DEVELOPMENT AND VERIFICATION OF MATERIAL PROPERTIES OF FIRE RESISTANT STEELS



Podobné dokumenty
materiálové inženýrství

PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ

Svařitelnost vysokopevné oceli s mezí kluzu 1100 MPa

STATISTICKÉ PARAMETRY OCELÍ POUŽÍVANÝCH NA STAVBU OCELOVÝCH KONSTRUKCÍ

MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM

VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D.

VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ

ASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

Metalurgie vysokopevn ch ocelí

INFLUENCE OF TEMPERING ON THE PROPERTIES OF CAST C-Mn STEEL AFTER NORMALIZING AND AFTER INTERCRITICAL ANNEALING. Josef Bárta, Jiří Pluháček

2. Materiály a jejich charakteristiky Austenitické, duplexní, feritické, martenzitické a precipitačně vytvrzené oceli. Značení, vlastnosti a použití.

VLASTNOSTI NiCrW SLITIN BĚHEM DLOUHODOBÉHO ŽÍHÁNÍ. PROPERTIES OF NiCrW ALLOYS DURING LONG-RUN HIGH- TEMPERATURE ANNEALING

ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC

Mikrostrukturní analýza svarového spoje oceli P92 po creepové expozici

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

VLIV MIKROLEGUJÍCÍCH PRVKŮ A PARAMETRŮ TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI PLECHŮ JAKOSTI P 460N

Heterogenní spoje v energetice, zejména se zaměřením na svařování martenzitických ocelí s rozdílným obsahem Cr

durostat 400/450 Za tepla válcované tabule plechu Datový list srpen 2013 Odolné proti opotřebení díky přímému kalení

PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI

OBSERVATION OF KINETICS OF STRUCTURAL CHANGES DURING LONG-TERM ANNEALING OF TRANSITIONAL WELDS ON P91 STEEL

PRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL. Radim Pachlopník Pavel Vavroš

VÝZKUM MECHANICKÝCH VLASTNOSTÍ A STRUKTURNÍ STABILITY SUPERSLITINY NA BÁZI NIKLU DAMERON. Karel Hrbáček a

MOŽNOSTI VYUŽITÍ MIKROLEGOVANÝCH OCELÍ. Tomáš Schellong Kamil Pětroš Václav Foldyna. JINPO PLUS a.s., Křišťanova 2, Ostrava, ČR

MĚŘENÍ ELASTICITRY OVLIVNĚNÝCH PÁSEM SVAROVÝCH SPOJŮ VYSOKOPEVNOSTNÍCH OCELÍ

PODSTATA VYSOKOTEPLOTNÍ STABILITY Ni-Cr-W-C SLITIN. THE NATURE OF HIGH-TEMPERATURE HEAT RESISTANCE OF Ni-Cr-W-C ALLYS

Metodika hodnocení strukturních změn v ocelích při tepelném zpracování

VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING

NEKONVENČNÍ VLASTNOSTI OCELI 15NiCuMoNb5 (WB 36) UNCONVENTIONAL PROPERTIES OF 15NiCuMoNb (WB 36) GRADE STEEL. Ladislav Kander Karel Matocha

Tváření,tepelné zpracování

2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.

B 550B ,10

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Vladislav OCHODEK VŠB TU Ostrava Katedra mechanické technologie ústav svařování Vl. Ochodek 3/2012

SMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ

SVÚM a.s. Zkušební laboratoř vlastností materiálů Tovární 2053, Čelákovice

Technické požadavky normy EN 1090 na výrobu konstrukcí z ocelí s vyšší mezi kluzu

Oceli k zušlechťování Část 2: Technické a dodací podmínky pro nelegované oceli

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

Korozivzdorná ocel: uplatnění v oblasti spojovacího materiálu

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115

Výpočet skořepiny tlakové nádoby.

Požární zkouška v Cardingtonu, ocelobetonová deska

Posouzení za požární situace

STRUKTURNÍ STABILITA A VLASTNOSTI SVAROVÝCH SPOJŮ OCELI T24

MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY

DRÁTY PRO SVAŘOVÁNÍ POD TAVIDLEM

Nové evropské normy o c e l i v konstrukční dokumentaci

Navrhování konstrukcí z korozivzdorných ocelí

42 28XX nízko středně legované oceli na odlitky odlévané jiným způsobem než do pískových forem 42 29XX vysoko legované oceli na odlitky

TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika

LETECKÉ MATERIÁLY. Úvod do předmětu

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ

MPO - FT-TA5/076. Fajkus M., Rozlívka L. INSTITUT OCELOVÝCH KONSTRUKCÍ, s. r. o. Základní materiálové normy oceli pro konstrukce

CSM 21 je označení ROBERT ZAPP WERKSTOFFTECHNIK GmbH 0,02 % 15,00 % 4,75 % 3,50 %

Technologie I. Část svařování. Kontakt : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře

COMTES FHT a.s. R&D in metals

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Rozdělení ocelí podle použití. Konstrukční, nástrojové

Konstrukční, nástrojové

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Ověření materiálových vlastností přídavných svařovacích materiálů při svařování ocelových konstrukcí

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.

