Termodynamika a živé systémy. Helena Uhrová

Podobné dokumenty
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Elektroenergetika 1. Termodynamika a termodynamické oběhy

Elektroenergetika 1. Termodynamika

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Fyzikální chemie. Magda Škvorová KFCH CN463 tel února 2013

FYZIKÁLNÍ CHEMIE chemická termodynamika

Termodynamické zákony

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika

8. Chemické reakce Energetika - Termochemie

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

IDEÁLNÍ PLYN. Stavová rovnice

Termodynamika v biochemii

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

Termomechanika 4. přednáška

Fyzikální chemie Úvod do studia, základní pojmy

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.

ÚVOD DO TERMODYNAMIKY

Mol. fyz. a termodynamika

LOGO. Struktura a vlastnosti plynů Ideální plyn

Molekulová fyzika a termika. Přehled základních pojmů

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

Poznámky k cvičením z termomechaniky Cvičení 3.

Teplo, práce a 1. věta termodynamiky

Magnetokalorický jev MCE

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika

Fyzikální chemie. 1.2 Termodynamika

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

TERMOMECHANIKA 1. Základní pojmy

Klasická termodynamika (aneb pøehled FCH I)

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

10. Energie a její transformace

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Energie v chemických reakcích

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

9. Struktura a vlastnosti plynů

Termodynamika 1. UJOP Hostivař 2014

Energie, její formy a měření

1.4. II. věta termodynamiky

přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost

Termodynamické zákony

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Thermos teplo Dynamic změna

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

Termodynamika 2. UJOP Hostivař 2014

dq = 0 T dq ds = definice entropie T Entropie Při pohledu na Clausiův integrál pro vratné cykly :

Fenomenologická termodynamika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

Popis fyzikálního chování látek

Cvičení z termomechaniky Cvičení 3.

soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy

Nultá věta termodynamická

Vnitřní energie, práce, teplo.

Zpracování teorie 2010/ /12

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

Vnitřní energie, práce a teplo

Cvičení z termodynamiky a statistické fyziky

Termochemie. Katedra materiálového inženýrství a chemie A Ing. Martin Keppert Ph.D.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: Číslo DUMu: VY_32_INOVACE_11_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

8 Elasticita kaučukových sítí

Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK

IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON

Termodynamika - Formy energie

SVOBODA, E., BAKULE, R.

Termodynamika. Martin Keppert. Katedra materiálového inženýrství a chemie

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

Fluktuace termodynamických veličin

TERMOCHEMIE, TERMOCHEMICKÉ ZÁKONY, TERMODYNAMIKA, ENTROPIE

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze

Práce, energie a další mechanické veličiny

Molekulová fyzika a termodynamika

Rovnováha Tepelná - T všude stejná

TERMODYNAMICKÁ ROVNOVÁHA, PASIVNÍ A AKTIVNÍ TRANSPORT

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od do

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha

TEPLO A TEPELNÉ STROJE

ZÁKLADY STAVEBNÍ FYZIKY

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Zákony ideálního plynu

VÝUKA CHEMIE. Clausiovo kritérium a extenzivní podmínky termodynamické rovnováhy

Katalýza / inhibice. Katalýza. Katalyzátory. Inhibitory. katalyzátor: Faktory ovlivňující rychlost chemické reakce. Homogenní

Poznámky k cvičením z termomechaniky Cvičení 4. Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou

Osnova pro předmět Fyzikální chemie II magisterský kurz

VZOROVÝ ZKOUŠKOVÝ TEST z fyzikální chemie( 1

Transkript:

Termodynamika a živé systémy Helena Uhrová

Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor vlastností vystihujících podmínky za nichž je soustava v rovnováze rovnováha systému stabilní (E P = E Pmin ) nestabilní ustálený stav proměnné systému konstantní, v systému ale existuje tok energie nebo hmoty

Termodynamické veličiny a funkce Termodynamický systém stav systému popsán stavovými veličinami a funkcemi Stavové vlastnosti nebo proměnné dělíme na intenzivní proměnné, nezávislé na velikosti systému hustota, molární volná entalpie, chemický potenciál, tlak, teplo extenzivní proměnné, závislé na velikosti systému hmotnost, energie,entalpie, entropie, objem

stavové veličiny velikost závisí pouze na stavu systému,ne na způsobu, jak se systém do tohoto stavu dostal (p, V, T, c). stavové rovnice matematické vztahy mezi stavovými veličinami (pv = nrt) kruhový děj systém se po vykonání určitého děje vrátí do výchozího stavu děj vratný nekonečně malou změnou určité stavové veličiny lze dosáhnout změny směru průběhu děje (rovnovážné stavy) nevratný systém samostatně přešel do energeticky chudšího stavu (nerovnovážné stavy)

typy fyzikálních veličin gradient fyzikální veličiny termodynamické síly gradient fyzikální veličiny - způsobující transport termodynamické toky tok tepla, látky termodynamická síla může způsobit jakýkoliv termodynamický tok (termodifuze)

1. věta termodynamická vnitřní energie U - součet všech druhů energie v systému (tepelná, energie vazby, záření, potenciální energie struktury) U = U U = Q+ W B A změna U je závislá pouze na počátečním a konečném stavu a vůbec nezáleží na cestě, kterou byl přechod uskutečněn.

