÍCEVÝBĚROVÉ Podle počtu výběrů se liší testované hypotézy a použité metody. Viz dále.
6 KVANTITATIVNÍ VELIČINY - JEDNOVÝBĚROVÉ TESTY POROVNÁNÍ MÍRY POLOHY SOUBORU S NĚJAKOU KONKRÉTNÍ HODNOTOU JEDNOVÝBĚROVÝ U-TEST (v Excelu označován jako Z-test) ověřuje, zda střední hodnota (výběrový průměr) se rovná nějaké konstantě, obvykle populačnímu průměru µ. 2 Je nutný předpoklad normality sledované veličiny se známým populačním rozptylem σ a nezávislost měřených hodnot (např. osoby se nesmí v souboru vyskytovat opakovaně). Před provedením testu musíme zvolit hladinu významnosti α a rozhodnout, zda nás zajímá test jednostranný nebo oboustranný. Testovací statistika je: U ( x µ) = σ x n
7 Příklad: Pro skupinu dětí zjistěte, zda nepřekračují hodnotu normy cholesterolu v krvi: 4,1 mmol/l, pokud známe populační rozptyl: 0,5. Formulujeme H 0 : střední hodnota cholesterolu u testované skupiny dětí nepřekračuje hodnotu normy cholesterolu. budeme porovnávat průměr sledované populace s hodnotou 4,1 mmol/l zajímá nás pouze překročení hladiny cholesterolu 4,1 mmol/l - proto test jednostranný hladinu testu (významnosti) volíme α = 0,05 Vypočteme střední hodnotu (aritmetický průměr) ve skupině dětí (výběru). Sledovanou veličinu považujeme za normálně rozloženou, můžeme tedy použít JEDNOVÝBĚROVÝ U-TEST Na základě vypočteného výběrového průměru a známé směrodatné odchylky (ze zadání) vypočteme statistiku U dosazením do vzorce (4,302 4,1) U = 0,5 57 = 2,162 U = ( x µ) σ x n
8 Vypočtenou statistiku U porovnáme s kritickou hodnotou u α normálního rozdělení: pro zvolenou hladinu významnosti testu α = 0,05 najdeme hledanou statistiku v programu EXCEL pomocí Distribuční funkce Normálního standardizovaného rozdělení zadáním pravděpodobnosti 1-α = 0,95 Funkce v programu EXCEL se nazývá: =NORM.S.INV(pravděpodobnost), kde za pravděpodobnost dosadíme hladinu spolehlivosti (1-α ) = 0,95. Funkce NORM.S.INV je inverzní k distribuční funkci, to znamená, že pro zadanou pravděpodobnost vrátí hodnotu příslušného kvantilu Normálního standardizovaného rozdělení: =NORM.S.INV(0,95) = 1,645 Nyní porovnáváme vypočtenou statistiku U s tabulkovou hodnotou: 2,162 > 1,645 U je větší než kritická hodnota, odchylky od normy proto neumíme na hladině významnosti α vysvětlit pouhou náhodou a zamítáme H 0.
