Pravděpodobnost a aplikovaná statistika
|
|
- Adéla Nováková
- před 8 lety
- Počet zobrazení:
Transkript
1 Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ
2 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců koaličních stran. Jaká je pravděpodobnost, že průzkum veřejného mínění o rozsahu n = ukáže nesprávně převahu opozice? P X a, b = Φ b + 0,5 np np(1 p) Φ a 0,5 np np 1 p
3 Opakování: CLV příklad 1 Řešení: X počet příznivců koalice Pokud by byl výběr proveden zcela náhodně, pak X má: binomické rozdělení X~Bi n; p ~Bi 1500; 0,52, které můžeme aproximovat normálním rozdělením o parametrech: μ = σ 2 =
4 Opakování: CLV příklad 1 X počet příznivců koalice X~N np; np 1 p = N 780; 374,4 Průzkum ukáže nesprávně převahu opozice, jestliže X 749, tj. P X 749 = 0,0575 Průzkum o rozsahu n = ukáže nesprávně převahu opozice s pravděpodobností přibližně 0,0575.
5 Opakování: CLV příklad 2 Zadání: Výletní člun má nosnost kg. Hmotnost cestujících je náhodná veličina se střední hodnotou 70 kg a směrodatnou odchylkou 20 kg. Kolik cestujících může člunem cestovat, aby pravděpodobnost přetížení člunu byla menší než 0,1 %?
6 Opakování: CLV příklad 2 Řešení: X celková hmotnost všech n cestujících Dle CLV má X~N μ = 70 n; σ 2 = 400 n Hledáme takové maximální n, aby P X < 0,001. n 64
7 Přehled témat 1. Pravděpodobnost (definice, využití, výpočet pravděpodobností náhodných jevů) 2. Podmíněná pravděpodobnost 3. Náhodná veličina 4. Statistické charakteristiky 5. Slabý zákon velkých čísel 6. Centrální limitní věta (teorém) 7. Bodový a intervalový odhad 8. Testování hypotéz 9. Korelace a regrese
8 8.1 Testování statistických hypotéz motivační příklad Příklad platová diskriminace Společnost v rámci vnitřního šetření uskutečnila i mapování platových podmínek za účelem zjištění, zda dochází k platové diskriminaci žen. Analýza zahrnovala 100 náhodně vybraných zaměstnanců, z toho 35 bylo žen s X 35 = ,5 Kč a s X = 5 179,5 Kč, 65 bylo mužů s Y 65 = ,4 Kč a s X = 4 334,0 Kč. Výsledný rozdíl je Y X = 678,9 > 0 Kč. Je možné říci, že rozdíl je dostatečně průkazný na to, aby se mohlo tvrdit, že muži (v dané firmě) mají obecně vyšší platy jak ženy?
9 8.1 Testování statistických hypotéz motivační příklad Spíše nás zajímá, porovnání středních hodnot platů mužů a žen nikoliv, zda libovolný muž vydělá více než libovolná žena. Je střední hodnota platů vyšší u mužů než u žen? Již víme, že střední hodnoty odhadujeme výběrovými průměry, což je rozumné rozhodnout na základě porovnání X a Y. Jiný náhodný výběr by zahrnoval jiných 100 zaměstnanců, a dostali bychom tak odlišné výběrové průměry X a Y. Výběrové průměry X a Y jsou tedy náhodné veličiny. Jejich hodnoty neodpovídají středním hodnotám E X a E(Y) přesně, jsou to pouze jejich bodové odhady. Jestliže vyšlo Y X = 678,9 > 0 Kč, je možné tvrdit, že E Y E(X) > 0 Kč?
10 8.1 Testování statistických hypotéz motivační příklad Kdy se výběrové průměry liší dostatečně Když vezmeme dva výběry z téhož rozdělení, pak výběrové průměry se budou lišit (byť jen málo), i když jsou střední hodnoty stejné. Příklad s platy: otázkou je, zda je rozdíl v průměrech jen vlivem náhody nebo se skutečně liší střední hodnoty. Pokud oba výběrové průměry odhadují tutéž střední hodnotu, pak by se průměry neměly velmi lišit. Je ovšem třeba zohlednit: počet pozorování (s rostoucím počtem roste přesnost odhadů), variabilitu (vysoký rozptyl způsobuje větší nejistotu). Pokud zohledníme rozdělení Y X, jsme schopni zjistit, jaké hodnoty jsou již extrémní a málo pravděpodobné. Pak je třeba aplikovat statistické testy pro správné rozhodnutí.
