VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken



Podobné dokumenty
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích

Struktura polymerů. Příprava (výroba).struktura vlastnosti. Materiálové inženýrství (Nauka o materiálu) Základní představy: přírodní vs.

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština

Mol. fyz. a termodynamika

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry

POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5

TERMOMECHANIKA 15. Základy přenosu tepla

2 Stanovení teploty tání semikrystalických polymerů v práškové formě

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Měření prostupu tepla

ZÁKLADY STAVEBNÍ FYZIKY

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.

10. Energie a její transformace

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

Fyzikální chemie. Magda Škvorová KFCH CN463 tel února 2013

Fyzika - Sexta, 2. ročník

Molekulová fyzika a termika:

Maturitní témata fyzika

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

PROCESY V TECHNICE BUDOV 11

TERMOFYZIKÁLNÍ VLASTNOSTI. Radek Vašíček

1. Látkové soustavy, složení soustav

Základy vakuové techniky

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

h nadmořská výška [m]

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006

Výpočtové nadstavby pro CAD

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

VI. Nestacionární vedení tepla

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

TERMOMECHANIKA 1. Základní pojmy

Vnitřní energie. Teplo. Tepelná výměna.

TESTY Závěrečný test 2. ročník Skupina A

PROCESY V TECHNICE BUDOV 12

2 Tokové chování polymerních tavenin reologické modely

T0 Teplo a jeho měření

Kontrolní otázky k 1. přednášce z TM

Technologie a procesy sušení dřeva

TECHNOLOGIE VSTŘIKOVÁNÍ

102FYZB-Termomechanika

Netkané textilie. Materiály 2

9. Struktura a vlastnosti plynů

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

3.3 Fyzikální vlastnosti

Látkové množství n poznámky 6.A GVN

Metody termické analýzy. 3. Termické metody všeobecně. Uspořádání experimentů.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

Měření teplotní roztažnosti

Autokláv reaktor pro promíchávané vícefázové reakce

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství

Test vlastnosti látek a periodická tabulka

LOGO. Struktura a vlastnosti pevných látek

4 Stanovení krystalického podílu semikrystalických polymerů z hustotních měření

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok

Profilová část maturitní zkoušky 2017/2018

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

Okruhy k maturitní zkoušce z fyziky

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Molekulová fyzika a termika. Přehled základních pojmů

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

Identifikátor materiálu: ICT 2 54

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;

5.7 Vlhkost vzduchu Absolutní vlhkost Poměrná vlhkost Rosný bod Složení vzduchu Měření vlhkosti vzduchu

Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace

1 Zatížení konstrukcí teplotou

1. Fázové rozhraní 1-1

12. Struktura a vlastnosti pevných látek

Skupenské stavy látek. Mezimolekulární síly

Podstata plastů [1] Polymery

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

ČÍSLO PROJEKTU: OPVK 1.4

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Zákony ideálního plynu

Šíření tepla. Obecnéprincipy

Nauka o materiálu. Přednáška č.13 Polymery

charakterizaci polymerů,, kopolymerů

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Transkript:

VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém složení vláken a jejich nadmolekulární struktuře. epelné vlastnosti polymerů jsou určeny ve značné míře tím, že tyto látky jsou tvořeny polymerními molekulami. Poměr hlavních vazebných sil (působících podél molekulárních řetězců) k vedlejším vazebným silám (které působí mezi atomy sousedních molekul), tvar jednotlivých molekul a jejich vzájemné uspořádání (amorfní nebo částečně krystalické), pohyblivost molekul a molekulárních sementů ovlivňují rozhodujícím způsobem tepelnou roztažnost, měrné teplo a tepelnou vodivost těchto látek. Při zahřívání polymeru dochází i k jeho deradaci a to buď pouze tepelné, tedy k procesu, při kterém s rostoucí pohyblivostí makromolekulárních řetězců dochází k jejich rozpadu a nebo i k deradaci vlivem prostředí (kyslík, vlhkost, přítomnost jiných látek, katalysátorů apod.). 3.2. Základní termodynamické pojmy Při vedení tepla rozlišujeme dva základní případy: (a) V prvním případě je tepelný tok ustálen tak, že rozložení teplot v tělese se nemění s časem jde o stacionární (ustálené) vedení tepla. (b) Ve druhém případě není teplený tok ještě ustálen a rozložení teplot se účinkem akumulace mění s časem, jde o nestacionární (neustálené) vedení tepla. epelné vodivost λ má rozměr [W/m K], resp. [J/m s K]. V odborné literatuře a v praxi se dříve používaly vedlejší jednotky tepelné enerie, kilokalorie. Rozměr tepelné vodivosti byl pak [kcal/m h de], případně [cal/cm s de]. Pro přepočet platí kcal = 486,8 J, kcal/m h de =,630 W/m K, cal/cm s de = 48,68 W/m K Při sdílení tepla konvekcí mezi povrchem tuhého tělesa (nebo tělesa, které lze za tuhé považovat) a tekutinou je mechanismu výměny tepla na fázovém rozhraní obecně velmi složitý. Zavádí se proto součinitel přestupu tepla α, který děj popisuje v jednoduché formě. V ustáleném stavu platí známý vztah Q = α. A./ t /. τ kde / t/ je rozdíl teploty stěny a specifikované teploty tekutiny. Každou látku lze charakterizovat obsahem volné entalpie (G), která je daná vzorcem G = H S kde H je entalpie, je absolutní teplota a S je entropie. Každý systém má za dané teploty snahu dosáhnout takový stav, který odpovídá nižšímu obsahu volné entalpie. Příkladem může být přechod látky z jedné krystalické formy do druhé, která má za dané teploty menší obsah volné entalpie a je tedy stálejší. K vytvoření stabilnější krystalické struktury nebo jiného stavu s nižší hodnotou volné entalpie může při ohřevu vzorku dojít i postupně přes jednotlivé mezistupně. akovou přeměnou může být tání, var, sublimace, krystalická přeměna, chemická reakce apod. Přeměna je pak charakterizována teplotou a změnou entalpie. Změna entalpie může být provázena i změnou hmotnosti sledované látky, jako tomu je např. při chemickém rozkladu, dehydrataci, sublimaci nebo oxidaci. Při ohřevu nebo ochlazování látky dochází k reverzibilním nebo ireverzibilním změnám rozměrů, které závisí na počátečních rozměrech a teplotě. prof.in. Jiří Militký,CSc.,doc. RNDr. Jiří Vaníček, CSc, katedra textilních materiálů, F, Ú Liberec