9 Jednodušším řešením je výpočet pravděpodobnosti, tzv. p-hodnoty. Všechny statistické programy včetně statistických funkcí v Excelu umí pro testovaná data vypočítat p-hodnotu, tj. pravděpodobnost, s jakou bychom v daném případě zamítli nulovou hypotézu. Tuto p-hodnotu pak porovnáme s předem stanovenou hladinou významnosti (námi zvolená pravděpodobnost tolerované chyby testu), a rozhodneme o platnosti nebo neplatnosti nulové hypotézy. V programu Excel, najdeme ve vzorcích statistickou funkci Z.TEST s parametry: pole (matice), testovaná hodnota a známá směrodatná odchylka základního souboru. Výsledkem funkce Z.TEST je p-hodnota. Vysvětlení: pole - zadáme oblast dat (výběrový soubor) testovaná hodnota - zadáme normu cholesterolu dětí v populaci známá směrodatná odchylka - odmocnina z populačního rozptylu
10 Stejný příklad: Pro skupinu dětí zjistěte, zda nepřekračují hodnotu normy cholesterolu v krvi: 4,1 mmol/l, pokud známe populační rozptyl: 0,5. =Z.TEST(pole;4,1;ODMOCNINA(0,5)) = 0, ,015 Výsledná p-hodnota 0,015 znamená, že nulovou hypotézu zamítáme na zvolené hladině významnosti 0,05. Znamená to přijetí alternativní hypotézy, kterou můžeme formulovat např.: Hodnota cholesterolu ve sledovaném výběru dětí je statisticky významně vyšší než je norma u běžné populace dětí. Proč se v Excelu jmenuje tato funkce Z-test a ne U-test? Jedná se pouze o jiné označení - oba testy předpokládají normální rozdělení testované veličiny a porovnávají naměřené hodnoty se standardizovaným normálním rozdělením. Z-test nebo Z-rozdělení se nazývá podle tzv. z-skórů, tj. přepočtu hodnot x i na z i podle vzorce kde x je střední hodnota a s směrodatná odchylka výběru. z x x i i =, s
11 JEDNOVÝBĚROVÝ T-TEST Protože v praxi často neznáme skutečný rozptyl, ale používáme jeho odhad, místo jednovýběrového U-testu použijeme jednovýběrový t-test, který je založen na Studentově t-rozdělení a testovou statistiku vypočteme podle vzorce t = x µ s x n, kde je x výběrový průměr µ známá střední hodnota populace s x výběrová směrodatná odchylka n počet měření Vypočtenou testovou statistiku t porovnáváme s kritickou hodnotou Studentova rozdělení, kterou zjistíme např. funkcí v programu Excel =T.INV(pravděpodobnost; volnost), kde za pravděpodobnost dosadíme (1-α).
12 Příklad: Pro skupinu dětí zjistěte, zda nepřekračují hodnotu normy cholesterolu v krvi: 4,1 mmol/l. Populační rozptyl není znám, nahraďte jej odhadem výběrového rozptylu. Musíme použít Studentovo rozdělení, protože odhadujeme jeden parametr (rozptyl) a není splněn předpoklad pro použití U-testu. Použijeme vzorec: t = x µ s x n, 4,302 4,1 po dosazení: t = = 2, 33 0, Vypočtenou testovou statistiku t = 2,33 porovnáme s kritickou hodnotou Studentova t-rozdělení, kterou vypočteme funkcí = T.INV(pravděp.; volnost), za pravděpodobnost dosadíme 1-α (pro α = 0,05) a za volnost 56 (57 měření-1), = T.INV(0,95;56) = 1,673 Porovnáním 2,33 > 1,673 zjistíme, že test je statisticky významný, H 0 zamítáme.
13 Použití Z-testu (U-testu) je podmíněno znalostí populačního rozptylu. Pokud jej neznáme, musíme empirickou funkci (rozdělení výběrového souboru) porovnat se Studentovým t-rozdělením. Pro větší počet měření (např. n > 40) je Studentovo t-rozdělení prakticky shodné s normálním rozdělením. SHRNUTÍ: Rozdíl mezi Z-testem a t-testem: t-test je konzervativnější (zamítnutí nulové hypotézy je o trochu přísnější - zamítáme dřív) při použití Z-testu musíme znát populační rozptyl oba tyto testy vyžadují normalitu dat, ale pro n > 20 je možno veličinu považovat za přibližně normální, protože součet většího počtu stejně rozdělených NV je přibližně normální
14 KVANTITATIVNÍ VELIČINY - DVĚ SKUPINY POROVNÁNÍ MÍRY POLOHY DVOU VÝBĚRŮ problém porovnání střední hodnoty dvou skupin: počet pozorování v obou skupinách se může lišit síla testu záleží na menším výběru skupiny se mohou lišit parametrem polohy odhadovaným průměrem skupiny se mohou lišit mírou variability různé rozptyly skupiny se mohou lišit oběmi charakteristikami současně
15 DVOUVÝBĚROVÝ T-TEST Použijeme za předpokladu, že je rozložení obou veličin normální. Nabídka Analýzy dat v Excelu obsahuje tyto možnosti dvouvýběrových t-testů: 1. Dvouvýběrový párový t-test na střední hodnotu 2. Dvouvýběrový t-test pro stejné rozptyly 3. Dvouvýběrový t-test pro různé rozptyly Stejné možnosti nabízí Excelová funkce T.TEST s parametry: Matice1, Matice2, Chvosty, Typ (1- spárované výběry, 2-dva výběry se shodným rozptylem, 3-dva výběry s různým rozptylem)
16 1. Dvouvýběrový párový t-test na střední hodnotu - PÁROVÉ POROVNÁNÍ se používá v situaci, kdy máme jednu skupinu objektů, ale na této skupině jsme provedli dvě různá měření sledované veličiny, většinou s časovým odstupem nebo/ a po vlivu nějakého zásahu, např. změně režimu stravování, pohybové aktivity, nebo pokud např. objekty přestanou kouřit nebo upraví režim s ohledem na nějaké onemocnění spod. Sledovanou veličinu tedy měříme dvakrát na stejné skupině objektů. Základní princip tohoto testu u sledované veličiny měřené dvakrát je, že stačí vypočítat rozdíl těchto hodnot a testovat jednovýběrovým testem, zda je tato změna = 0. Párový test použijeme v okamžiku, kdy sledovanou charakteristiku pozorujeme na stejném objektu opakovaně (nejčastěji dvakrát) a rozdíl mezi sledovanymi subjekty je větší, než rozdíl mezi pozorováními. Snažíme se zjistit efekt času - obvykle během tohoto časového intervalu je provedena nějaká intervence a ptáme se tedy na její efekt.
