Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel
|
|
- Alžběta Konečná
- před 9 lety
- Počet zobrazení:
Transkript
1 Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Modul Řešitel (v anglické verzi Solver) je určen pro řešení lineárních i nelineárních úloh matematického programování. Pro ilustraci řešení úlohy lineárního programování pomocí tohoto modulu použijeme následující příklad: Obchodník s bylinnými čaji nakoupil od pěstitelů a sběratelů bylin 3 kg usušené máty (5% odpadu) a 1,5 kg usušené třezalky (8% odpadu). Z těchto bylin chce připravit sáčky s hmotností 10 g jednak s čistou mátou, jednak se směsí máty a třezalky. Uvažuje dva druhy směsí, a to směs I, ve které bude poměr máty a třezalky 3:2, a směs II, ve které budou obě tyto byliny zastoupeny stejným dílem. Předpokládaný zisk z prodeje jednoho sáčku uvažovaných druhů čaje je po řadě 2 Kč, 3 Kč, 2 Kč. Kolik sáčků s mátou, se směsí I a se směsí II má obchodník z nakoupených bylin připravit, aby si jejich prodejem zajistil co největší zisk? Neznámé veličiny v dané úloze představují počty sáčků naplněných jednotlivými druhy čajů, a to x 1. počet sáčků s mátou x 2. počet sáčků se směsí I x 3. počet sáčků se směsí II Po odečtení 5% z nakoupeného množství máty a 8% z nakoupeného množství třezalky bude k dispozici 2850 g máty a 1380 g třezalky. Omezení, která jsou dána těmito množstvími, jsou vyjádřena nerovnicemi 10x 1 + 6x 2 + 5x x 2 + 5x Účelová funkce představuje závislost zisku na počtu sáčků s jednotlivými druhy čajů a je tedy tvaru z = 2x 1 + 3x 2 + 2x 3 max Prvním krokem při práci s modulem Řešitel je příprava vstupních dat příslušného matematického modelu na list tabulkového procesoru. Uspořádání těchto dat může být v podstatě libovolné, ale musí být dodržena jistá pravidla, která optimalizační modul vyžaduje. Tabulka 1 ilustruje, jak mohou být ve spreadsheetu rozvržena vstupní data výše uvedeného příkladu (v orámovaných oblastech jsou zapsány povinné údaje; ostatní zápisy v tabulce usnadňují orientaci ve vstupních a výstupních datech řešené úlohy). Aby bylo možné zapsat ve spreadsheetu jednotlivé omezující podmínky, je třeba nejdříve vyjádřit jejich levou stranu, a to pomocí skalárního součinu vektoru strukturních koeficientů s vektorem neznámých. Za předpokladu, že vektor neznámých bude uložen v buňkách B10 až D10, levá strana prvního omezení řešené úlohy je dána funkcí =SOUČIN.SKALÁRNÍ(B4:D4;B10:D10) (v anglické verzi jde o funkci SUMPRODUCT) a je zapsána do buňky G4. Zkopírováním této funkce do buňky G5 při fixaci adres buněk, ve kterých jsou uloženy jednotlivé neznámé, získáme levou stranu druhé omezující podmínky. Účelovou funkci lineárního optimalizačního modelu lze též vyjádřit jako skalární součin vektoru koeficientů v účelové funkci s vektorem neznámých. Tento součin má pro řešenou úlohu tvar =SOUČIN.SKALÁRNÍ(B7:D7;B10:D10) a je uložen v buňce E10.