Rozdíl mezi teplem a prací Teplo představuje součet kinetických energií částic systému. Mikrofyzikální neuspořádaná forma výměny energie mezi systémy nebo složkami. Teplo se může, není-li převedeno na práci, spotřebovat pouze na zvýšení vnitřní energie systému. Práce je makrofyzikální uspořádanou formou předávání energie ze systému, který ji koná, do systému, který ji získává. Práce se může spotřebovat na zvýšení obsahu jakéhokoliv druhu energie. Může se konat jen na úkor U nebo dodáním Q. Q ani W nejsou stavové veličiny - závislé na ději proběhlém v systému

Přechody mezi výchozím a koncovým stavem Reverzibilní přechod - charakterizován cestou sestávající z velmi malých kroků či změn na souřadnicích. To, že se takový krok vyskytne, je více pravděpodobné, než že tato situace nenastane. Ireverzibilní přechod - každý stav či substav stavu dosažený během přechodu je mnohem více pravděpodobný než ten, který mu předcházel. Možnost že se reakce sama obrátí je v uvedeném případě extrémně malá a přechod pokládáme za nevratný.

Plyn v trubici expanze práci koná systém, tedy ΔV 0, V 2 V 1, ΔU negativní, energie systému klesá komprese práce je konána na systému ΔV 0, V 2 V 1 ΔU= dq p dv pro T = konst. dq=pdv=-dw

Druhy práce chemická - μdn mechanická - pdv elektrická - Φdq práce je produktem extenzivních nebo intenzivních proměnných. vlastní vnitřní proměnné μ - chemický potenciál p - tlak Φ - elektrický potenciál

Entalpie H Z 1. věty termodynamické - teplo dodané systému se spotřebuje na práci, kterou systém koná a na zvýšení vnitřní energie systému. Q = ΔU W = ΔU + pdv (p = konst.) H = U + pdv (tepelný obsah) Při samovolně probíhající exotermní chemické reakci entalpie soustavy klesá a energie se uvolňuje v podobě tepla.

Tepelná kapacita (měrné teplo) množství tepla potřebného k ohřátí 1 kg látky o 1 C dqp H dqv U cp = = cv = = dt T dt T p V Velikost c závisí na způsobu ohřevu a na teplotě dané látky. Je-li konaná práce čistě mechanická (tedy ani chemická či elektrická) a p = konst., pak je změna entalpie rovna absorbovanému teplu za konstantního tlaku

2. věta termodynamická nelze trvale získávat práci odebíráním tepla z jednoho zásobníku o určité teplotě, aniž bychom část tepla neodevzdali zásobníku chladnějšímu Carnot η = Q 1 -Q 2 /Q 1 = T 1 -T 2 /T 1 část tepla, která přešla do chladnějšího zásobníku, ztratila schopnost konat práci degradace energie - při převodu tepla z vyšší na nižší teplotu

ds = dq/t Entropie S (J.K -1 ) (ΔS = S 2 S 1 ) je nezávislá na způsobu přechodu Výpočet entropie ireverzibilních dějů soustavu musíme z výchozího do konečného stavu dostat vratně ze součtů ΔS dostaneme celkovou změnu, která je rovna celkové změně entropie nevratného procesu

Matematické shrnutí 2. věty termodynamické Izolovaný systém ΔS 0 reverzibilní děj ds r = 0 ireverzibilní děj ds ir > 0 - entropie soustavy vzrůstá nebo zůstává nezměněna - v rovnováze je entropie maximální Neizolovaný systém reverzibilní děj ds r = dq/t ireverzibilní děj ds ir > dq/t

Statistický charakter entropie Samovolně probíhající ireverzibilní děj představuje přechod soustavy ze stavu méně pravděpodobného do pravděpodobnějšího Vzrůst entropie při tomto ději lze vyjádřit jako funkci termodynamické pravděpodobnosti W soustavy statistickou formulací Boltzmannovou R 23 S = k.lnw = lnw = 1,38.10 lnw N A