11 8.2 Testování statistických hypotéz základní pojmy Testováním hypotéz se chápe vyhodnocování pravdivosti výroků na základě náhodného výběru, tj. ověřování platnosti nějakého výroku. Provádí se za pomoci statistických testů. Hypotéza je výrok, o jehož pravdivosti chceme rozhodnout.
12 8.2 Testování statistických hypotéz základní pojmy Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru). Příklad: Střední hodnota zakladního souboru je rovna 100. Střední hodnota prvního základního souboru se rovná střední hodnotě druhého základního souboru. Statistické hypotézy dělíme na parametrické a neparametrické.
13 8.2 Testování statistických hypotéz základní pojmy Parametrická hypotéza je hypotéza o parametrech rozdělení základního souboru. Patří sem: hypotézy o parametru jednoho základního souboru o střední hodnotě, mediánu, rozptylu, atd. hypotézy o parametrech dvou základních souborů (srovnávací testy) rovnost středních hodnot, rovnost rozptylů, atd. hypotézy o parametrech tří a více základních souborů.
14 8.2 Testování statistických hypotéz základní pojmy Neparametrická hypotéza je hypotéza o jiných vlastnostech základního souboru např. tvaru, rozdělení, závislosti proměnných, atd.
15 8.2 Testování statistických hypotéz základní pojmy Statistické testy dělíme na parametrické a neparametrické testy. Parametrickým testem rozumíme takový test, pro jehož odvození je nutno specifikovat typ rozdělení, případně jeho parametry. Nejčastěji se setkáváme s předpokladem normality dat. Neparametrickým testem rozumíme takový test, pro jehož odvození není nutno specifikovat typ rozdělení.
16 8.2 Testování statistických hypotéz základní pojmy Při testování hypotéz proti sobě stojí 2 hypotézy nulová a alternativní hypotéza. Nulová hypotéza H 0 vyjadřuje tvrzení o základním souboru, které je bráno jako předpoklad při testování (rovnovážný stav). Alternativní hypotéza H A stojí proti nulové hypotéze a představuje porušení rovnovážného stavu. Existují tři typy alternativních hypotéz: levostranná alternativní hypotéza, pravostranná alternativní hypotéza, oboustranná alternativní hypotéza.
17 8.2 Testování statistických hypotéz základní pojmy Příklad: H 0 : střední hodnota základního souboru μ = 10, levostranná H A : μ < 10, pravostranná H A : μ > 10, oboustranná H A : μ 10. Příslušná alternativní hypotéza se volí na základě pozorování chování výběrového souboru. Testování hypotéz je založeno na následujícím principu: Pokud výběrový soubor neukáže na statisticky významný rozpor s nulovou hypotézou, pak nesmíme nulovou hypotézu zamítnout. Jelikož na základě chování výběrového souboru (tedy jen vzorku populace) usuzujeme o chování základního souboru (tedy celé populace), můžeme se při rozhodování dopustit chyby.
18 8.2 Testování statistických hypotéz základní pojmy Skutečnost Platí Platí Výsledek testu Platí H 0 Platí H A Správné rozhodnutí pravděpodobnost 1 α (spolehlivost testu) Chyba I. druhu pravděpodobnost α (hladina významnosti) Chyba II. druhu pravděpodobnost β Správné rozhodnutí pravděpodobnost 1 β (síla testu)
19 8.2 Testování statistických hypotéz základní pojmy Snahou je minimalizovat obě chyby, což však není možné, protože snížením β vzroste α a naopak. Při statistickém testování hypotéz se volí hodnota α (nejčastěji 0,05 či 0,01), protože chyba I. druhu je významnější než chyba II. druhu. Chybu II. druhu lze snížit volbou vhodného testu a nebo zvětšením rozsahu výběrového souboru.
20 8.3 Testování statistických hypotéz klasický test Postup při klasickém testování hypotéz je následující: 1. Formulace nulové a alternativní hypotézy. 2. Volba testové statistiky a jejího rozdělení při platnosti nulové hypotézy (tzv. nulového rozdělení). Testová statistika a její nulové rozdělení je dána pro konkrétní test.
21 8.3 Testování statistických hypotéz klasický test Postup při klasickém testování hypotéz je následující: 3. Sestrojení kritického oboru a oboru přijetí obor všech možných hodnot testové statistiky rozdělíme na dva disjunktní obory, tj. a) obor přijetí takové hodnoty testované statistiky, které svědčí pro nezamítnutí nulové hypotézy b) kritický obor takové hodnoty testové statistiky, které svědčí pro zamítnutí nulové hypotézy Hranice mezi obory se nazývá kritická hodnota testu. Kritický obor je tak velký, aby pravděpodobnost, že testová statistika leží v kritickém oboru při předpokladu platnosti nulové hypotézy, byla rovna α.