2 Tabulka 1 Po ukončení přípravy vstupních dat lze aktivovat vlastní optimalizační modul vyvoláním nabídky Řešitel v rámci menu Nástroje (Tools). V dialogovém okně Parametry řešitele" (Solver Parameters) je potom nutné zadat následující informace: 1. adresu buňky, ve které je vzorec pro výpočet hodnoty účelové funkce (Nastavit buňku - Set Target Cell) 2. charakter kritéria optimality, tj. Rovno: Max, Min, Hodnota (equal to: max, min, value of); zvolí se maximalizační nebo minimalizační charakter účelové funkce nebo - pokud jde o řešení úlohy, jejímž cílem je nalezení požadované hodnoty účelové funkce - po volbě "Hodnota" se zadá požadované číslo 3. oblast proměnných (neznámých) modelu, tj. Měněné buňky (by Changing Cells) 4. Omezující podmínky (Subject to the Constraints); po volbě Přidat (add) se v dialogovém okně Přidat omezující podmínky zadávají tři položky, a to Odkaz na buňku (Cell Reference), tj. adresa buňky obsahující vzorec pro výpočet levých stran jednotlivých omezujících podmínek Typ omezení (Relation), což je jedna z možností, =,, celé (integer) nebo binární (binary) Omezující podmínka (Constraint Value), která může být reprezentována buď adresou buňky obsahující pravou stranu příslušného omezení, nebo může být vložena z klávesnice jako konstanta Omezující podmínky lze definovat buď každou zvlášť, nebo v bloku, jestliže jde o podmínky se stejným typem omezení. Blokový zápis podmínek je výhodný např. při zápisu podmínek nezápornosti jednotlivých neznámých, kdy jako "Odkaz na buňku" zadáme blok proměnných a po volbě " " napíšeme jakožto "Omezující podmínku" v dalším dialogovém okénku nulu. Okno Parametry řešitele je pro řešenou úlohu zobrazeno v tabulce 2.
3 Tabulka 2 V dialogovém okně "Parametry řešitele" je možné nastavit ještě další parametry, a to v nabídce Možnosti (Options). V dialogovém okně "Možnosti řešitele" je možné volit především tyto parametry: - maximální čas (Max Time), který představuje počet sekund, po jehož uplynutí je výpočet přerušen (standardně 100 sekund) - iterace (Max Iterations), tj. počet iterací, po jehož dosažení je výpočet přerušen a uživateli je nabídnuto řešení z poslední iterace (standardně nastavený počet iterací je 100) - přesnost (Precision), se kterou musí souhlasit levá a pravá strana omezující podmínky tak, aby byla tato podmínka považována za splněnou (standardní nastavení je ) - tolerance (Tolerance), která představuje v procentech vyjádřenou odchylku pro celočíselné řešení (standardně 5%) - lineární model (Linear Model), který je užitečné zapnout při řešení úloh lineárního programování (standardně tento přepínač není zapnut) Po volbě parametrů se z okna "Možnosti řešitele" vrátíme do okna "Parametry řešitele" volbou OK a spustíme řešení zadané úlohy volbou Řešit (Solve). Po ukončení výpočtu je zobrazeno dialogové okno "Výsledky řešení" (Solver Results) s informacemi o tom, zda bylo nalezeno optimální řešení ("Řešitel nalezl řešení, které splňuje všechny omezující podmínky" - Solver found a solution. All constraints and optimality conditions are satisfied.) nebo zda úloha je neřešitelná ("Řešitel nenalezl vhodné řešení"). V případě řešitelnosti úlohy se v listu se vstupními daty zobrazí optimální hodnoty jednotlivých proměnných, odpovídající hodnoty levých stran omezení a odpovídající hodnota účelové funkce. Pro řešenou úlohu se tabulka 1 transformuje na tabulku 3, ze které vyplývá, že maximální zisk ve výši 1191 Kč zajišťuje výroba a prodej 78 sáčků s mátou a 345 sáčků se směsí I, ve které je 60 % máty a 40 % třezalky. Bude spotřebováno veškeré množství usušené máty i třezalky. Pokud daná úloha má optimální řešení, v dialogovém okně "Výsledky řešení" je možné se rozhodnout pro volbu "Uchovat řešení" (Keep Solver Solution) nebo "Obnovit původní hodnoty" (Restore Original Values) a získat podrobnější informace o vypočteném optimálním řešení pomocí Zpráv (Reports), z nichž každá je umístěna do automaticky vygenerovaného samostatného listu. V nabídce jsou tři druhy zpráv: Výsledková zpráva (Answer Report) obsahuje jednak informace o původních a konečných hodnotách strukturních proměnných a účelové funkce, jednak informace o vztahu mezi hodnotami pravých a levých stran jednotlivých omezujících podmínek včetně podmínek nezápornosti všech proměnných Citlivostní zpráva (Sensitivity Report) obsahuje intervaly stability pro pravé strany omezujících podmínek a pro koeficienty v účelové funkci. Limitní zpráva (Limit Report) uvádí, jak se mění hodnota optimalizačního kritéria při změně hodnot proměnných v daných mezích. Výsledková zpráva řešené úlohy je zobrazena v tabulce 4.