Souvislost entropie a informace K úplnému popisu systému je zapotřebí informace Množství informace I vyjadřujeme vztahem I = ln (P 1 /P) P apriorní pravděpodobnost události P 1 pravděpodobnost pro získání informace (pro jednoduchost předpokládáme, že všechny informace jsou pravdivé a jednoznačné, tedy že P 1 = 1). Informace se vyjadřuje v bitech. Velikost 1 bitu má informace o události, jejíž pravděpodobnost je ½ Operace spojené se získáváním informací o systému vedou ke zvýšení entropie systému

Volná energie A A = U TS, za konst. V a T je da = dq TdS Úbytek volné energie je roven maximální práci, kterou systém vykoná při izotermickém reverzibilním ději Celková vnitřní energie U se skládá z volné energie a z vázané energie o velikosti TS, která je izotermálně neužitečná Při nevratném ději, probíhajícím v soustavě při konstantní teplotě,volná energie ubývá a v rovnováze dosahuje minimální hodnoty

Gibbsova energie G G = H TS, (T, p = konst.) dg = dh TdS Její úbytek je roven maximální užitečné práci (celková reverzibilní práce zmenšená o práci proti vnějšímu tlaku), kterou systém koná při izotermicko adiabatickém ději. Gibbsova volná energie při izotermicko izobarickém ději ubývá a v rovnováze dosahuje minima

Maxwellovy vztahy diferenciály termodynamických potenciálů du = T ds p dv dh = V dp + TdS da = p dv S dt dg = V dp S dt

Chemický potenciál Stav systému je dostatečně určen dvěma stavovými veličinami nebo funkcemi a počtem molů n jednotlivých látek. Změna složení souvisí se změnou energie. Každý druh energie lze vyjádřit faktorem - intenzitním - chemický potenciál μ - kapacitním - přírůstek molů látky v případě chemické energie

G µ = i n i T, pn,, j i j - změna Gibbsovy volné energie způsobená přídavkem 1 molu složky i do systému množství ostatních složek se nemění - reakce probíhají v roztocích při stálém p a T - změna chemické energie je částečně rovna změně maximální užitečné práce, tj. Gibbsově volné energii, která odpovídá změně složení systému

Koncentrační závislost Gibbsovy energie G = H TS = U + pv TS tedy G = f (p) reverzibilní neizolovaný systém zahrnuje jen pv práci dg = (du + pdv)+ Vdp (TdS) - SdT du = dq - pdv dq dq Q = du + pdv = TdS pro p, T 0 dg = Vdp - SdT pro dt = 0 dg = Vdp dg = Vdc p = konst. c = koncentrace (mol)

pc = nrt pv = nrt V = nrt c 2 2 2 1 1 1 dc G = dg = G G = V. dc = nrt = nrt ln c c c 2 1 G 1 = G 0 G 2 = G { } 0 c 0 n 0 G = G + nrt ln = G + nrt ln c ( c = 1 M ) { 0 c } { }

Závislost na koncentraci reaktantů a produktů na A + nb B nc C + nd D 0 ( ) n 0 A A G = G + RT ln c c = 1M = + 0 G G RT ln = = c n { } C { } c C n D { } A { } 0 G RT ln krovnov. 2,3RT log krovnov. < 0 0 0 G k rovnov. >1 G A c c B n n D B > 0 krovnov. <1

Termodynamika a živé systémy teoretická pozorování složitých procesů v organismech se provádějí na základě kinetiky, tedy termodynamiky ireverzibilních dějů živý organismus se vyznačuje - vysokým stupněm neuspořádanosti - během ontogeneze se vyvíjí k vyšším stupňům diferenciace a komplexity, čímž zdánlivě odporuje stávajícím fyzikálním zákonům

Živý organismus jako celek i jeho hlavní části - není systémem izolovaným od vnějšího prostředí - z termodynamického hlediska představuje otevřený systém, tj. systém s trvalou výměnou látek, energie a informace s okolím - dodávaná energie se spotřebovává na udržování uspořádané struktury systému - dochází k neustálé přeměně jednotlivých druhů energií - systém se udržuje ve stavu dynamické rovnováhy

Zásady termodynamiky otevřených systémů Otevřené systémy směřují k dynamické rovnováze (stacionárnímu stavu), vyznačující se minimální entropií. Přechod otevřeného systému k dynamické rovnováze může způsobit pokles entropie. Dynamické rovnováhy mají obecně stabilní charakter a vyznačují se kompenzačními mechanismy.

Klasická ireverzibilní termodynamika hraniční případ -termodynamika otevřených systémů V živém organismu probíhají dva protichůdné děje - ireverzibilní pochod projevující se degradací energie a vzrůstem entropie - organismus svými životními pochody brání vzrůstu entropie - v určitých fázích svého vývoje dokonce vnitřní entropii snižuje. Ke skutečné termodynamické rovnováze dojde až po smrti organismu