22 8.3 Testování statistických hypotéz klasický test Levostranná alternativní hypotéza f(x) kritický obor: α obor přijetí: 1 α kritická hodnota 0 x
23 8.3 Testování statistických hypotéz klasický test Pravostranná alternativní hypotéza f(x) obor přijetí: 1 α kritický obor: α 0 kritická hodnota x
24 8.3 Testování statistických hypotéz klasický test Oboustranná alternativní hypotéza f(x) obor přijetí: 1 α kritický obor: α 2 kritický obor: α 2 kritická hodnota 0 kritická hodnota x
25 8.3 Testování statistických hypotéz klasický test 4. Výpočet pozorované hodnoty testové statistiky 5. Vyhodnocení testu: a) Je-li hodnota testové statistiky v oboru přijetí, potom nezamítneme nulovou hypotézu. b) Je-li však hodnota testové statistiky v kritickém oboru, pak zamítáme nulovou hypotézu ve prospěch alternativní hypotézy.
26 8.4 Pearsonův χ 2 test dobré shody Vzhledem k tomu, že nejpoužívanější parametrické testy předpokládají normalitu dat, je nutné se nejprve zabývat tím, jak otestovat, že tato data získaná náhodným výběrem pocházejí z populace řídicí se normálním rozdělením s parametry μ a σ 2. K tomu se využívají různé statistické testy: Jarqueův a Beryho test normality (JB test) ukázali jsme Shapirův-Wilkův, Andersonův-Darlingův, Kolmogorovův- Smirnovův, Lillieforsův, atd. a tzv. testy dobré shody.
27 8.4 Pearsonův χ 2 test dobré shody Tento test je určen k testování nulové hypotézy v obecném tvaru, tj. náhodný výběr pochází z konkrétního rozdělení pravděpodobnosti s konkrétními parametry. Alternativní hypotéza popírá nulovou hypotézu, tj. náhodný výběr nepochází z konkrétního rozdělení pravděpodobnosti s konkrétními parametry. Pokud neznáme parametry příslušného rozdělení, je třeba je na základě náhodného výběru odhadnout, například pomocí metody maximální věrohodnosti. Pearsonův χ 2 test dobré shody umožňuje otestovat náhodný výběr i na jiná rozdělení než jen normální rozdělení.
28 8.4 Pearsonův χ 2 test dobré shody Pro testovanou statistiku G platí kde G = k i=1 n i n π i 2 n π i 2 χ k h 1 k je počet tříd n je rozsah souboru n i je počet pozorování v třídě i (pozorované četnosti) n π i je teoretická (očekávaná) četnost h je počet odhadovaných parametrů rozdělení Aby bylo nulové rozdělení dobře aproximováno rozdělením χ 2, je třeba, aby byly teoretické četnosti ve všech třídách větší než 5. Není-li tento předpoklad pro všechny třídy splněn, je nutno příslušné třídy vhodně sloučit (toto má za následek pokles stupňů volnosti rozdělení χ 2 ).
29 8.4 Pearsonův χ 2 test dobré shody S rostoucí hodnotou testové statistiky roste rozpor naměřených dat s nulovou hypotézou, od určité hodnoty (kritická hodnota testu) je tento rozpor statisticky významný, zamítneme tedy nulovou hypotézu ve prospěch alternativní hypotézy. f(x) obor přijetí: 1 α kritický obor: α 0 x kritická hodnota
30 8.4 Pearsonův χ 2 test dobré shody Kritickou hodnotu testu získáme jako α % kvantil rozdělení χ 2 s příslušným počtem stupňů volnosti. Hodnotu můžeme odečíst z tabulek nebo pomocí softwaru.
31 8.5 Pearsonův χ 2 test dobré shody příklad 1 Zadání: V tenké vrstvě zlata se registroval počet částic zlata, které se dostaly do zorného pole mikroskopu. Pozorování se prováděla pravidelně vždy po uplynutí stejně dlouhého časového intervalu. počet částic absolutní četnost Ověřte pomocí testu χ 2 dobré shody, zda jsou data realizací náhodného výběru z Poissonova rozdělení s parametrem λ = 1,5.