4 Tabulka 3 Microsoft Excel 8.0 Výsledková zpráva List: [caje.xls]list1 Zpráva vytvořena: :31:15 Nastavovaná buňka (Max) Buňka Název Původní hodnota Konečná hodnota $E$10 Optimum Zisk Měněné buňky Buňka Název Původní hodnota Konečná hodnota $B$10 Optimum Máta 0 78 $C$10 Optimum Směs I $D$10 Optimum Směs II 0 0 Omezující podmínky Buňka Název Hodnota buňky Vzorec Stav Odchylka $G$4 Máta 2850 $G$4<=$F$4 Platí 0 $G$5 Třezalka 1380 $G$5<=$F$5 Platí 0 $B$10 Optimum Máta 78 $B$10>=0 Neplatí 78
5 $C$10 Optimum Směs I 345 $C$10>=0 Neplatí 345 $D$10 Optimum Směs II 0 $D$10>=0 Platí 0 Tabulka 4
V této kapitole bude popsán software, který je možné využít pro řešení rozhodovacích problémů popisovaných v těchto skriptech.
Kapitola 1 Softwarová podpora V této kapitole bude popsán software, který je možné využít pro řešení rozhodovacích problémů popisovaných v těchto skriptech. Solver (Řešitel) Pro řešení úloh lineárního
4.Řešení optimalizačních úloh v tabulkových kalkulátorech
4.Řešení optimalizačních úloh v tabulkových kalkulátorech Tabulkové kalkulátory patří mezi nejpoužívanější a pro běžného uživatele nejdostupnější programové systémy. Kromě základních a jim vlastních funkcí
Obr. P1.1 Zadání úlohy v MS Excel
Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat
Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel
Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat
P ílohy. P íloha 1. ešení úlohy lineárního programování v MS Excel
P ílohy P íloha 1 ešení úlohy lineárního programování v MS Excel V této p íloze si ukážeme, jak lze ešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat
11. Analytické nástroje
233 11. Analytické nástroje Během výkladu jednotlivých funkcí Excelu jste se seznámili s řadou funkcí, které počítají požadované výsledky z údajů vložených do buněk. Excel však sahá ještě dál a umí provádět
4EK212 Kvantitativní management. 2. Lineární programování
4EK212 Kvantitativní management 2. Lineární programování 1.7 Přídatné proměnné Přídatné proměnné jsou nezáporné Mají svoji ekonomickou interpretaci, která je odvozena od ekonomické interpretace omezení
Půjčka 200,000 Kč 75000 Úrok 6% Rok
Půjčka 200,000 Kč 75000 Úrok 6% Sazba 3% Doba splátek 60 1 Splátka/částka 1500 2 3 Funkce Platba -3,867 Kč 231,994 Kč 4 Budhodnota 96,970 Kč 90,000 Kč 5 Počet období 220.2713073 330,407 Kč 6 Úroková míra
3. Optimalizace pomocí nástroje Řešitel
3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)
4EK311 Operační výzkum. 3. Optimalizační software a stabilita řešení úloh LP
4EK311 Operační výzkum 3. Optimalizační software a stabilita řešení úloh LP 3.1 Příklad matematický model Lis: 1 x 1 + 2 x 2 120 [min] Balení: 1 x 1 + 4 x 2 180 [min] Poptávka: 1 x 1 1 x 2 90 [krabiček]
Nástroje pro analýzu dat
7 Nástroje pro analýzu dat V té to ka pi to le: Ověřování vstupních dat Hledání řešení Řešitel Scénáře Citlivostní analýza Rychlá analýza Kapitola 7 Nástroje pro analýzu dat Součástí Excelu jsou nástroje
4EK201 Matematické modelování. 2. Lineární programování
4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených
4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
Metody lineární optimalizace Simplexová metoda. Distribuční úlohy
Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního
4EK213 Lineární modely. 10. Celočíselné programování
4EK213 Lineární modely 10. Celočíselné programování 10.1 Matematický model úlohy ILP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a
Školení obsluhy PC stručný manuál obsluhy pro používání PC
Školení obsluhy PC stručný manuál obsluhy pro používání PC tabulkový procesor MS EXCEL Zpracoval: mgr. Ježek Vl. Str. 1 MS EXCEL - základy tabulkového procesoru Tyto programy jsou specielně navrženy na
SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404
SOLVER UŽIVATELSKÁ PŘÍRUČKA Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 1. Solver Program Solver slouží pro vyhodnocení experimentálně naměřených dat. Základem
Ekonomická formulace. Matematický model
Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest
Formátování dat EU peníze středním školám Didaktický učební materiál
EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT4.06 Předmět: IVT Tematická oblast: Microsoft Office 2007 Autor: Ing. Vladimír Šauer Škola: Gymnázium, Polička,
2. cvičení z ZI1 - Excel
Doc.Ing. Vlastimil Jáneš... janes@fd.cvut.cz 2. cvičení z ZI1 - Excel O Excelu - organizace listů : 1 list : max. 65 536 řádků a 256 sloupců, tj. 16 777 216 buněk. Sloupce : A, B,.Z, AA, AB,. IU, IV (26
Parametrické programování
Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou
Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis
Parametrizovaná geometrie v COMSOL Multiphysics, verze 3.5a
Parametrizovaná geometrie v COMSOL Multiphysics, verze 3.5a Parametrizovanou 3D geometrii lze v COMSOL Multiphysics používat díky aplikačnímu módu pro pohyblivou síť: COMSOL Multiphysics > Deformed Mesh
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb
Simplexové tabulky z minule. (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25
Simplexové tabulky z minule (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25 Simplexová metoda symbolicky Výchozí tabulka prom. v bázi zákl. proměné přídatné prom. omez. A E b c T 0 0 Tabulka po přepočtu
Scénáře. V té to ka pi to le: Účel Přidání scénářů Správce scénářů Poznámky Příklady
9 Scénáře V té to ka pi to le: Účel Přidání scénářů Správce scénářů Poznámky Příklady Kapitola 9 Scénáře V situaci, kdy se v oblasti buněk mění množiny hodnot se stejným uspořádáním, můžeme použít scénáře.
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT
4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení
Základní vzorce a funkce v tabulkovém procesoru
Základní vzorce a funkce v tabulkovém procesoru Na tabulkovém programu je asi nejzajímavější práce se vzorci a funkcemi. Když jednou nastavíte, jak se mají dané údaje zpracovávat (některé buňky sečíst,
Níže uvedená tabulka obsahuje technické údaje a omezení aplikace Excel (viz také článek Technické údaje a omezení aplikace Excel (2007).
Níže uvedená tabulka obsahuje technické údaje a omezení aplikace - (viz také článek Technické údaje a omezení aplikace Excel (). otevřených sešitů a systémovými prostředky a systémovými prostředky a systémovými
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNCKÁ NVEZTA V LBEC Fakulta mechatroniky, informatiky a mezioborových studií Základy spojitého řízení Analýza elektrického obvodu čební text Josef J a n e č e k Liberec 010 Materiál vznikl v rámci projektu
NEXIS 32 rel. 3.50. Generátor fází výstavby TDA mikro
SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS
4EK213 Lineární modely. 5. Dualita v úlohách LP
4EK213 Lineární modely 5. Dualita v úlohách LP 5. Dualita v úlohách LP Obecné vyjádření simplexové tabulky Formulace duálního problému Formulace symetrického duálního problému Formulace nesymetrického
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT
VY_32_INOVACE_In 6.,7.13 Vzorce vložení funkce
VY_32_INOVACE_In 6.,7.13 Vzorce vložení funkce Anotace: Žák se seznámí se základními druhy funkcí a jejich vložením v programu MS Excel 2010. Pracuje na svém žákovském počítači dle pokynů v prezentaci.