17 Např. na skupině školních dětí byla měřena hladina HDL cholesterolu v krvi. Pak došlo ve školní jídelně k změně skladby stravy a po měsíci byla stejným dětem měřena opět hladina HDL cholesterolu. Ptáme se, zda změna jídelníčku snížila hladinu HDL cholesterolu v krvi jednotlivých dětí. Hodnota, o kterou je možno snížit hladinu HDL cholesterolu změnou části dětské stravy zřejmě nebude velká, naopak rozdíly hladiny HDL cholesterolu mezi jednotlivými dětmi mohou být mnohem větší. Pokud bychom porovnali obě skupiny dvouvýběrovým testem, zůstane efekt našeho zásahu skryt variabilitou mezi jedinci a dvouvýběrový test neprokáže významné rozdíly. Dopustili bychom se chyby tím, že bychom neuvažovali závislost hodnot na měřené osobě. Musíme tedy vyloučit vliv variability mezi osobami. Budeme pracovat s rozdíly obou měření a porovnávat změnu ke které došlo za sledované období. To je právě princip párového t-testu, který je zaměřený na odhalení změn u vzájemně spárovaných hodnot - počty měření si musí navzájem odpovídat.
18 Dvouvýběrový párový t-test na střední hodnotu HDL1 HDL2 Stř. hodnota 1,265 1,372 Rozptyl 0,086 0,146 Pozorování Pears. korelace 0,702 Rozdíl stř. hodnot 0 počet st. volnosti 38 t stat -2,452 P(T<=t) (1) 0,009 t krit (1) 1,686 P(T<=t) (2) 0,019 t krit (2) 2,024 Stanovíme nulovou hypotézu: H 0 : hodnoty HDL-chlesterolu se po třech měsích změny režimu u dětí nezměnily. Počet pozorování je stejný - jednalo se o 39 dětí. Počet stupňů volnosti je n-1, kde n je počet dětí v jednom výběru. Hodnoty 1. a 2. měření jsou spárované. Výsledek testu: Absolutní hodnota t-statistiky pro jednostranný test je větší než kritická hodnota t krit (1): 2,452 > 1,686 resp. p-hodnota je signifikantně nízká (0,009), proto H 0 zamítáme na hladině spolehlivosti 95%. Hladina spolehlivosti 0,95 odpovídá hladině významnosti 0,05. Na základě p-hodnoty bychom nulovou hypotézu mohli zamítnout i na hladině významnosti 99% (P(T<=t) (1) < 0,01).
19 Použili jsme jednostranný test, protože jsme předpokládali, že hodnota HDL cholesterolu se pomocí režimových opatření zlepší (bude vyšší - jedná se o tzv. hodný cholesterol ) Další příklady pro řešení PÁROVÝM T-TESTEM jsou: výkon sportovců po určité době tréninků zlepšení výsledků školních dětí v některém předmětu zlepšení zdravotních parametrů po léčbě úbytek hmotnosti po dietních opatřeních zvýšení hmotnosti po úspěšné léčbě anorexie Vždy se musí jednat o spárované hodnoty stejných jedinců.
