ŘÍZENÍ NÁDRŽÍ A VODOHOSPODÁŘSKÝCH SOUSTAV V PROSTŘEDÍ MATLAB

Podobné dokumenty
Strategické řízení nádrží a VH soustav v podmínkách klimatické změny

5.5 Předpovědi v působnosti RPP České Budějovice Vyhodnocení předpovědí Obr Obr Obr. 5.38

v rámci projektu EU NeWater v případové studii Labe vedené ústavem PIK v Postupimi a českého Projektu Labe (MŽP) Povodí Ohře, státní podnik, Chomutov

4 VYHODNOCENÍ MANUÁLNÍCH HYDROLOGICKÝCH PŘEDPOVĚDÍ

ZODPOVĚDNÝ PŘÍSTUP PŘI ŘEŠENÍ MOŽNÝCH ZMĚN STRATEGICKÉHO ŘÍZENÍ NÁDRŽÍ

České vysoké učení technické v Praze Fakulta stavební Prověření strategického řízení Vltavské kaskády parametry manipulačního řádu

POSTPROCESOR MODELU KVALITY VODY V NÁDRŽI. Pavel Fošumpaur. ČVUT v Praze, Fakulta stavební, Katedra hydrotechniky

5.8 Předpovědi v působnosti RPP Ústí nad Labem Obr Obr Obr Obr Obr Obr Obr. 5.54

Ochranná funkce významných vodních děl Funkce za povodně Zvýšení ochranné funkce Vltavské kaskády TOMÁŠ KENDÍK Povodí Vltavy, státní podnik

Modelování a simulace Lukáš Otte

ROZVOJ PŘEDPOVĚDNÍ POVODŇOVÉ SLUŽBY V ČESKÉ REPUBLICE PO POVODNI RNDr. Radek Čekal, Ph.D. RNDr. Jan Daňhelka, Ph.D.

EXTRAPOLACE INTENZITNÍCH KŘIVEK PRO ÚČELY MODELOVÁNÍ SRÁŽKOODTOKOVÉHO PROCESU

CHARAKTERISTIKY M-DENNÍCH A MINIMÁLNÍCH PRUTOKŮ POSKYTOVÁNÍ HYDROLOGICKÝCH DAT DLE ČSN HYDROLOGICKÉ ÚDAJE POVRCHOVÝCH VOD

Prověření strategického řízení Vltavské kaskády parametry manipulačního řádu

Vodní nádrže a rizika vodohospodářské infrastruktury

5.6 Vyhodnocení vlivu různých faktorů na předpovědi v povodí horní Vltavy

Ladislav Satrapa a Pavel Fošumpaur (Fakulta stavební ČVUT v Praze)

OSA. maximalizace minimalizace 1/22

Disponibilní vodní zdroje a jejich zabezpečenost

3. Vodní dílo JESENICE

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS

Sucho v povodí Odry

Matematické modelování proudění podzemních vod a jeho využití ve vodárenské praxi

foto: Povodeň 2006 Olomouc, Dolní Novosadská A.VĚCNÁ ČÁST IV. Monitoring vodních stavů

Modelování úbytku chloru a nárůstu koncentrací železa v distribuční síti pitné vody

26 NÁVRH NA ODTĚŽENÍ A ULOŽENÍ NAPLAVENIN NA VTOKU DO VODNÍHO DÍLA DALEŠICE

Modelování průchodu extrémních povodní nádrží

Vodohospodářská bilance dílčího povodí Horní Odry ZPRÁVA O HODNOCENÍ MNOŽSTVÍ PODZEMNÍCH VOD V DÍLČ ÍM POVODÍ HORNÍ ODRY ZA ROK 2014