DRÁTY PRO SVAŘOVÁNÍ POD TAVIDLEM

PROHLÁŠENÍ O VLASTNOSTECH číslo 20/2014/09

Výrobky válcované za tepla z konstrukčních ocelí Část 2: Technické dodací podmínky pro nelegované konstrukční oceli

þÿ V l i v v o d í k u n a p e v n o s t a s v ay i t vysokopevných martenzitických ocelí pro automobilové aplikace

VÝVOJ MIKROSTRUKTURY VÍCEFÁZOVÉ OCELI S TRIP EFEKTEM SVOČ - FST 2013

Část 5.9 Spřažený požárně chráněný ocelobetonový nosník

a UJP PRAHA a.s., Nad Kamínkou 1345, Praha Zbraslav, b PBS Velká Bíteš a.s. Vlkovská 279, Velká Bíteš,

Výrobky válcované za tepla z jemnozrnných konstrukčních ocelí normalizačně žíhané nebo normalizačně válcované Technické dodací podmínky

MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE

DEGRADACE STRUTURY A MECHANICKÝCH VLASTNOSTÍ SLITINY LVN13 DLOUHODOBÝM ÚČINKEM TEPLOTY

Požadavky na nástroj při stříhání. Charakteristika. Použití STRUKTURA CHIPPER / VIKING

ROZBOR HOMOGENNÍHO SVAROVÉHO SPOJE SUPERMARTENZITICKÉ OCELI TYPU 13Cr6Ni2,5Mo

Charakteristika. Vlastnosti. Použití FYZIKÁLNÍ VLASTNOSTI MECHANICKÉ VLASTNOSTI UNIMAX

Lisování nerozebíratelných spojů rámových konstrukcí

Další poznatky o kovových materiálech pro konstruování

OCELI A LITINY. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu

TECHNOLOGIE SVAŘOVÁNÍ MIKROLEGOVANÝCH OCELÍ DOMEX 700MC SVOČ FST

MECHANICKÉ VLASTNOSTI A VELIKOST ZRNA MIKROLEGOVANÝCH LITÝCH OCELÍ MECHANICAL PROPERTIES AND GRAIN SIZE IN MICROALLOYED CAST STEELS

Vítězslav Bártl. duben 2012

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Vysoce pevné mikrolegované oceli. High Strength Low Alloy Steels HSLA. Zpracováno s využitím materiálu ASM International

durostat 400/450/500 Tabule plechu válcované za tepla Datový list květen 2017 Otěruvzdorné plechy z ocelového pásu válcovaného za tepla

Zkušební protokol č. 18/12133/12

(ocelových výztuží) ČSN EN ISO Technické pravidlo CWS ANB TP C 027/I/07. doc. Ing. Ivo Hlavatý, Ph.D.

Svařitelnost korozivzdorných ocelí

Díly forem. Vložky forem Jádra Vtokové dílce Trysky Vyhazovače (nitridované) tlakové písty, tlakové komory (normálně nitridované) V 0,4

Označování materiálů podle evropských norem

18MTY 1. Ing. Jaroslav Valach, Ph.D.

NAUKA O MATERIÁLU OZNAČOVÁNÍ OCELI DLE ČSN EN. Ing. Iveta Mičíková

VÝVOJ TECHNOLOGIE PŘESNÉHO LITÍ ČÁSTÍ ZE SUPERSLITIN, POUŽÍVANÝCH VE SKLÁŘSKÉM PRŮMYSLU.

Výrobní způsob Výrobní postup Dodávaný stav Způsob Symbol Výchozí materiál Skružování Svařování pod. (Za tepla) válcovaný Skružování za

Obr. 1. Řezy rovnovážnými fázovými diagramy a) základního materiálu P92, b) přídavného materiálu

Charakteristika. Použití. Vlastnosti FYZIKALNÍ VLASTNOSTI PEVNOST V TAHU RAMAX 2

OPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg

Druhy ocelí, legující prvky

Transkript:

VÝVOJ OVĚŘOVÁNÍ VLSTNOSTÍ KONSTRUKČNÍH OELÍ SE ZVÝŠENOU OOLNOSTÍ PROTI POŽÁRU EVELOPMENT N VERIFITION OF MTERIL PROPERTIES OF FIRE RESISTNT STEELS Zdeněk Kuboň, Šárka Stejskalová, Ladislav Kander Materiálový a metalurgický výzkum s.r.o., Ostrava-Vítkovice, ČR, creep.lab@mmvyzkum.cz bstrakt Požární odolnost budov, jejichž nosná konstrukce je tvořena ocelovými nosníky, může být zvýšena několika různými způsoby, mezi které patří zejména návrh konstrukce a použití konstrukčních prvků tak, aby byly vystaveny účinkům požáru pouze částečně (ochranné požární nástřiky, apod.), dále pak použití větších nosných průřezů konstrukčních prvků a konečně použití ocelí se zvýšenou pevností za vysokých teplot ve srovnání s klasickými konstrukčními ocelemi. Základní požadavky na nové typy konstrukčních ocelí se zvýšenou odolností proti požáru jsou: optimalizované chemické složení oceli a minimalizovaná cena, výrobky dodávané ve stavu po řízeném válcování nebo normalizačním žíhání, zaručená svařitelnost, nejlépe bez předehřevu a tepelného zpracování po svařování, dostupnými technologiemi a přídavnými materiály, garance zvýšené odolnosti proti deformaci za zvýšených teplot, resp. ztrátě tvarové stability konstrukce. Příspěvek jednak shrnuje požadavky kladené na konstrukční oceli, vyznačující se zvýšenou odolností proti požáru, jednak uvádí výsledky ověřování vlastností nově vyvíjených typů těchto ocelí spolu se srovnáním materiálových charakteristik s již zavedenou ocelí FRS 3 vyráběnou konsorciem Thyssen-Krupp. Summary Fire resistance of buildings made of steel beams can be increased either by specified design so that the structural elements are exposed to the fire only in the limited extent (protective fire coatings, etc.) or by using bigger bearing members. Last but not least it can be done by using the steel with higher strength at elevated temperature. The basic requirements of the new structural steels with higher fire resistance are: optimized chemical composition and minimized price of the steel, products delivered in the control rolled or normalized state, good weldability, the steel should be welded without preheat and post weld heat treatment, by using common welding technology and filler materials, the resistance of the steel against high temperature deformation and lost of size stability of the structure. The paper summarizes the requirements towards the structural steel with higher fire resistance and presents the results of materials properties of newly developed fire resistant steels in comparison to the steel grade FRS 3 produced by Thyssen-Krupp. 1

1. ÚVO Rostoucí nebezpečí teroristických útoků a zkušenosti s požárem a následným zřícením budov World Trade enter v New Yorku v září 21 obrátily pozornost i laické veřejnosti k problematice požární únosnosti staveb a možnostem jejího zvyšování. Renesance výstavby obřích mrakodrapů a výškových budov zejména v sii pak celé problematice dodává stále aktuální rozměr. Tento příspěvek shrnuje požadavky kladené na konstrukční oceli, vyznačující se zvýšenou pevností v intervalu teplot, kterým mohou být vystaveny právě během požáru a uvádí výsledky užitných vlastností dvou laboratorních taveb tohoto typu oceli spolu se srovnáním materiálových charakteristik s již zavedenou ocelí FRS 3 vyráběnou konsorciem Thyssen Krupp. 2. MTERIÁLOVÁ PROLEMTIK OOLNOSTI KONSTRUKÍ PROTI POŽÁRU Nosné ocelové konstrukce obytných a občanských budov nebo konstrukce průmyslových staveb mohou být při požáru vystaveny účinkům velmi vysokých teplot. S tímto faktem se pracuje již ve fázi návrhu konstrukce, která musí zaručit, že se ocelové nosné prvky při požáru neporuší v čase, potřebném především pro evakuaci a záchranu osob. To je možné zajistit jednak návrhem konstrukce tak, aby nosné prvky byly vystaveny účinkům požáru pouze částečně (stínění, ochranné požární nástřiky, apod.), použitím větších nosných průřezů konstrukčních prvků anebo právě použitím značek ocelí odolných proti požáru, tedy ocelí se zvýšenou pevností za vysokých teplot ve srovnání s klasickými konstrukčními ocelemi. 1.1 Materiály v normách pro stavební konstrukce Požární odolnost stavebních konstrukcí se určuje podle ČSN EN 1363-1 [1] a souvisejících ČSN a vyjadřuje se časem, po který je garantováno zachování stability a únosnosti konstrukce. Tento čas se pohybuje podle typu, složitosti a důležitosti objektu v intervalu od 15 minut až do 3 hodin. Stavební konstrukce se pak podle požární odolnosti zařazují do stupnice 15, 3, 45, 6, 9, 12 a 18 minut. ěhem požáru dochází k intenzivnímu ohřevu ocelového konstrukčního prvku, což s sebou přináší pokles jeho pevnostních charakteristik, zejména pak meze kluzu, meze pevnosti a také Youngova modulu E. Pokud je pokles meze kluzu v důsledku požáru tak vysoký, že jeho hodnota podkročí okamžité pracovní napětí, konstrukční element se zdeformuje nebo poruší. Teplota, při níž k tomu dojde, se udává jako kritická teplota, dosahuje u běžných typů konstrukčních ocelí asi 55, ale může kolísat i v závislosti na velikosti konstrukčního prvku. Při této teplotě si ocel zachovává pouze asi 6% své původní meze kluzu za normální teploty. Pro výpočet únosnosti konstrukcí vystavených účinkům požáru jsou jednotlivé materiálové charakteristiky (X d, fi ) v EN 1993-1-2 [2] definovány následujícím způsobem: kθ X k X d, fi = (1), γ M, fi kde X k je příslušná materiálová charakteristika při normální teplotě, k θ je redukční faktor platný pro tuto charakteristiku a teplotu materiálu při požáru a γ je pak faktor bezpečnosti pro danou materiálovou charakteristiku a požární situaci. Pro jednotlivé pevnostní charakteristiky při zvýšených teplotách jsou v EN 1993-1-2 k dispozici redukční faktory, které charakterizují pokles příslušné materiálové charakteristiky s teplotou, konkrétně: M, fi 2