20 2. Dvouvýběrové t-testy na střední hodnotu na různých výběrech Na rozdíl od párového testování na stejných objektech se úloha otestovat rozdíl středních hodnot u dvou různých výběrů řeší t-testy, které nevyžadují shodný počet objektů ve výběrech, ale naopak požadují, aby měřené objekty patřily vždy výhradně jen do jednoho z výběrů (např. děti z různých škol /tříd, zaměstnanci různých profesí nebo z různých věkových skupin). K dispozici máme dva základní t-testy Dvouvýběrový t-test pro stejné rozptyly Dvouvýběrový t-test pro různé rozptyly Abychom vybrali správný t-test (možnost 2 nebo 3), musíme porovnat rozptyl naměřených hodnot sledované veličiny u obou skupin. Provedeme to za pomocí F-testu, který najdeme v Excelu v analýze dat nebo jako funkci =FTEST(1.soubor, 2.soubor)
21 F-TEST PRO POROVNÁNÍ ROZPTYLŮ Dvouvýběrový F-test pro rozptyl CHOL_B CHOL_A Stř. hodnota 4,20 4,33 Rozptyl 0,52 0,34 Pozorování Rozdíl F 1,54 P(F<=f) (1) 0,11 F krit (1) 1,80 Dvouvýběrový F-test pro rozptyl CHOL_A CHOL_B Stř. hodnota 4,33 4,20 Rozptyl 0,34 0,52 Pozorování Rozdíl F 0,65 P(F<=f) (1) 0,11 F krit (1) 0,55 Příklad: testujeme rozptyl hodnot cholesterolu se mezi dvěmi skupinami zaměstnanců (mladší a starší). Stanovíme hypotézy H 0 - rozptyly obou souborů se statisticky významně neliší, a alternativní hypotézu H A - rozptyly obou souborů se statisticky významně liší. Vidíme, že hodnoty v první tabulce odpovídají hodnotám na obrázku. Ve druhé tabulce je přehozeno pořadí výběrů a hodnoty F-rozdělení musíme odečítat na grafu vlevo (v nižších hodnotách). Testujeme hodnoty F proti F krit (1) modré z 1. tabulky a F krit (1) falové z 2. tabulky
22 Pokud platí, že F krit (1) < F < F krit (1), H 0 nemůžeme zamítnout Obě vypočtené statistiky F=1,54 i F=0,65 jsou z intervalu ohraničeném kritickými hodnotami 0,55 a 1,80, test je statisticky nevýznamný, H 0 nemůžeme zamítnout, k výpočtu použijeme DVOUVÝBĚROVÝ T-TEST PRO STEJNÉ ROZPTYLY
23 Poznámka: hodnota F-testu (testovací statistika) ve druhém výpočtu (po přehození pořadí výběrů) je inverzní hodnota první statistiky, tj. 1 pro obě statistiky platí vztah: F 1 = F 2 V tabulkách výše je červeně označena pravděpodobnost P(F<=f) (1) = 0,11, tzv. p-hodnota, s jakou může nastat větší rozdíl rozptylů, než v naší studii. Pokud je tato pravděpodobnost větší než zvolená hladina významnosti α = 0,05, přijímáme nulovou hypotézu H 0. V opačném případě H 0 zamítáme a použili bychom t-test pro různé rozptyly.