3.3. epelná kapacita, měrné teplo epelná kapacita vláken se nejčastěji vyjadřuje měrným teplem za stálého tlaku C P v [Jk - K - ]. Měrné teplo je definováno jako teplo Q potřebné k ohřátí jednoho kiloramu látky o jeden stupeň Kelvina. Je funkcí molekulární a nadmolekulární struktury vláken, teploty i rychlosti ohřevu. Měrné teplo při konstantním tlaku je dáno vztahem C p = ( Q / p ) [ Jk - K - ] Vlákna mají téměř konstantní C p =,5 [J - K - ]. Hodnoty tepelné kapacity jsou následující vlákno C P [Jk - K - ] [20 o C] vlákno C P [Jk - K - ] [20 o C] acetát,46,88 bavlna,2 polyamid 6,40,50 vlna,36 polyester,34 hedvábí,36 polypropylen,46 azbest,05 Vliv vlhkosti vlny na měrné teplot je patrný z obrázku. S rostoucí vlhkostí roste měrné teplo, což se dalo očekávat. Pro vyjádření tepelných vlastností polymerů má větší význam tepelná vodivost 3.4. epelná vodivost epelná vodivost charakterizuje rychlost přestupu tepla v materiálu. Má vliv na tepelně izolační procesy, ohřev i chlazení. epelnou vodivost vyjadřuje součinitel tepelné vodivosti λ [Wm - K - ], což je konstanta úměrnosti ve vztahu pro ustálený tepelný tok přes plochu velikosti A 0. Rychlost toku tepla je úměrná také rozdílu teplot na vstupu a výstupu 2 z desky a tloušťce desky X (viz. obr.2. 45) (-2)/X 2 Ao X Obr 2.45 Ustálený tepelný tok přes desku plochy Ao a tloušťky X. 2 prof.in. Jiří Militký,CSc.,doc. RNDr. Jiří Vaníček, CSc, katedra textilních materiálů, F, Ú Liberec

Platí, že Q t ( 2 ) = λ * Ao * X kde Q je množství tepla prošlého deskou za čas t. Pro vybrané polymery je tepelná vodivost v tab. 2.25. Velmi nízkou tepelnou vodivost 0,003 [Wm - K - ] má vzduch. epelná vodivost souvisí se specifickým měrným teplem při stálém objemu C v, měrnou hmotností polymeru a rychlostí šíření zvuku v polymeru v z λ K * ρ * C V * v Z kde K je konstanta typická pro každý polymer. Vychází se z představy fotonového modelu. epelná enerie se šíří v kvantech rychlostí zvuku po jednotlivých vrstvách polymeru. abulka 2.25 epelná vodivost a související parametry pro amorfní polymery polymer λ [Js - m - K - ] C v 0 3 [Jk - K - ] v z [ms- ] PP 0,72 2,4 750 PVC 0,68 0,96 2000 PES 0,28,3 240 elastan 0,47,70 70 U semikrystalických polymerů souvisí tepelná vodivost s měrnými hmotnostmi amorfní ρ a a krystalické ρ K fáze. λ C ρ K = λ a + 5,8* ρ a Při běžné teplotě je tepelná vodivost krystalické fáze zhruba 6x vyšší než tepelná vodivost amorfní fáze. 3.5.Nukleární manetické rezonance 2.5.4. epelné vlastnosti eplota tání a zeskelnění Některé vlastnosti vláken se při určitých teplotách náhle mění. eploty náhlých změn vlastností (tepelné přechody) jsou pro jednotlivé druhy vláken specifické a spojené se změnou sementání pohyblivosti makromolekulárních řetězců. Ve většině případů jsou pozorovány fázové přechody I. a II. druhu. Fázový přechod I. druhu je charakterizován změnou stavu (plyn, kapalina, pevná látka). Např. při tání probíhá změna z pravidelného uspořádání krystalů na neuspořádanou formu taveniny. ento přechod je charakterizovaný teplotou fázového přechodu M teplotou tání. Čistě krystalické látky mají přesně definovaný bod tání. U amorfních polymerů není tato fázová změna jasně ohraničena. U krystalických látek se v bodě přechodu mění fyzikální vlastnosti skokem a dochází k němu při přesně definované teplotě. U amorfních látek není tento přechod rovnovážný a 3 prof.in. Jiří Militký,CSc.,doc. RNDr. Jiří Vaníček, CSc, katedra textilních materiálů, F, Ú Liberec