MANUÁL VÝPOČTOVÉHO SYSTÉMU W2E (WASTE-TO-ENERGY)
MANUÁL VÝPOČTOVÉHO SYSTÉMU W2E (WASTE-TO-ENERGY) 0 1. PRACOVNÍ PLOCHA Uspořádání a vzhled pracovní plochy, se kterým se uživatel během práce může setkat, zobrazuje obr. 1. Obr. 1: Uspořádání pracovní plochy
Beton 3D Výuková příručka Fine s. r. o. 2010
Zadání Cílem tohoto příkladu je navrhnout a posoudit výztuž šestiúhelníkového železobetonového sloupu (výška průřezu 20 cm) o výšce 2 m namáhaného normálovou silou 400 kn, momentem My=2,33 knm a momentem
Využití tabulkového procesoru MS Excel
Semestrální práce Licenční studium Galileo srpen, 2015 Využití tabulkového procesoru MS Excel Ing Marek Bilko Třinecké železárny, a.s. Stránka 1 z 10 OBSAH 1. ÚVOD... 2 2. DATOVÝ SOUBOR... 2 3. APLIKACE...
Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma III.2.3, pracovní list 1 Technická měření v MS Excel Základy práce s tabulkou Ing. Jiří Chobot VY_32_INOVACE_323_1
Programy pro ˇreˇsen ı ulohy line arn ıho programov an ı 18. dubna 2011
Programy pro řešení úlohy lineárního programování 18. dubna 2011 Přehled Mathematica Sage AMPL GNU Linear Programming Kit (GLPK) Mathematica Mathematika je program pro numerické a symbolické počítání.
4EK213 Lineární modely. 4. Simplexová metoda - závěr
4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu
Inovace výuky prostřednictvím šablon pro SŠ
Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748
Cvičení software Groma základní seznámení
Cvičení software Groma základní seznámení 4 2 3 1 Obr. 1: Hlavní okno programu Groma v.11. Hlavní okno 1. Ikony základních geodetických úloh, lze je vyvolat i z menu Výpočty. 2. Ikona základního nastavení
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
4EK311 Operační výzkum. 2. Lineární programování
4EK311 Operační výzkum 2. Lineární programování 2.2 Matematický model úlohy LP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a 13 x
Lineární programování
24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.
MIDAS GTS. gram_txt=gts
K135YGSM Příklady (MIDAS GTS): - Plošný základ lineární výpočet a nelineární výpočet ve 2D MKP - Stabilita svahu ve 2D a 3D MKP - Pažící konstrukce ve 2D a 3D MKP MIDAS GTS http://en.midasuser.com http://departments.fsv.cvut.cz/k135/cms/?pa
M - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
Nejistota měření. Thomas Hesse HBM Darmstadt
Nejistota měření Thomas Hesse HBM Darmstadt Prof. Werner Richter: Výsledek měření bez určení nejistoty měření je nejistý, takový výsledek je lépe ignorovat" V podstatě je výsledek měření aproximací nebo
2. Numerické výpočty. 1. Numerická derivace funkce
2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden
Elektronické zpracování dotazníků AGEL. Verze 2.0.0.1
Elektronické zpracování dotazníků AGEL Verze 2.0.0.1 1 Obsah 2 Přihlášení do systému... 1 3 Zápis hodnot dotazníků... 2 3.1 Výběr formuláře pro vyplnění dotazníku... 2 3.2 Vyplnění formuláře dotazníku...