Ztráta vody výparem z volné vodní hladiny

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

ZHODNOCENÍ DLOUHODOBÉHO VÝVOJE KVALITY VODY VE ZBYTKOVÝCH JEZERECH SHP

Otázky ke státní závěrečné zkoušce

4 HODNOCENÍ EXTREMITY POVODNĚ

5.10 Předpovědi v působnosti RPP Brno Povodí Jihlavy a Svratky Obr Obr Obr

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

Obr. 6.5 Výskyt a extremita zimních povodní (v období ) na Vltavě v Praze ve vztahu ke kalendářnímu období

Vodohospodářská bilance dílčího povodí Horní Odry

Vodohospodářská bilance dílčího povodí Horní Odry

Historie minimálních průtoků ve vodohospodářské praxi

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

Z P R Á V A. Vodohospodářská bilance dílčího povodí Horní Odry

7. Rozdělení pravděpodobnosti ve statistice

Operativní řízení odtoku vody z nádrže za průchodu povodně Starý, M. VUT FAST Brno, Ústav vodního hospodářství krajiny

Informace o stavu vodních zdrojů a jejich výhledu v rámci hydrologického povodí Vltavy

A. Hydrometeorologická situace

Hydrologie povrchových vod. Hana Macháčková, Roman Pozler ČHMÚ Hradec Králové

Předmět úpravy. Vymezení pojmů

Předpovědní povodňová služba Jihlava února 2017

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

Vodohospodářská bilance dílčího povodí Horní Odry

Hydrologické sucho v ČR

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

Výzkum v oblasti povodňové ochrany v České republice

Hydrometeorologická zpráva o povodňové situaci v Moravskoslezském a Olomouckém kraji ve dnech

Metodický pokyn. hodnocení výhledového stavu Článek 7 - Hodnocení jakosti povrchových vod... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

Vodní zdroje - Povodí Labe, státní podnik

režimu vodního toku, (2) Správci povodí a státní podnik Lesy České republiky pozdějších předpisů.

8. Vodní dílo STANOVICE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

Český hydrometeorologický ústav

2. Vodní dílo HORKA. MĚSTSKÝ ÚŘAD OSTROV Starosta města. Příl. č.1k části B4.10 Krizového plánu určené obce Ostrov č. j.: 9-17/BR/09 Počet listů: 3

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Změna manipulačního řádu

Časové řady, typy trendových funkcí a odhady trendů

Prognózování a ovlivňování extrémních hydrologických stavů řízením vodohospodářské soustavy povodí Odry

Časové řady, typy trendových funkcí a odhady trendů

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Financování protipovodňových opatření z národních zdrojů od roku 2007

Problematika sucha a vody zhodnocení vývoje od roku září 2018

UŽIVATELSKÁ DOKUMENTACE VEŘEJNÝ INFORMAČNÍ PORTÁL (VIP)

8 Porovnání hydrometeorologických podmínek významných letních povodní

Optimalizace protipovodňové ochrany

Protipovodňová opatření pro období v gesci Ministerstva zemědělství. Seminář k prevenci před povodněmi Liberecký kraj 7.

Víceúčelové vodní nádrže

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

Verifikace modelu VT přehříváků na základě provozních měření

U Úvod do modelování a simulace systémů

Ing. David Ides EPS, s.r.o. V Pastouškách 205, Kunovice ostrava@epssro.cz

Martina Peláková, Ladislav Kašpárek, Jakub Krejčí. Vliv údolních nádrží a charakteristik povodí na povodňové průtoky

ství Ing. Miroslav Král, CSc. ředitel odboru vodohospodářské politiky tel kral@mze.cz

Předpovědní povodňová služba Jihlava února 2018

vzorek vzorek

Stanovení záplavového území toku Zalužanský potok

kraj Karlovarský kód kraje CZ041

Odvození základních hydrologických údajů za referenční období Ladislav Budík, Petr Šercl, Pavel Kukla, Petr Lett, Martin Pecha

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel

Záplavová území podle vyhlášky 79/2018 Sb. Ing. Josef Dohnal Povodí Vltavy, státní podnik