32 8.5 Pearsonův χ 2 test dobré shody příklad 1 Řešení: 1) Náhodná veličina se teoreticky řídí Poissonovým rozdělením: obor hodnot rozdělíme do šesti tříd, tj. 0, 1, 2, 3, 4, 5 a více rozsah výběru n = 517 2) Pro jednotlivé třídy se porovnají skutečné četnosti n i a teoretické četnosti n π i kde π i = P X = i = e 1,5 1,5 i, pro i = 0, 1, 2, 3, 4 i! π 5 = P X 5 = 1 P X 4 = 1 4 π i i=0
33 8.5 Pearsonův χ 2 test dobré shody příklad 1 počet částic H 0 : množství zlata v zorném poli mikroskopu je výběr z Po λ = 1,5 Srovnání χ 2 5 a více n = i n π 2 i i=0 = n π i s 5% horním kvantilem χ 2 2 o 5 stupních volnosti χ 0,05 [5] = Z toho vyplývá, že hodnota testové statistiky χ 2 je daleko menší než 5% horní kvantil χ 2 rozdělení. Závěr: hypotézu H 0 skutečná četnost n i a více 7 teoretická četnost n π i n i n π i n π i 2
34 8.5 Pearsonův χ 2 test dobré shody příklad 2 Zadání: Nedokonalost výroby hrací kostky může způsobit, že hra s touto kostkou není spravedlivá. Proto se kostkou několikrát házelo. hodnota kostky četnost výskytu Je možné prokázat na základě provedených hodů, že hra s touto kostkou je nespravedlivá?
35 8.5 Pearsonův χ 2 test dobré shody příklad 2 Řešení: 1)počet hodů n = 6 000, je-li kostka spravedlivá, pak pravděpodobnost p i = 1, i = 1, 2,, 6 6 2) Otestujeme pomocí testu χ 2, zda empirické četnosti n i, i = 1, 2,, 6 se statisticky významně liší od teoretické četnosti n π i, i = 1, 2,, 6 hodnota kostky n i n π i n i n π i 2 n π i
36 8.5 Pearsonův χ 2 test dobré shody příklad 2 hodnota kostky n i n π i n i n π i 2 n π i 0,441 0,004 0,225 0,400 1,600 0,256 H 0 : kostka je spravedlivá (vyvážená) Srovnání χ 2 6 n = i n π 2 i i=0 = n π i s 5% horním kvantilem χ 2 2 o 5 stupních volnosti χ 0,05 [5] = Z toho vyplývá, že hodnota testové statistiky χ 2 není větší než 5% horní kvantil χ 2 rozdělení. Závěr: hypotézu H 0 Příslušná p-hodnota je 0,7114, tedy vysoká, a to svědčí o tom, že kostka je opravdu spravedlivá.
37 8.5 Pearsonův χ 2 test dobré shody příklad 2 χ 2 6 n = i n π 2 i i=0 = n π i 2 χ 0,05 [5] =
38 8.5 Pearsonův χ 2 test dobré shody příklad 3 Zadání: Pracuje generátor náhodných čísel z normálního rozdělení chybně? interval ; 2,5 2,5; 2,0 2,0; 1,5 1,5; 1,0 1,0; 0,5 0,5; 0,0 n i n π i 6,2 16,5 44,1 91,8 149,9 191,5 n i n π i 2 n π i interval 0,0; 0,5 0,5; 1,0 1,0; 1,5 1,5; 2,0 2,0; 2,5 2,5; n i n π i 191,5 149,9 91,8 44,1 16,5 6,2 n i n π i 2 n π i
39 8.5 Pearsonův χ 2 test dobré shody příklad 3 H 0 : rozdělení generovaných čísel odpovídá teoretickému normálnímu Srovnání χ 2 12 n = i n π 2 i i=0 = n π i s 5% horním kvantilem χ 2 2 o 11 stupních volnosti χ 0,05 11 = Hodnota testové statistiky χ 2 není větší než 5% horní kvantil χ 2 rozdělení. Závěr: hypotézu H 0
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
STATISTICKÉ HYPOTÉZY
STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup
Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Náhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Základní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test
Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
Testování hypotéz Biolog Statistik: Matematik: Informatik:
Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Příklad datového souboru. Pravděpodobnost vs. statistika. Formální definice. Teorie odhadu
Pravděpodobnost vs. statistika Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými veličinami, jejichž rozdělení je známo Statistika odvozovali jsme charakteristiky těchto rozdělení
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
pravděpodobnosti, popisné statistiky
8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze