GEOGEBRA A OK GEOMETRY

Podobné dokumenty
South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD

JAK NA HYPERBOLU S GEOGEBROU

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

Shodná zobrazení v rovině osová a středová souměrnost Mgr. Martin Mach

3 Geometrie ve škole. krychle a její obrázek, koule a její stín, průměty trojrozměrného útvaru do roviny

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

V PROGRAMU GEOGEBRA. Software dynamické geometrie GeoGebra [6] je v současné době mezi vyučujícími

Pythagorova věta Pythagorova věta slovní úlohy

Fibonacciho čísla na střední škole

GEOMETRICKÁ MÍSTA BODŮ V MATEMATICE ZŠ ÚVOD

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

M - Pythagorova věta, Eukleidovy věty

Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

Důkazy vybraných geometrických konstrukcí

MATURITNÍ TÉMATA Z MATEMATIKY

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

Digitální učební materiál

GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

pracovní listy Výrazy a mnohočleny

GeoGebra známá i neznámá

VYUŽITÍ E-LEARNINGU VE VÝUCE PLANIMETRIE

MATEMATIKA. Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.

Maturitní témata profilová část

Čtyři body na kružnici

Konstrukce trojúhelníku III

CZ.1.07/1.5.00/

Předpokládané znalosti žáka 1. stupeň:

Pavel Leischner. Jihočeská univerzita v Českých Budějovicích, Pedagogická fakulta, Jeronýmova 10, České Budějovice

p ACD = 90, AC = 7,5 cm, CD = 12,5 cm

Matematika PRŮŘEZOVÁ TÉMATA

CZ 1.07/1.1.32/

Matematické důkazy Struktura matematiky a typy důkazů

Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.

PROGRAM GEOGEBRA VE VÝUCE LINEÁRNÍ ALGEBRY

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Maturitní otázky z předmětu MATEMATIKA

Úlohy krajského kola kategorie A

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/

PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

Úlohy krajského kola kategorie C

2 Důkazové techniky, Indukce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

Ze středních příček konstruuj trojúhelník

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Copyright 2013 Martin Kaňka;

Matematika prostřednictvím projektově orientovaného studia pro 3. ročník gymnázia

Výuka geometrie na 2. stupni ZŠ

SHODNÁ ZOBRAZENÍ V ROVINĚ

TEMATICKÝ,časový PLÁN vyučovací předmět : matematika ročník: 5. Školní rok_2014/2015 vyučující: Lenka Šťovíčková. Zařazená průřezová témata OSV OSV

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

- vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika a její aplikace

MATEMATIKA - 4. ROČNÍK

Užití stejnolehlosti v konstrukčních úlohách

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Od Stewartovy věty k Pythagorově větě

Příklad z učebnice matematiky pro základní školu:

Cvičení z matematiky jednoletý volitelný předmět

5. Lokální, vázané a globální extrémy

55. ročník matematické olympiády

Extremální úlohy v geometrii

Matematika. 8. ročník. Číslo a proměnná druhá mocnina a odmocnina (využití LEGO EV3) mocniny s přirozeným mocnitelem. výrazy s proměnnou

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Podmínky pro hodnocení žáka v předmětu matematika

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

PYTHAGOROVA VĚTA, EUKLIDOVY VĚTY

1. Matematika a její aplikace

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Matematika pro informatiky KMA/MATA

Reálná čísla a výrazy. Početní operace s reálnými čísly. Složitější úlohy se závorkami. Slovní úlohy. Číselné výrazy. Výrazy a mnohočleny

Název projektu Příprava nového volitelného předmětu Repetitorium matematiky Řešitel PaedDr. Anna Stopenová, Ph.D. Pracoviště PdF UP OLomouc

Vlasta Moravcová. Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3. Letní škola geometrie 2018,

s dosud sestrojenými přímkami a kružnicemi. Abychom obrázky nezaplnili

INDIVIDUÁLNÍ PÉČE - M. Charakteristika vzdělávacího oboru

Úlohy domácí části I. kola kategorie C

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

Osmileté gymnázium GEOMETRIE. Charakteristika vyučovacího předmětu

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

5.2 Vzdělávací oblast - Matematika a její aplikace Matematika Cvičení z matematiky

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Charakteristika vzdělávacího oboru Seminář z matematiky

Matematika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia

Maturitní okruhy z matematiky - školní rok 2007/2008

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

MATE MATIKA. učebnice pro 2. stupeň ZŠ a víceletá gymnázia

Úlohy klauzurní části školního kola kategorie A

INTERAKTIVNÍ TABULE A MATEMATICKÝ SOFTWARE GEOGEBRA PŘI VÝUCE MATEMATIKY V ANGLICKÉM JAZYCE

MNOŽINY BODŮ. Základní informace o materiálu

1.4.7 Trojúhelník. Předpoklady:

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

Transkript:

GEOGEBRA A OK GEOMETRY JAKO POMOCNÍCI PŘI DOKAZOVÁNÍ Irena Štrausová Jihočeská Univerzita v Českých Budějovicích Abstrakt. Matematické důkazy jsou nepochybně důležitou součástí budování systému matematických znalostí. Avšak mnoho žáků středních škol je často považuje za zbytečné a především také za velice složité. V tomto příspěvku je ukázáno, jak je možné využít dvou freeware programů - GeoGebra a OK Geometry k vizualizaci a tvorbě matematických důkazů a zprostředkovat tak žákům jiný pohled na tuto problematiku. Klíčová slova: OK Geometry, GeoGebra, důkaz, vizualizace, matematika. GEOGEBRA AND OK GEOMETRY AS PROVING ASSISTANTS Abstract. Mathematical proofs are, undoubtedly, a very important part of building the system of mathematical knowledge. However, a lot of secondary school students consider them pointless and far too complicated. This paper shows how to use freeware such as GeoGebra and OK Geometry to visualize and create mathematical proofs and present a different approach to this issue to students. Key words: OK Geometry, GeoGebra, proof, visualization, matematics. 1 Úvod Matematické důkazy jsou nedílnou součástí výstavby matematiky. Proto mají zajisté své nezastupitelné místo i při její výuce. Pro mnoho žáků středních škol jsou ale důkazy látkou velice složitou a neoblíbenou. Je tedy otázkou, jak by bylo možné tuto oblast matematiky žákům přiblížit tak, aby byla pro ně lépe přijatelná. Jednou z možností může být využití větší pestrosti při volbě typu důkazu, nebo využití některého z matematických softwarů, či využití důkazu k odvození nové matematické znalosti, nikoli pouze k ověření správnosti daného tvrzení. 350

2 Důkazy na střední škole Zatím co úloha důkazů při výuce matematiky na základní škole je diskutabilní, do středoškolské matematiky důkazy zajisté patří. Toto si uvědomují nejen učitelé, ale i odborníci na vzdělávání a vládní činitelé, a proto také techniky argumentace a dokazování jsou zakotveny v Rámcovém vzdělávacím programu pro gymnázia [5], kde je například v obecné části u kompetencí k řešení problémů uvedeno: Žák kriticky interpretuje získané poznatky a zjištění a ověřuje je, pro svá tvrzení nachází argumenty a důkazy, formuluje a obhajuje podložené závěry. V části věnované vzdělávací oblasti matematika a její aplikace v sekci nazvané Argumentace a ověřování, ve které jsou očekávány tyto výstupy: Žák čte a zapisuje tvrzení v symbolickém jazyce matematiky, užívá správně logické spojky a kvantifikátory, rozliší definici a větu, rozliší předpoklad a závěr věty, rozliší správný a nesprávný úsudek, vytváří hypotézy, zdůvodňuje jejich pravdivost a nepravdivost, vyvrací nesprávná tvrzení, zdůvodňuje svůj postup a ověřuje správnost řešení problému. Jak je zřejmé, požadavky od autorit na zařazení matematických důkazů do kurikula zde jsou, avšak postoj mnoha učitelů i žáků k nim je většinou negativní. Někteří učitelé považují dokazování za časově náročné a bez většího efektu na znalosti žáků a většina žáků považuje důkazy za příliš složité, zbytečné a někteří i za nudné. Otázkou je, jak by bylo možné tento jejich postoj alespoň částečně změnit. Možností je zajisté více. Jednou z nich je ukázat učitelům různé možnosti přístupu k dokazování a u žáků je důležité je nějakým způsobem motivovat. 3 Motivace žáků Jednou z možností, jak žáky motivovat k dokazování může být to, že jim ukážeme, že ani v matematice není vše tak, jak se zdá. Můžeme k tomu využít třeba příkladů s jasným řešením. Jsou to takové typy úloh, u kterých se zdá řešení na první pohled zřejmé, ale ve skutečnosti je výsledek jiný. Pěknou ukázkou takového příkladu je třeba Eulerův polynom P (x) = x 2 +x+41, který pro celá čísla x zdánlivě generuje prvočísla: P (0) = 41, P (1) = 43, P (2) = 47, P (3) = 53, P (4) = 61,... Ale jak známo, toto zdání je mylné, protože P (40) = 1681 = 41 41, což je číslo složené. Další příklad můžeme uvést nejen jako motivaci k dokazování, ale také jako ukázku toho, jak jsou v matematice důležité přesné formulace. Neúplné zadání totiž může vést k různým interpretacím a tím i k rozdílným výsledkům. Příklad 1. Které číslo bude následovat? 1, 2, 4, 8, 16,... Jestliže zadáme tento úkol žákům, zřejmě po se po chvíli shodnou na tom, že hledaným číslem je 32, protože každé z čísel je vždy dvojnásobkem toho předchozího. To je samozřejmě jedna z možných odpovědí. Můžeme se pak tedy zeptat, zda by je napadlo ještě jiné řešení. Pak jim ukážeme, že dalším řešením může být číslo 31, což vyplývá z následujícího příkladu. 351