24 DVOUVÝBĚROVÝ T-TEST PRO STEJNÉ ROZPTYLY Příklad: testujeme shodu středních hodnot cholesterolu u mladších a starších zaměstnanců - prokázali jsme, že rozptyl hodnot cholesterolu se mezi těmito dvěmi skupinami statisticky významně neliší. Dvouvýběrový t-test s rovností rozptylů Dvouvýběrový t-test s rovností rozptylů Zaměstnanci CHOL_A CHOL_B Zaměstnanci CHOL_B CHOL_A Stř. hodnota 4,33 4,20 Stř. hodnota 4,20 4,33 Rozptyl 0,34 0,52 Rozptyl 0,52 0,34 Pozorování Pozorování Společný rozptyl 0,46 Společný rozptyl 0,46 Hyp.rozdíl stř.hodn. 0 Hyp.rozdíl stř.hodn. 0 Rozdíl 85 Rozdíl 85 t stat 0,84 t stat -0,84 P(T<=t) (1) 0,20 P(T<=t) (1) 0,20 t krit (1) 1,66 t krit (1) 1,66 P(T<=t) (2) 0,40 P(T<=t) (2) 0,40 t krit (2) 1,99 t krit (2) 1,99
25 Zeleně je zvýrazněna vypočtená statistika. Pro porovnání s kritickou hodnotou bereme její absolutní hodnotu - v pravé tabulce je zaměněno pořadí výběrů a hodnota statistiky se liší pouze znaménkem. Modře je probarvena kritická hodnota t-rozdělení - předpokládáme Studentovo rozdělení výběru Zajímá nás oboustranný test, protože nevíme, která skupina zaměstnanců je riziková a má vyšší hodnoty cholesterolu. Porovnáním absolutní hodnoty vypočtené statistiky a kritické hodnoty pro oboustranný test: -0,84 < 1,99 testovaná statistika nepřekračuje kritickou hodnotu přijímáme tedy nulovou hypotézu, že mezi hodnotami cholesterolu u obou skupin zaměstnanců není statisticky významný rozdíl. Na základě p-hodnoty (zobrazena červeně) se rozhodujeme stejně: 0,40 > 0,05... p-hodnota je větší než zvolená hladina významnosti testu, tj. hodnota statistiky odpovídající této p-hodnotě nedosáhla kritické hodnoty Počet stupňů volnosti: součet počtu měření obou souborů zmenšený o jedničku: ( ) = 85
26 Příklad: testujeme shodu středních hodnot naměřených hodnot cholesterolu u dětí ve škole A a C Dvouvýběrový F-test pro rozptyl CHOL_A CHOL_C Stř. hodnota 4,408 4,483 Rozptyl 0,333 0,676 Pozorování Rozdíl F 0,493 P(F<=f) (1) 0,021 F krit (1) 0,564 Pro výběr t-testu jsme použili nejprve F-test pro porovnání rozptylů. Na hladině významnosti 0,05 jsme zjistili, že se rozptyly obou výběrů významně liší. K testování shody středních hodnot proto musíme použít dvouvýběrový t-test s nerovností rozptylů
27 Dvouvýběrový t-test s nerovností rozptylů CHOL_A CHOL_C Stř. hodnota 4,408 4,483 Rozptyl 0,333 0,676 Pozorování Hyp. rozdíl stř. hodnot 0 Rozdíl - stupně volnosti 61 t stat -0,444 P(T<=t) (1) 0,329 t krit (1) 1,670 P(T<=t) (2) 0,658 t krit (2) 2,000 K vyhodnocení t-testu porovnáme absolutní hodnotu t-stat a t krit(2) t stat < t krit(2) -0,444 < 2,0 t-test není statisticky významný a hypotézu H o o shodě středních hodnot nemůžeme zamítnout Hladina významnosti byla stanovena předem jako α = 0,05. Výsledek testu tedy rovněž potvrzuje vysoká p-hodnota P(T<=t) (2) > α 0,658 > 0,05 Počet stupňů volnosti se pro dvouvýběrový t-test s nerovností rozptylů počítá složitějším algoritmem a vliv má především rozptyl výběru (čím je větší rozptyl, tím větší váhu má počet hodnot ve výběru).
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Náhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích
Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
t-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
Vymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.
Testování hypotéz 1. vymezení důležitých pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test 4. t-test pro nezávislé výběry 5. t-test pro závislé výběry Vymezení důležitých pojmů nulová
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test
Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina)
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina) Cílem tématu je správné posouzení a výběr vhodného testu v závislosti na povaze metrické a kategoriální veličiny. V následující
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.
PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
NEPARAMETRICKÉ TESTY
NEPARAMETRICKÉ TESTY Neparametrický jednovýběrový Jeden výběr jehož medián srovnáváme s nějakou hodnotou Wilcoxonův jednovýběrový test 1) Máme data z družice Hipparcos pro deklinaci (obdoba zeměpisné šířky)
STATISTICKÉ HYPOTÉZY
STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Epidemiologické ukazatele Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2
Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 7. Testování statistických hypotéz Mgr. David Fiedor 30. března 2015 Osnova 1 2 3 Dělení testů parametrické - o parametrech rozdělení základního souboru (průměr, rozptyl,
Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =
Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 12 Testování hypotéz Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola báňská Technická univerzita