Rozvoj tepla v betonových konstrukcích

VLIV HOSPODAŘENÍ V POVODÍ NA ZMĚNY ODTOKOVÝCH POMĚRŮ

Neuronové časové řady (ANN-TS)

Zápis o 19. zasedání Stálého výboru Sasko 2017 příloha 12

5.1 Předpovědní systém AquaLog Provoz systému AquaLog Model sněhu parametr Popis jednotka SCF MFMAX MFMIN UADJ ADC NMF TIMP PXTEMP MBASE PLWHC DAYGM

Metodický pokyn č. 24/99 odboru ochrany vod MŽP. k posuzování bezpečnosti přehrad za povodní (Věstník MŽP č. 4/1999)

Předmět a cíle rizikové analýzy přehrad Koncepční přístupy k rizikové analýze přehrad. Aktuální stav RA přehrad v ČR

Informační zpráva č. 18

Vyhodnocení povodní v červnu 2013 Funkce a bezpečnost malých vodních děl. Ing. Ondřej Švarc VODNÍ DÍLA - TBD a.s.

ZPRÁVA O HODNOCENÍ MNOŽSTVÍ POVRCHOVÝCH VOD V DÍLČÍM POVODÍ HORNÍ VLTAVY ZA ROK 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

Transkript:

ŘÍZENÍ NÁDRŽÍ A VODOHOSPODÁŘSKÝCH SOUSTAV V PROSTŘEDÍ MATLAB Pavel Fošumpaur ČVUT v Praze, Fakulta stavební, Katedra hydrotechniky Příspěvek pojednává o využití MATLAB pro optimalizaci strategického a operativního řízení vodních nádrží Obsahem aplikace je příprava stochastického hydrologického podkladu, optimalizace stochastického simulačního modelu metodami nelineárního programování a povodňové řízení nádrže Úvod Řízení nádrží a vodohospodářských soustav patří mezi klíčové problémy naší vodohospodářské praxe Úloha je zpravidla formalizována pomocí tradičních systémových přístupů [3] a v poslední době také za využití moderních metod umělé inteligence [2] a informačních technologií Řízení nádrží lze rozdělit na dva základní přístupy, z nichž každý sleduje jiný cíl, což ovlivňuje i jeho následnou definici Jedná se o strategické a operativní řízení nádrží 2 Strategické řízení nádrží Strategické řízení nádrží a vodohospodářských soustav odpovídá na otázku optimálního využití vodních zdrojů v dlouhodobém časovém kontextu ve fázi návrhu (projektu) Do této oblasti patří především nalezení dostatečné kapacity nádrží, aby byly schopny uspokojit všechny odběratele vody s požadovanou spolehlivostí U již vybudovaných nádrží a jejich soustav se často hledá nejlepší způsob jejich využití, což vede na optimalizaci parametrů manipulací s těmito nádržemi Strategické řízení má tedy za úkol optimalizovat kvantitativní provoz nádrží z dlouhodobého hlediska a řeší se zpravidla s měsíčním časovým krokem Strategické řízení nádrží je dnes již zpravidla řešeno v podmínkách stochastické neurčitosti za využití moderních pravděpodobnostních metod Hledané řízení je pak získáno optimalizací stochastického simulačního modelu Nejprve je třeba vyjít z dostupného hydrologického podkladu, který je zpravidla reprezentován časovými řadami průměrných měsíčních průtoků v profilech zadaných nádrží V současné době máme však k dispozici zřídkakdy více než 50 let pozorování Situaci navíc značně komplikuje nutnost homogenity a reprezentativnosti vstupního hydrologického podkladu, což žádá např vyloučit roky s potenciálním ovlivněním lidskou činností Deterministické řešení nádrží v těchto naměřených (reálných) průtokových řadách je však značně nespolehlivé, protože za celé např 50-leté období se můžou vyskytnout pouze jedna či dvě sucha, která jsou pro návrh objemu nádrže rozhodující Z uvedeného důvodu dáváme přednost stochastickému řešení, kdy jsou generovány dlouhé syntetické průtokové řady, např 500 až 000 let dlouhé a v nich je teprve řešena zásobní funkce nádrží Pro generování syntetických průtokových řad je často používán lineární autoregresní model AR ve tvaru: Q t = Q t- a + Q t-2 a 2 + + Q t-k a k + e t () kde Q t je průtok v kroku t, a k jsou koeficienty lineární regrese a e t je náhodná odchylka s normálním rozdělením N(0,σ 2 ) Koeficienty a a k lze snadno určit řešením soustavy lineárních Yule-Walkerových rovnic : r r r k r r r k rk ( ) rk ( 2) r( 0) ( 0) ( ) ( ) ( ) ( 0) ( 2) a a2 a k = r( ) r( 2) rk ( ) (2) kde členy r(0) až r(k) jsou autokorelační koeficienty průtokové řady Q Pro řešení koeficientů a byla sestavena funkce, která využívá již předdefinovanou funkci CORRCOEF a výhody maticových oprerací v prostředí