Příklad 2. Zvolte na kružnici n bodů. Navzájem je spojte tak, aby se v jednom bodě protínaly nejvýše dvě tětivy. Na kolik částí je rozdělen kruh ohraničený touto kružnicí (v závislosti na n)? Jestliže zvolíme pouze jeden bod, nelze sestrojit tětivu, proto dostáváme pouze 1 část - celý kruh. Pro dva body máme jednu tětivu, která nám rozdělí kruh na 2 části, tři body - tři tětivy - 4 části, čtyři body - šest tětiv - 8 částí, pět bodů - deset tětiv - 16 částí a pro šest bodů - patnáct tětiv - dostaneme částí 31, nikoli 32, jak by mohl někdo očekávat (viz obrázek 1). Obrázek 1: Tětivy [1] Další možnou motivací může být využití různých typů důkazů. Kromě důkazů algebraických používat také například důkazy vizuální. Správně bychom asi měli napsat, že to jsou vizualizace důkazů, protože mezi odbornou veřejností se často diskutuje o tom, zda lze vizuální důkazy považovat za matematické důkazy. S vědomím této diskuse je v tomto článku pro jednoduchost používán název vizuální důkazy. V učebnicích se většinou setkáváme s důkazy algebraickými, ale občas také s důkazy geometrickými. Ty jsou jakousi podskupinou vizuálních důkazů, kam patří navíc i různé obrázky a diagramy. Zatímco geometrické důkazy se používají především pro dokazování matematických vět týkajících se geometrie, vizuální důkazy existují pro věty z mnoha matematických oblastí, jak ukazují například publikace [2, 3]. 4 Ukázkový příklad Na jednoduché větě s elementární geometrie si ukážeme několik různých způsobů důkazu, které jsou využitelné i na středoškolské úrovni. Vivianiho věta: Je dán rovnostranný trojúhelník a libovolný bod ležící uvnitř úhelníku nebo na jeho hranici. Pak součet vzdáleností tohoto bodu od stran trojúhelníku je konstantní a je roven délce výšky trojúhelníku. Algebraický důkaz této věty nalezneme například v [8], kde je navíc také uveden důkaz počítačový, využívající jeden z programů CAS (Computer Algebra Systems). My se zde však zaměříme na vizuální důkazy. 352

4.1 Statické vizuální důkazy Vizuálním důkazům se také někdy říká důkazy beze slov, při jejich využití ve výuce je ale důležité s žáky nad těmito důkazy diskutovat. Protože daný obrázek znázorňuje většinou pouze výsledek viz obr. 2, ale na čtenáři (či spíše pozorovateli) je, aby sám nalezl posloupnost myšlenek, která vede k samotnému důkazu, což bývá v některých případech docela složité. Jednou z možností je, rozložit vizuální důkaz do více obrázků a tím ulehčit pochopení myšlenky důkazu, jak je ukázáno například na obr. 3. Obrázek 2: Vivianiho věta [2] Obrázek 3: Vivianiho věta [4] 353

4.2 Důkaz v OK Geometry Pro vlastní tvorbu vizualizace důkazů můžeme využít software OK Geomtery [7]. Tento volně dostupný program umí analyzovat geometrické konstrukce a dokáže v nich odhalit různé vztahy a závislosti mezi geometrickými objekty. Těmito objekty mohou být body, přímky, úhly a kružnice. Z nalezených vlastností lze vybrat jen některé, které nás zajímají, poskládat je v určitém pořadí a vytvořit z nich tzv. report, který může sloužit jako vodítko při dokazování (viz obr. 4). Je to určitý mezistupeň mezi statickým a dynamickým vizuálním důkazem. Obrázky jsou sice statické, ale jejich posloupnost naznačuje směr myšlenek, které by měly vést k samotnému důkazu. Navíc lze k jednotlivým obrázkům napsat i komentář, takže ve výsledném reportu můžeme mít vedle sebe jak algebraický důkaz, tak geometrickou reprezentaci. Což může žákům pomoci si uvědomit souvislosti mezi geometrií a algebrou. Obrázek 4: Vivianiho věta v programu OK Geometry [7] 354