Příklady modelů lineárního programování
Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence
Řazení řádků ve vzestupném pořadí (A až Z nebo 0 až 9) nebo sestupném pořadí (Z až A nebo 9 až 0)
Řazení oblasti Řazení řádků ve vzestupném pořadí (A až Z nebo 0 až 9) nebo sestupném pořadí (Z až A nebo 9 až 0) 1. Klepněte na buňku ve sloupci, podle kterého chcete řádek seřadit. 2. Klepněte na tlačítko
MIDAM Simulátor Verze 1.5
MIDAM Simulátor Verze 1.5 Simuluje základní komunikační funkce modulů Midam 100, Midam 200, Midam 300, Midam 400, Midam 401, Midam 410, Midam 411, Midam 500, Midam 600. Umožňuje změny konfigurace, načítání
VÝŘEZ OBLASTI BUNĚK VZORCEM
Dovedete si představit výřez oblasti buněk zobrazený na jiném listu? Nepotřebujeme k tomu žádný speciální prvek (viz třeba Spreadsheet z dnes již nepodporovaných Office Web Components), na druhou stranu
KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM
KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat
Excel 2007 praktická práce
Excel 2007 praktická práce 1 Excel OP LZZ Tento kurz je financován prostřednictvím výzvy č. 40 Operačního programu Lidské zdroje a zaměstnanost z prostředků Evropského sociálního fondu. 2 Excel Cíl kurzu
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
Systematická tvorba jízdního řádu 2. cvičení
Projektování dopravní obslužnosti Systematická tvorba jízdního řádu 2. cvičení Ing. Zdeněk Michl Ústav logistiky a managementu dopravy ČVUT v Praze Fakulta dopravní Rekapitulace zadání Je dána následující
Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb
16 Optimální hodnoty svázaných energií stropních konstrukcí (Graf. 6) zde je rozdíl materiálových konstant, tedy svázaných energií v 1 kg materiálu vložek nejmarkantnější, u polystyrénu je téměř 40krát
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava
Řešení. ŘEŠENÍ 36 Výsledková listina soutěže
Příklad zahrnuje Textová editace buněk Základní vzorce Vložené kliparty Propojené listy Grafická úprava buněk Složitější vzorce Vložené externí obrázky Formuláře Úprava formátu Vysoce speciální funkce
Microsoft Excel kopírování vzorců, adresování, podmíněný formát. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie
Microsoft Excel kopírování vzorců, adresování, podmíněný formát Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Kopírování vzorců v mnoha případech je třeba provést stejný výpočet
Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 6. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28.
Zdokonalování gramotnosti v oblasti ICT Kurz MS Excel kurz 6 1 Obsah Kontingenční tabulky... 3 Zdroj dat... 3 Příprava dat... 3 Vytvoření kontingenční tabulky... 3 Možnosti v poli Hodnoty... 7 Aktualizace
Systémové modelování. Ekonomicko matematické metody I. Lineární programování
Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a
PROGRAM RP45. Vytyčení podrobných bodů pokrytí. Příručka uživatele. Revize 05. 05. 2014. Pragoprojekt a.s. 1986-2014
ROADPAC 14 RP45 PROGRAM RP45 Příručka uživatele Revize 05. 05. 2014 Pragoprojekt a.s. 1986-2014 PRAGOPROJEKT a.s., 147 54 Praha 4, K Ryšánce 16 RP45 1. Úvod. Program VÝŠKY A SOUŘADNICE PODROBNÝCH BODŮ
Vícekriteriální programování příklad
Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)
11.1 Jedna rovnice pro jednu neznámou
52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním
Optimální průzkum zájmového prostoru bezpilotními prostředky
Univerzita obrany Fakulta ekonomiky a managementu Katedra vojenského managementu a taktiky Softwarová dokumentace Optimální průzkum zájmového prostoru bezpilotními prostředky Unmanned Aerial Vehicles routes
DUM 01 téma: Obecné vlastnosti tabulkového editoru, rozsah, zápis do buňky, klávesové zkratky
DUM 01 téma: Obecné vlastnosti tabulkového editoru, rozsah, zápis do buňky, klávesové zkratky ze sady: 02 tematický okruh sady: Tabulkový editor ze šablony: 07 KANCELÁŘSKÝ SOFTWARE určeno pro: 1-4. ročník
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií
VY_32_INOVACE_33_06 Škola Střední průmyslová škola Zlín Název projektu, reg. č. Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávací oblast Vzdělávání v informačních a komunikačních
Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN BASIC
Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN BASIC Modul FADN BASIC je určen pro odbornou zemědělskou veřejnost bez větších zkušeností s internetovými aplikacemi a bez hlubších
Relativní a absolutní adresa buňky, pojmenování buňky/rozsahu
Relativní a absolutní adresa buňky, pojmenování buňky/rozsahu EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT4.12 Předmět: IVT Tematická oblast: Microsoft Office
Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda.