MATLAB Pro generování náhodné odchylky byla použita funkce RANDN Při generování řad průměrných měsíčních průtoků je třeba řešit systém dvanácti rovnic typu () a řady transformovat na některé asymetrické rozložení pravděpodobnosti např logaritmicko-normální Řešení nádrží vychází ze základní diferenciální rovnice: V = Q( t) O( t) t která vyjadřuje změnu objemu nádrže V podle okamžitého rozdílu přítoku Q a odtoku O v čase t Při strategickém řízení je však zpravidla krok řízení stejný jako krok použitých časových řad ( měsíc) a rovnici (3) lze tudíž přepsat do diskrétního tvaru: (3) V k = V k- + (P k O k ) (4) kdy objem nádrže je počítán postupně bilanční metodou v každém kroku řešení podle daného přítoku a odtoku z nádrže Následující příklad popisuje řešení optimálního strategického řízení soustavy nádrží Skalka Jesenice s kompenzací do odběrného profilu Citice na Ohři (obr), řešeného v rámci projektu rekultivace Podkrušnohorské uhelné pánve [5] Projekt předpokládá postupné zatápění zbytkových uhelných jam vodou Jedna z variant počítá s dotacemi vody z Ohře, což vede ke zvýšení nároků na stávající vodohospodářskou soustavu a k nutnosti přešetření její optimální funkce Obr Schéma soustavy Jesenice - Skalka s kompenzací do profilu Citice Kritériem optimality je maximální nalepšení Q n v profilu Citice Schematizace VH řešení předpokládá zabezpečení Q n nejprve přítokem z mezipovodí a poté kompenzací z obou nádrží Neznámou je poměr k v jakém se budou nádrže podílet na zabezpečení dotace přítoku z mezipovodí do celkového nalepšení Q n Řešení je provedeno v syntetických 500-letých řadách průměrných měsíčních průtoků a musí splňovat podmínku dodržení zabezpečenosti dodávky vody a minimálních průtoků pod nádržemi Volme např zabezpečenost podle trvání P t = 5% Problém optimalizace společně s omezujícími podmínkami je tudíž formalizován takto : max[ Qn( k)] = min[ Qn( k)] 0 k Q P t Skalka min 3 m s 5%, Q Jesenice min 3 045 m s (5) Optimalizace problému (5) byla provedena pomocí metody sekvenčního kvadratického programování SQP v prostředí MATLAB Metoda SQP využívá principy nelineárního programování a quasi-newtonovu gradientní metodu Algoritmus dospěl po 24 iteracích k optimálnímu rozdělení kompenzačního odtoku mezi oběma nádržemi v poměru 236% z Jesenice a 6,4% ze Skalky za celkového nalepšení Q n =5 m 3 s -