není to přechod bodový. Proto u polymerních látek závisí průběh fázových změn na stupni krystalinity. Se zvyšující se teplotou dochází u amorfních látek k přechodu ze skelného stavu do stavu kaučukovitého. ato přeměna se uskutečňuje v určitém teplotním intervalu, který je nazýván skelný přechod. Střední teplota tohoto intervalu je nazývána teplotou zeskelnění. Na druhé straně zde není možné indikovat jednoznačně teplotu tání M. U semikrystalicých polymerů, které mají jak krystalickou tak i amorfní část je možné indikovat jak tak i M. ypická závislost měrného objemu (objemu na jednotku hmotnosti) na teplotě pro amorfní a semikrystalické polymery je na obr. 2.43. V M A S M Obr.2.43 eplotní závislost měrného objemu (A) amorfní polymer, (S) semikrystalický polymer. Mnoho fyzikálních charakteristik (viskozita, tepelná kapacita, modul pružnosti, koeficient tepelné expanse atd.) se mění při teplotě. V řadě případů je hlavní příčinou změna volného objemu v polymerech. Pro amorfní polymery je celkový objem V M složen z objemu řetězců V O a volného objemu V f. Až do teploty mohou částice makromolekul vykonávat pouze vibrační pohyb kolem určitých rovnovážných poloh. Proto roste V O i V f stejnou rychlostí. Při enerie dodaná částicím právě postačuje k překonání eneretické bariéry pro vnitřní rotaci molekul kolem jednoduchých kovalentních vazeb rotace se označuje jako sementální pohyb. Nad dojde vlivem sementální pohyblivosti k výrazně rychlejšímu růstu V f. Schematicky je to znázorněno na obr. 2.44. V Vf Vo Obr 2.44 Závislost volného a obsazeného objemu amorfních polymerů na teplotě. Důsledkem je vznik velkého množství volných míst v polymeru, které ovlivňují vlastnosti. eplota zeskelnění závisí obecně na molekulové hmotnosti polymeru Mn podle vztahu = z K M n 4 prof.in. Jiří Militký,CSc.,doc. RNDr. Jiří Vaníček, CSc, katedra textilních materiálů, F, Ú Liberec

kde z je rovnovážná teplota zeskelnění a K je konstanta. U úplně krystalických látek skelný přechod neexistuje. U semikrystalických polymerů souvisí teplota zeskelnění na stupni krystalinity a tedy na teplotě tání. Pro polymery se symetrickými řetězci je 0,5 * M a pro polymery s asymetrickými řetězci je 0,66* M. eplota zeskelnění kopolymerů se dá určit ze vztahu W = + W 2 Zde je teplota zeskelnění prvního homopolymeru s hmotnostním podílem W a 2 je teplota zeskelnění druhého homopolymeru s hmotnostním podílem W 2 = -W. eplota zeskelnění má projevy charakteristické pro fázový přechod II. druhu, ale fázovým přechodem II. druhu není. Závisí na teplotě ohřevu či chlazení a má tedy kinetický charakter. Při vyšších rychlostech ohřevu či chlazení se dosáhne větší hodnoty. Vysoké zajišťují také tuhé a neohebné řetězce a silné mezimolekulární vazby. Orientační hodnoty teplot zeskelnění a tání jsou v tab. 2.23. abulka 2.23 eploty zeskelnění a tání vlákno [ o C] M [ o C] polyetylén -80 45 polypropylén -8 70 PA 6.6 82 256 PA 6 65 220 PES 67 amorfní 256 PVC 80 90 5 prof.in. Jiří Militký,CSc.,doc. RNDr. Jiří Vaníček, CSc, katedra textilních materiálů, F, Ú Liberec