redukční faktor pro mez kluzu redukční faktor pro mez úměrnosti redukční faktor pro Youngův modul k k y, θ = p, θ = E, θ = Hodnoty výše uvedených součinitelů uvedené v normě ČSN EN 1993-1-2 a platné pro uhlíkovou ocel jsou uvedeny v tabulce 1. Tabulka 1: Redukční součinitele k y θ, k p θ a k E θ uhlíkové oceli podle EN 1993-1-2 T, k y θ k p θ k E θ 2 1. 1. 1. 1 1. 1. 1. 2 1..87.9 3 1..613.8 4 1..42.7 5.78.36.6 55.625.27.455 6.47.18.31 65.35.1275.22 7.23.75.13 75.17.625.11 8.11.5.9 Tyto parametry představují také minimální rozsah zkoušení a prokazování vlastností, který musí každý nový materiál splňovat, aby mohl být zahrnut do skupiny konstrukčních ocelí se zvýšenou odolností proti požáru. Materiálová problematika je ovšem v normě EN 1993-1-2 omezena pouze na uvedení dvou skupin materiálů, a to jedné uhlíkové konstrukční oceli a tří značek austenitických ocelí. Navíc v normě uvedená uhlíková konstrukční ocel P 235 je ocel s minimální mezí kluzu, což způsobuje, že výpočty jsou značně konzervativní a naprosto ignorují různé materiálové charakteristiky a pevnostní úroveň ocelí. Například, při výpočtu je použita ocel P 235 s charakteristickou mezí kluzu při pokojové teplotě 235 MPa, avšak skutečná mez kluzu reálného výrobku může dosahovat (a také zpravidla dosahuje) hodnoty až 3 MPa. Toto zvýšení pevnosti s sebou přináší rovněž zvýšení kritické teploty až o 75. Pro zavedení nového materiálu do skupiny ocelí se zvýšenou odolností proti požáru (oceli označované jako oceli typu FRS Fire Resistant Steels) je ovšem vhodné a do značné míry i nezbytné provést ověření i další charakteristik, jako jsou charakteristiky únavové pevnosti, mikrostruktury, apod., v případě materiálů určených pro vysoké teploty pak také odolnost proti creepové deformaci. Je sice pravdou, že stále značná část konstrukcí je spojována nýtováním, avšak ověření svařitelnosti musí být nedílnou součástí vývoje nové konstrukční oceli, a to spolu s výběrem vhodných přídavných materiálů, technologií svařování a následným prověřením jakosti vyrobených svarových spojů. 1.2 Stručná patentová rešerše Nejvíce pozornosti je ocelím se zvýšenou odolností proti požáru věnováno hlavně v Japonsku [3-5], ale také obecněji v sii. Je to dáno zejména překotným vývojem v této k f f E y, θ p, θ a, θ f f y E p a (2) (3) (4) 3

oblasti, masivními investicemi i ze strany vyspělých zemí a stále rostoucím průmyslovým potenciálem těchto ekonomik (Čína, Indie, Malajsie). V Evropě pak přihlásily své oceli k patentové ochraně přední výrobci jako je Mannesmann [6], Thyssen-Krupp [7], či orus [8] nebo ILV [9]. V tabulce 2 jsou uvedeny některé z patentovaných ocelí typu FRS. Tabulka 2: hemické složení ocelí typu FRS podle jednotlivých patentů Patent EP 347156 EP 347156 EP 4755 EP 18667 G 2388845 JP 124573 JP 826962 EP 1319731 Výrobce Nippon Steel [3] ILV [9] Thyssen [7] orus [8] NIPPON [4] TOPY IN [5] M&V [6] Název ocel 1 ocel 2 - FR 275 N PYROVN - - -.4.15.4.15.3-.14.1-.14.12-.21.1.8.5-.15.6.13 Si max..6 max..6 max..2 max..3 max..5.5.1.5.15.5 Mn.5 1.6.5 1.6.4 1.1.2 1.2 max. 1.6.8 1.6.1.6 1. 2. Mo.4-.7.2-.7.3.8.1.25 -.7 1..3.6.2.4 r.5 1..5 1. max..2.7-.9 - -.5.2 - Ni.1-.5.1-.5 - - - - - - u.5 1..5 1. max..2 max..5 - - - - V.5.1.5.1.3-.5.1.5.1-.14.5.2.5.1 - Nb.5.4 -.3.5 max..2 -.5.15.1.4.2.5 l max..1 max..1 max..4.2-.45 max..6 - -.5-.4 Ti.5.1.5.1 max..4 max..2 -.5.25 - - Zr.5.3.5.3 - - - - - - N.1-.6.1-.6.2.1 max..8.1-.22.2.6 - -.3.2.3.2 - max..4 - - - - Pozn. Ti, Zr, V volitelně V:N min. 4.5.3.6 O.4.7 W Na základě provedené patentové rešerše [1] lze konstatovat, že požadovaných vlastností ocelí se zvýšenou odolností proti požáru se dosahuje jednak optimalizovaným chemickým složením oceli a jednak cestou termomechanického zpracování. Z hlediska fyzikálně metalurgického je zřejmé, že většina výrobců vsadila na kombinaci zpevnění tuhého roztoku molybdenem v kombinaci se zpevněním precipitačním, za tímto účelem jsou jednotlivé značky legovány vanadem, resp. niobem, bór je pak přidáván s cílem zvýšit prokalitelnost oceli. ílem termomechanického zpracování je pak podpořit vznik jemných částic precipitátů, které jsou významným přínosem k precipitačnímu zpevnění. Z uvedených skutečností pak vyplývají požadavky na nový typ konstrukční oceli se zvýšenou odolností proti požáru, a to: minimalizovaná cena oceli, optimalizované chemické složení oceli, výrobky dodávané ve stavu po řízeném válcování nebo normalizačním žíhání, zaručená svařitelnost, nejlépe bez předehřevu a tepelného zpracování po svařování, dostupnými technologiemi a přídavnými materiály, garance zvýšené odolnosti proti deformaci za zvýšených teplot, resp. ztrátě tvarové stability konstrukce. K výrobcům nových značek ocelí se zvýšenou odolností proti požáru se v poslední době zařadily také dvě přední české hutnické společnosti. V další části příspěvku budou proto srovnány vlastnosti těchto ocelí a oceli FR 275 N (obchodní značka FRS 3) výrobce Thyssen-Krupp. 4