3 Operativní řízení nádrží Operativní řízení se také někdy nazývá řízení v reálném čase a je spojeno převážně s úlohami povodňového řízení nádrží, příp řízení nádrží v obdobích hydrologického sucha Řešení těchto extrémních situací vychází ze základních parametrů nádrží získaných ze strategického řízení a je optimalizováno operativními manipulačními zásahy v reálném čase, kdy časová diskretizace řešení je v řádu hodin až desítek minut Následující příklad uvádí povodňové řízení nádrže Pastviny na Divoké Orlici Pro operativní řízení nádrže byl využit rozhodovací model [], který pro rozhodnutí o velikosti vypouštěného odtoku z nádrže v každém kroku řízení za povodně využívá informace o předchozích stavech systému (dynamika), aktuálním stavu a prognózy přítoků do nádrže v nejbližším čase Schéma modelu je na obr2 Obr 2 Základní schéma rozhodovacího modelu řízení za povodně Základní rovnice nádrže (3) je řešena v prostředí MATLAB pomocí vestavěného řešitele obyčejných diferenciálních rovnic (ODE solver) Maximální chyba integračního kroku je nastavena na relativní hodnotu 0% a na absolutní hodnotu 0-6, což odpovídá výpočetnímu kroku podle obr2 τ = 2 min Rozhodovací algoritmus pracuje s krokem řízení (control step) τ 2 Na začátku tohoto kroku je vyhodnocena situace pomocí všech vstupních proměnných a následně je nastavena hodnota odtoku z nádrže O, která zůstává po celý zbytek kroku řízení τ 2 konstantní Na obr2 je označen počátek aktuálního kroku řízení jako t V případě pastvinské nádrže jsme volili τ 2 =6hod, což dobře odpovídá lokálním podmínkám Řídící algoritmus používá hydrologickou prognózu přítoku do nádrže, délka předstihu této prognózy je ve schématu na obr2 vyznačena jako τ 3 V našem případě jsme volili s ohledem na rozsah a tvar povodí nad hrází předstih předpovědi τ 3 = 24hod V obr2 je symbolem τ 4 označen krok dat, který je v našem případě dán hydrologickými a meteorologickými záznamy a je roven τ 4 =hod V tab jsou uvedeny vstupní veličiny, které model používá Na počátku každého kroku řízení jsou vyhodnoceny všechny vstupní parametry včetně prognózovaných přítoků do nádrže Ty jsou vypočteny pomocí hydrologického modelu Aqualog [4], který rutinně používá Český hydrometeorologický ústav a který je v současnosti kalibrován pro většinu českých toků Tab Vstupní veličiny Vstupní veličina Popis Q t aktuální přítok stavové veličiny V t aktuální náplň nádrže Q t-, Q t-2,,q t-n předchozí přítoky dynamika Q F t+, Q F t+,,q F předpovídané přítoky t+τ3 předpověď g strmost předpovídaného hydrogramu Q neš neškodný odtok konstanty minimální průtok Q min