4.3 Verifikace v GeoGebře Dalším programem, který můžeme při dokazování využít, je GeoGebra [6]. Tento program dynamické geometrie je mezi učiteli matematiky poměrně známý, ale je využíván především při výuce planimetrie nebo funkcí. GeoGebru lze však využít i při dokazování, například k verifikaci nějakého matematického tvrzení. Je ovšem důležité zdůraznit žákům, že se nejedná o důkaz a vysvětlit také jaký je rozdíl mezi verifikací a důkazem. V této souvislosti je lepší nepředkládat žákům již hotový aplet s verifikací, ale zapojit je do jeho vytváření, aby si lépe dokázali uvědomit, na jakém principu toto ověření funguje. Nejprve sestrojíme rovnostranný trojúhelník ABC, jeho výška v, bod P a kolmice z bodu P na strany trojúhelníku. Můžeme zvolit dva způsoby, jak k tvorbě bodu P přistoupit. Bud můžeme sestrojit bod P jako vázaný a upevnit jej k trojúhelníku ABC, což přesně odpovídá znění Vivianiho věty, nebo tento bod sestrojíme jako volný. Dále pak zvolíme pomocnou proměnnou, které přiřadíme hodnotu součtu velikostí úseček PK, PL, PM,. Do textového pole pak vložíme součet jednotlivých velikostí těchto úseček v rovnosti s námi zvolenou proměnnou a do druhého řádku vložíme hodnotu velikosti výšky v trojúhelníku ABC. Při pohybu bodem P můžeme sledovat, jak se měřené a vypočítané hodnoty mění. Jestliže jsme tento bod sestrojili jako volný, můžeme ho posunout i mino daný trojúhelník a pozorovat, jak tato změna umístění ovlivní hodnoty zobrazených proměnných.. Obrázek 5: Vivianiho věta - verifikace 355

4.4 Dynamické důkazy v GeoGebře Další možností, jak využít GeoGebru při dokazování, je tvorba dynamického vizuálního důkazu. Ty většinou vycházejí z myšlenky statických vizuálních důkazů. Díky jejich dynamice však eliminují výše zmíněnou nevýhodu statických vizuálních důkazů a mnohem lépe pomáhají zachytit posloupnost myšlenek, které mají vést k samotnému důkazu. První zde uvedený dynamický důkaz (obr. 6) vychází ze statického vizuálního důkazu na obrázku 2, druhý (obr. 7) ze statického vizuálního důkazu z obrázku 3. Obrázek 6: Dynamický vizuální důkaz Vivianiho věty [9] Obrázek 7: Dynamický vizuální důkaz Vivianiho věty [10] 356

Literatura [1] POLSTER, Burkard. Q.E.D.: beauty in mathematical proof. New York: Walker, 2004, vi, 58 p. ISBN 08-027-1431-5. [2] NELSEN, Roger B. Důkazy beze slov I. - Cvičení pro rozvoj vizuálního myšlení. Young Scientist, 2012, ISBN 978-80-88792-61-1. [3] NELSEN, Roger B. Proofs without words II: more exercises in visual thinking. Washington, DC: Mathematical Association of America, 2000, ISBN 08-838-5721-9. [4] ASKEW, Mike a Sheila EBBUTT. Geometrie bez (m)učení: od Pythagora k dobývání vesmíru: abeceda geometrie v každodenním životě : fascinující tvary a konstrukce. 1. vyd. Praha: Grada, 2012, 176 s. ISBN 978-80-247-4125-3. [5] Rámcový vzdělávací program pro gymnázia. [online]. Praha: Výzkumný ústav pedagogický v Praze, 2007. 100 s. [cit. 2013-11-23]. Dostupné na adrese http://www.vuppraha.cz/wp-content/uploads/2009/12/rvpg-2007-07_final.pdf [6] GeoGebra. [online]. Dostupné na adrese http://www.geogebra.org [7] OK Geometry. [online]. Dostupné na adrese http://z-maga.si/index?action=article&id=40 [8] PECH, Pavel. Klasické versus počítačové metody při řešení úloh v geometrii. Jihočeská univerzita, Č. Budějovice 2005, 172 s. [9] [10] ŠTRAUSOVÁ, Irena. Dynamická vizualizace důkazu Vivianiho věty 1. [online]. Dostupné na adrese http://www.geogebratube.org/student/m60201 ŠTRAUSOVÁ, Irena. Dynamická vizualizace důkazu Vivianiho věty 2. [online]. Dostupné na adrese http://www.geogebratube.org/student/m60202 Irena Štrausová Jihočeská univerzita v Č. B. Pedagogická fakulta Jeronýmova 10 371 15 České Budějovice e-mail: strausi@email.cz 357