Úvod Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Mnoho technických problémů vede na řešení matematických úloh, které se následně převedou na úlohy řešení soustav nelineárních rovnic
Globální matice konstrukce
Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{
Lineární algebra. Soustavy lineárních rovnic
Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326
Microsoft Office. Excel ověření dat
Microsoft Office Excel ověření dat Karel Dvořák 2011 Ověření dat Při zadávání dat přímo z klávesnice je poměrně vysoké procento chybovosti, ať už jde o překlepy nebo zadání dat mimo předpokládaný rozsah.
4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP
4EK212 Kvantitativní management 1. Úvod do kvantitativního managementu a LP Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka
4. Vzorce v Excelu Tipy pro práci s Wordem Kontingenční tabulky v Excelu
4. Vzorce v Excelu Tipy pro práci s Wordem Kontingenční tabulky v Excelu Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek, M. Cvanová Zdroje dat Excelu Import dat
Dynamické programování
ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit
Matematika pro všechny
Projekt OPVK - CZ.1.07/1.1.00/.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické rovnice Autor: Ondráčková
BALISTICKÝ MĚŘICÍ SYSTÉM
BALISTICKÝ MĚŘICÍ SYSTÉM UŽIVATELSKÁ PŘÍRUČKA Verze 2.3 2007 OBSAH 1. ÚVOD... 5 2. HLAVNÍ OKNO... 6 3. MENU... 7 3.1 Soubor... 7 3.2 Měření...11 3.3 Zařízení...16 3.4 Graf...17 3.5 Pohled...17 1. ÚVOD
LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Úvod do celočíselné optimalizace
Úvod do celočíselné optimalizace Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Výpočetní aspekty optimalizace Martin Branda (KPMS
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
MIDAM Verze 1.1. Hlavní okno :
MIDAM Verze 1.1 Podporuje moduly Midam 100, Midam 200, Midam 300, Midam 400, Midam 401, Midam 410, Midam 411, Midam 500, Midam 600, Ghc 2x. Umožňuje nastavení parametrů, sledování výstupních nebo vstupních
Příklady ke cvičením. Modelování produkčních a logistických systémů
Modelování produkčních a logistických systémů Katedra logistiky, kvality a automobilové techniky Garant, přednášející, cvičící: Jan Fábry 10.12.2018 Příklady ke cvičením Opakování lineárního programování
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT
M - Příprava na 1. zápočtový test - třída 3SA
M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
Aplikace pro srovna ní cen povinne ho ruc ení
Aplikace pro srovna ní cen povinne ho ruc ení Ukázkový přiklad mikroaplikace systému Formcrates 2010 Naucrates s.r.o. Veškerá práva vyhrazena. Vyskočilova 741/3, 140 00 Praha 4 Czech Republic tel.: +420
Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN RESEARCH / DATA
Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN RESEARCH / DATA Modul FADN RESEARCH je určen pro odborníky z oblasti zemědělské ekonomiky. Modul neomezuje uživatele pouze na předpřipravené
Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030. MS Excel
Masarykovo gymnázium Příbor, příspěvková organizace Jičínská 528, Příbor Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030 MS Excel Metodický materiál pro základní