Kalibrace modelu byla provedena pro soubor šesti historických povodní z let 38 až 2000, které představují dostatečně reprezentativní podklad pro řešení, protože obsahují nejenom malé povodně, ale i 00-letou povodeň z roku 2000 Rozhodovací model má strukturu sekvence podmíněných pravidel typu IF-THEN Levá strana každého pravidla je tvořena podmínkou, jejíž splnění aktivuje spuštění akce na pravé straně pravidla Akcí se zde rozumí konkrétní doporučení o velikosti vypouštěného odtoku z nádrže Optimalizace řízení je provedena ve dvou nezávislých etapách, kdy v první fázi je optimalizováno řízení velkých povodní s vysokou dobou opakování Zde je kritériem optimality minimalizace kulminačního odtoku z nádrže během povodně a maximalizace časového oddálení kulminace Na obr 3 je zobrazen přepad vody přes přelivy nádrže Pastviny za povodně z roku Ve druhé etapě je optimalizováno řízení malých povodní ve snaze jejich včasné identifikace, což zabrání zbytečnému předvypouštění zásobního prostoru nádrže, které s sebou nese snížení spolehlivosti nádrže z hlediska jejich ostatních účelů (vodárenské využití nádrže) Situace byla řešena optimalizací parametru, který popisuje dobu plánovaného doplnění deficitu zásobního prostoru nádrže, jakmile pomine hrozba povodně podle hydrologické prognózy Pro optimalizaci se využily dva způsoby, jednak se minimalizoval součet kvadrátů odchylek kót hladiny od kóty zásobního prostoru za současného omezení maximální změny vypouštěného množství a jednak se maximalizoval první autokorelační koeficient odtoků vody z nádrže při omezení celkového počtu po sobě následujících dnů s deficitem zásobního prostoru Úloha byla řešena nelineárním programováním v prostředí MATLAB (algoritmus SQP) Výsledky řešení pro povodeň z roku jsou uvedeny na obr4 Obr 3 Pastviny přepad vody přes přelivy za povodně z roku 20 ] 00 - ṣ 3 80 [ m y 60 k t o ů 40 r P 20 8 m 3 s - 05 m 3 s - 64 m 3 s - 0 4 5 6 8 0 2 Přítok Modelovaný odtok Skutečný odtok Obr4 Porovnání řízení povodně rozhodovacím modelem se skutečným řízením z roku Z obr4 vyplývá, že rozhodovací model řízení nádrže umožnil podstatně větší redukci kulminace povodňové vlny v porovnání se skutečným řízením na nádrži v roce Zjištěný výsledek je dán především včasným předvypouštěním zásobního prostoru nádrže na základě prognózované povodně již od ranních hodin 6 července

4 Závěr Příspěvek ve stručnosti seznámil s problematikou řízení nádrží a vodohospodářských soustav v podmínkách stochastické neurčitosti a podal souhrn hlavních metodických postupů pro jejich řešení a optimalizaci Použití programovacího prostředí MATLAB se jeví pro řešení úloh strategického a operativního řízení nádrží jako velice výhodné Za tímto účelem byla sestrojena vlastní knihovna programů v podobě m-files Výzkum prokázal význam operativních modelů pro řízení povodňových průtoků na nádržích a jejich výhody oproti empirickému řízení bez modelu, mezi které patří především objektivizace a stabilizace rozhodovacího procesu Literatura [] Fošumpaur, P - Nacházel, K - Patera, A: A decision making model for flood control operation, In: sborník příspěvků workshopu: Modern Techniques for dams - Financing, Construction, Operation, Risk assessment, 6 výročzasedání ICOLD, Dresden, 200 [2] Nacházel, K: Neurčitost ve vodním hospodářství, Vodohosp čas, 4,, č, s 3-25 [3] Votruba, L a kol: Vodohospodářské soustavy, SNTL, Praha, [4] Zezulák, J - Krejčí, J: Návrh softwarové části hydrologického předpovědního systému In: Sborník referátů Operativní hydrologie a řízení vodohospodářských soustav II Praha: Centrum pro kontinuální vzdělávání ve vodním hospodářství, C -8 [5] Výzkumný projekt VaV/50/2/8 MŽP ČR na téma - Vodohospodářské řešení rekultivace a revitalizace podkrušnohorské uhelné pánve, 8 Poděkování Příspěvek byl zpracován s podporou grantů GA ČR reg č 03//40 "Extrémní hydrologické jevy v povodích" a reg č 03//D03 "Aplikace umělé inteligence ve výzkumu extrémních hydrologických jevů" Kontaktní adresa: Dr Ing Pavel Fošumpaur, ČVUT v Praze, Fakulta stavební, Katedra hydrotechniky Thákurova, 66 2 Praha 6 E-mail: fosump@fsvcvutcz