3. SROVNÁNÍ VLSTNOSTÍ OELÍ TYPU FRS Srovnání užitných vlastností ocelí typu FR tak bylo provedeno u celkem 5 zkušebních sérií, které reprezentovaly čtyři tavby (série a byly vyrobeny z jedné tavby) zpracované do několika hutních polotovarů. Použitá označení, druh a rozměry výrobků včetně příslušné legující báze oceli jsou uvedeny v tabulce 3. Ve všech případech byly oceli podrobeny normalizačnímu žíhání bez následného popouštění. Tabulka 3: Materiály pro ověřování vlastností ocelí typu FRS Značení Polotovar Rozměry Legující báze Tyč 2x2 mm -Mn-r-Ti- Plech tl. 12 mm -Mn-r-Ti- Tyč 2x2 mm -Mn-r-Ti- Plech tl. 9.6 mm -Mn-Mo-V FRS 3 Plech tl. 25 mm -Mn-r-Mo-V Jednotliví výrobci použili u svých ocelí rozdílné legující báze. Zatímco v případě oceli FRS 3 je legování založeno na kombinaci -Mn-r-Mo-V, u ocelí - byla využita kombinace legur -Mn-r-Ti- a tavba je založena na kombinaci legur -Mn-Mo-V, nevyužívá tedy vůbec legování chrómem. Ve všech případech je však použito mikrolegování buď vanadem nebo niobem. U taveb - byla zvolena ekonomicky úsporná legující báze bez molybdenu. Skutečný přínos použití mikrolegur se projeví až při řízeném válcování, kdy jsou vytvořeny podmínky pro precipitaci extrémně jemných částic karbidů, resp. karbonitridů vanadu a niobu a významné zvýšení precipitačního zpevnění. 3. 1 Mechanické a křehkolomové vlastnosti sledovaných ocelí Nejdůležitější materiálovou charakteristikou ocelí odolných proti požáru je teplotní závislost meze kluzu, resp. meze pevnosti. Při hodnocení mechanických vlastností se vycházelo z požadavků, které jsou uvedeny v materiálové sekci normy ČSN EN 1993-1-2, a proto byly prováděny zkoušky jednoosým tahem v teplotním rozmezí +2 až 8. Výsledky zkoušek mechanických vlastností jsou uvedeny v grafické podobě na obrázcích 1 až 3, kde jsou srovnány právě teplotní závislosti jednotlivých materiálových charakteristik včetně meze kluzu a meze pevnosti všech hodnocených ocelí. Na základě hodnocení mechanických vlastností sledovaných typů ocelí odolných proti požáru s vlastnostmi oceli FRS 3 lze vyvodit, že v celém sledovaném teplotním intervalu se největší pevností vyznačuje ocel FRS 3, následovaná tavbou a ostatními tavbami, přičemž maximální rozdíl na mezi kluzu činí až 1 MPa a u meze pevnosti až 2 MPa. Jak ocel, tak i ocel FRS 3 se tak vyznačují větším deformačním zpevněním v oblasti teplot 2 až 5, přičemž v obou případech se jedná o oceli legované molybdenem a vanadem. Křehkolomové charakteristiky byly ověřovány zkouškou rázem v ohybu na zkušebních tyčích s V-vrubem v takovém teplotním rozmezí, které umožňovalo stanovit celou Vidalovu křivku. U tyčí byla zkušební tělesa orientována v podélném směru, u plechů pak byla použita přednostně orientace ve směru příčném. V těch případech, kdy tloušťka plechu neumožnila použít klasické rozměry zkušebních těles, byla použita tělesa o rozměrech 5x8x55 mm a výsledky pak byly přepočteny na normalizované hodnoty. Ve všech případech byly určeny také přechodové teploty houževnatý-křehký lom FTT (charakterizované 5% podílem obou typů lomu na lomové ploše) a přechodové teploty, které odpovídají velikosti vrubové 5

houževnatosti 35, resp. 5 J. cm -2. Výsledky jsou shrnuty v tabulce 4 a ukazují, že u tohoto typu ocelí není problémem dosáhnout velmi dobré úrovně vrubové houževnatosti. 3 25 Rp,1 [MPa] 25 2 15 1 5 FRS 3 E [MPa] 2 15 1 5 FRS 3 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 5 [%] 9 8 7 6 5 4 3 2 1 FRS 3 1 2 3 4 5 6 7 8 Z [%] 12 1 8 6 4 2 1 2 3 4 5 6 7 8 Obr. 1: Teplotní závislost meze úměrnosti (Rp.1), Youngova modulu pružnosti (E), lomové tažnosti (5) a kontrakce (Z) sledovaných taveb a oceli FRS 3 FRS 3 4 35 3 Rp,2 [MPa] 25 2 15 1 5 FRS 3 1 2 3 4 5 6 7 8 Obr. 2: Teplotní závislost meze kluzu (R p.2) u sledovaných taveb a oceli FRS 3 6

7 6 5 Rm [MPa] 4 3 2 1 FRS 3 1 2 3 4 5 6 7 8 Obr. 3: Teplotní závislost meze pevnosti (R m ) pro sledované tavby a ocel FRS 3 Tabulka 4: Hodnoty KV, T -2 35Jcm, T -2 5Jcm a FTT pro sledované oceli harakteristika FRS 3 KV ( ), Jcm -2 351 376 29 164 339 T -2 35Jcm, -35.9-51.6-35 -62. -78.5 T -2 5Jcm, -34.3-5. -29-54.8-73.1 FTT (T 5%,) -28.4-44.6 -.8-34.5-3. 2 Redukční součinitel k y,θ Nejdůležitější užitnou vlastností tohoto typu materiálu je bezesporu teplotní závislost pevnostních charakteristik, zejména pak meze kluzu a z pohledu standardu EN 1993-1-2 také příslušné minimální hodnoty jednotlivých redukčních faktorů (viz rovnice (2) až (4)), které charakterizují poměr dané veličiny při sledované teplotě vzhledem k hodnotě téže veličiny při teplotě laboratorní. Hodnoty redukčního faktoru pro mez kluzu k y θ podle EN 1993-1-2 jsou uvedeny v tabulce 5. V této tabulce jsou barevně vyznačeny ty hodnoty redukčního faktoru k y θ, které u sledovaných ocelí leží pod příslušným požadavkem daným normou EN 1993-1-2 (hodnota v levém sloupci tabulky V). Je patrné, že ani jedna ze sledovaných ocelí nedosahuje v celém teplotním intervalu standardem požadované velikosti redukčního faktoru k y θ, a to ani tehdy, když jsou porovnávány hodnoty meze kluzu za zvýšených teplot se standardizovanou hodnotou této veličiny při 2 platnou pro ocel typu S 275, tedy 275 MPa. Takový přístup není v rozporu s požární bezpečností, protože při návrhu konstrukce se nutně musí vycházet z hodnoty minimální požadované meze kluzu a všechny další výpočty z této hodnoty vycházejí. 7

Tabulka 5: Redukční faktor k y θ podle EN 1993-1-2 a sledovaných ocelí T, k y θ dle EN 1993-1-2 k y θ, k y θ, k y θ, k y θ, k y θ, FRS_3 2 1. 1.4 1.9 1.14 1.25 1.27 1 1..91 1.2 1.5 1.17 1.17 2 1..86.88.9 1.7 1.4 3 1..74.74.82.85.97 4 1..68.68.78.9.95 5.78.65.65.74.76.87 55.63.59.62.68.71.85 6.47.51.51.54.59.73 65.35.38.38.39.42.54 7.23.26.26.27.25.33 75.17.16.16.17.17.18 8.11.12.13.14.13.14 Skutečnost, že hodnot požadovaného parametru plně nedosahuje ani komerčně velmi úspěšná ocel FRS 3 však není příliš překvapující. Nároky na vysokoteplotní odolnost jsou totiž takové, že jejich splnění naráží (minimálně u variant finálně tepelně zpracovaných normalizačním žíháním) na limity dané chemickým složením, resp. cenou oceli a požadavky na její svařitelnost. Experimenty pak potvrdily jinou, velice důležitou skutečnost, a to že všechny sledované tavby v kritickém teplotním rozmezí 55 až 8 přesahují požadovanou minimální hodnotu korekčního faktoru na mez kluzu. Toto rozmezí teplot lze totiž považovat za kritické z hlediska únosnosti konstrukce během požáru. Ocel FRS 3 a ostatní experimentální tavby se pak v tomto teplotním intervalu jeví jako téměř zcela rovnocenné. 3. 3 Ověření svařitelnosti Na plechu z oceli (tl. 9.6 mm) byl vyroben tupý svarový spoj metodou ručního obloukového svařování (111) na podložce v poloze P za použití elektrody OK 74.46 (výrobce ES Vamberk, s.r.o.) o φ 4 a 5mm. Elektroda OK 74.46 je představitelkou přídavných materiálů pro svařování nízkolegovaných ocelí pro výrobu tlakových nádob a obsahuje.5% Mo. Je klasifikována podle EN 1599 jako E Mo 32 H5. Svařování bylo v souladu s výše uvedenými požadavky provedeno bez předehřevu, s mezihousenkovou teplotou max. 15. Po svařování nebylo zařazeno relaxační žíhání, neboť charakter použití oceli a skutečnost, že se v naprosté většině případů bude jednat o montážní svarové spoje na stavbách, vyžaduje maximální možné zjednodušení zpracovávání plechu po svaření. Provedené svarové spoje byly podrobeny nedestruktivní kontrole utrazvukem podle EN 1714, tř., stupeň přísnosti EN 1712 stupeň 2, rozsah zkoušení 1% a magnetickou práškovou metodou podle EN 129, stupeň přísnosti EN 1291 2X, rozsah zkoušení 1%. U vyrobených svarových spojů byly dále provedeny tahové zkoušky svarového spoje, zkouška lámavosti svarového spoje bočním ohybem, zkouška rázem v ohybu a měření profilu tvrdosti přes svarový spoj. Výsledky potvrdily v celém rozsahu dobrou svařitelnost i plně vyhovující vlastnosti svarového spoje. Na obrázku 4 je ukázána makrostruktura svarového spoje, na obr. 5 pak profil tvrdosti přes svarový spoj zjišťovaný jak v kořenové, tak i povrchové housence. Je evidentní, že rozdíly v tvrdosti mezi základním materiálem, tepelně ovlivněnou 8

METL 28 zónou a svarovým kovem jsou zejména v kořeni svaru v důsledku přežíhání výplňovou housenkou minimální a ani rozdíl 1 jednotek HV 1 v podpovrchové oblasti svaru nepředstavuje potenciální nebezpečí z hlediska použití těchto svarových spojů v konstrukcích. Obr. 4: Makrostruktura svarového spoje oceli 1.8x zv. 3 TOO 28 ZM TOO ZM SK HV 1 26 povrch 24 kořen 22 2 SK ZM ZM 18 TOO TOO 16 5 1 15 2 25 3 vzdálenost v mm a b 35 4 Obr. 5: Profil tvrdosti přes svarový spoj oceli c d Obr. 6: Mikrostruktura svarového kovu (a 1x), hrubozrnné TOZ (b 1 x), interkritické oblasti TOZ (c 1x) a detail interkritické oblasti TOZ (d 1x) Mikrostruktura svarového spoje byla hrubá, licí, tvořená bainitem a feritem vyloučeným po hranicích licích zrn (obr. 6a), u hranice ztavení byla tepelně ovlivněná zóna (TOZ) 9

hrubozrnná bainitická (obr. 6b), v tzv. interkritické oblasti TOZ, tedy oblasti, v níž dochází během svařování k ohřátí na teplotu v okolí teploty c1 a k největšímu poklesu pevnosti a tvrdosti, je struktura bainiticko-feritická (obr. 6c) s lokálním výskytem malého množství drobných ostrůvků martenzitu (obr. 6d), které vznikají u svarových spojů svařovaných bez předehřevu v důsledku vysoké rychlosti ochlazování. Lze tedy konstatovat, že použitá technologie svařování i přídavný materiál jsou schopny garantovat odpovídající užitné vlastnosti svarových spojů tohoto typu oceli. 4. ISKUZE VÝSLEKŮ ZÁVĚR Provedené šetření komplexu užitných vlastností několika taveb ocelí se zvýšenou odolností proti požáru ukázalo, že ani legování oceli prvky, které významně přispívají ke zpevnění oceli (molybden, vanad) nedokáže v plném rozsahu zaručit požadované pevnostní charakteristiky v celém teplotním rozmezí. Největší rozdíly mezi požadavky standardu a reálně dosahovanými vlastnostmi byly zjištěny v teplotní oblasti 3-4, kdy je redukční faktor meze kluzu k y θ v ČSN EN 1993-1-2 stále roven jedné, avšak reálné hodnoty meze kluzu již klesají. V této teplotní oblasti také, na rozdíl od teplot vyšších, ještě nejsou vytvořeny podmínky pro vytvrzení oceli vznikem sekundárních fází na bázi těchto legujících prvků. Vzhledem k charakteru použití těchto ocelí jako běžných konstrukčních ocelí s požadavky na zvýšenou pevnost, odpovídající plasticitu a houževnatost při zachování relativně nízké ceny a dobré svařitelnosti je však rozsah legování oceli, který by dokázal zbrzdit pokles pevnosti do vysokých teplot, významně omezen. Konvenční přístup pro zvýšení pevnosti do teploty cca. 35 zvýšením koncentrace uhlíku není u tohoto typu oceli použitelný. Mangan sice zvyšuje zpevnění tuhého roztoku, zároveň je však jeho maximální koncentrace v nízkolegovaných ocelích omezena tendencí snižovat koncentraci uhlíku eutektoidního bodu, podporovat vznik horního bainitu a segregace v oceli. Maximální koncentrace manganu tedy u ocelí typu FRS dosahují asi 1.5%. Křemík je dalším z prvků, které účinně zpevňují tuhý roztok a zejména křemík brzdí změkčení při vyšších teplotách [11]. Problémem je však tendence ocelí obsahujících křemík ke zvyšování přechodové teploty křehký-houževnatý stav. Na rozdíl od křemíku je zpevnění tuhého roztoku chrómem zanedbatelné, zejména z důvodu jeho silné afinity k uhlíku a tvorbě karbidů. hróm se však v ocelích pro zvýšené teploty používá v kombinaci s molybdenem. molybden je právě tím prvkem, který zvyšuje vysokoteplotní pevnost, a to i při relativně nízkých obsazích okolo.2% [12]. Molybden má jednak větší atomový poloměr oproti železu, jednak vyšší modul pružnosti, proto silně ovlivňuje substituční zpevnění oceli. Mimoto molybden v tuhém roztoku snižuje rychlost difúze železa, a tím omezuje rekrystalizaci, a tedy i snižování pevnosti při vysokých teplotách. Při zvyšování pevnosti oceli se s výhodo využívá potenciál vanadu, niobu nebo i titanu přidávaných do oceli v nízkých koncentracích jako mikrolegury. Specifikou působení mikrolegujících prvků je totiž vznik sekundárních fází, zejména karbidů, resp. karbonitridů vyvolaný plastickou deformací během tváření finálních hutních výrobků. Částice vzniklé tímto způsobem mají totiž až řádově menší rozměry než částice vzniklé při obvyklém tepelném zpracování, a dokážou tak blokovat rozvoj plastické deformace až do vysokých teplot. Při srovnání výsledků získaných na experimentálních ocelích s publikovanými výsledky vlastností ocelí odolných proti požáru se ukazuje, že pro to, aby ocel dosahovala asi až 2/3 své výchozí meze kluzu i při teplotě 6, je nezbytné provádět termomechanické zpracování [13]. Z hlediska mikrostruktury je optimální kombinace bainitu s malým podílem feritu, následovaná feriticko-bainitickou strukturou, nejmenší schopnost udržet požadovaný poměr meze kluzu při teplotě 6 a meze kluzu při teplotě pokojové pak vykazuje mikrostruktura tvořená feriticko-perlitickou směsí [14]. 1

Zachování vysokého poměru meze kluzu při zvýšené teplotě se ukazuje jako principiální vlastnost ocelí se zvýšenou odolností proti požáru. Ostatní užitné vlastnosti těchto ocelí jsou za předpokladu optimální kombinace legujících prvků a mikrostrukturních parametrů velmi dobře srovnatelné a vyhovují v celém rozsahu požadavkům, které jsou na oceli této specifikace kladeny. Poděkování utoři této práce by rádi vyjádřili poděkování Ministerstvu školství, mládeže a tělovýchovy ČR za finanční podporu výzkumného záměru MSM 2587871 Výzkum a ověření nových netradičních postupů výroby kovových materiálů, v jehož rámci byly získány zde uvedené výsledky. Literatura [1] ČSN 41 222 Ocel 12 22, účinnost od 1. 2. 1987 [2] pr EN 1993-1-2 Eurocode 3 esign of steel structures Part 1-2: General rules Structural fire design. 23 [3] European Patent pplication EP 347156 Process for manufacturing building construction steel having excellent fire resistance and low yield ratio, and construction steel material, NIPPON STEEL ORPORTION, Tokyo, Japan, 1989 [4] JP 124573 7 fire resistant rolled shape steel and its production, NIPPON STEEL ORPORTION, Tokyo, Japan, 1998 [5] JP 826962 Fire resistant steel for shape steel, TOPY IN, 1996 [6] EP 1319731 Feuerresistenter Stahl für den Stahlbau und Verfahren zur Herstellung von Warmgewalzten Hohlprofilen, Trägern, Formstahl oder Grobblech daraus, Mannesmann-Vallourec eutschland GmbH, üsseldorf, Germany, 23 [7] EP 18667 Verfahren zur Herstellung feuerresistenter, Thyssen-Krupp Stahl G, uisburg, Germany, 2 [8] G 2388845 Fire resistant steel, orus UK Limited, London, 23 (britský patent) [9] European Patent pplication EP 4755 Process for the production of fire resistant structural steel, ILV S.p.., Roma, Italy, 1992 [1] KUOŇ, Z., aj. Vývoj nových typů ocelí se zvýšenou pevností za tečení při teplotách vyšších než 5, dílčí zpráva, VÍTKOVIE-Výzkum a vývoj, Ostrava, č. zprávy - 17/4, prosinec 24 [11] GLEN, J. Effect of lloying Elements on the High-temperature Tensile Strength of Normalized Low-carbon Steel. JISI, 1957, Vol. 186,, s. 21 [12] HONEYOME, R. W. K. Steels: Microstructure and Properties. 2. vydání, Londýn: Edward rnold, 2. 256 s. [13] PNIGRHI,. K. Microstructures and properties of low-alloy fire resistant steel. ull. Mater. Sci., Vol. 29, 26, s. 59-66 [14] MIZUTNI, Y., aj. 59MPa lass Fire-Resistant Steel for uilding Structural Use. Nippon Steel technical Report No. 9. Nippon Steel o., July 24 11