Časové řady, typy trendových funkcí a odhady trendů

Rozměr: px
Začít zobrazení ze stránky:

Download "Časové řady, typy trendových funkcí a odhady trendů"

Transkript

1 Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel

2 Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces Pomocí něho budeme modelovat pozorované časové řady Střední hodnota stochastického procesu {Y t} je funkce µ t daná vztahem µ t = E(Y t), t = 0, ±1, ±2 Autokovarianční funkce je definována jako γ t,s = C(Y t, Y s), t, s = 0, ±1, ±2, kde C(Y t, Y s) = E[(Y t µ t)(y s µ s)] = E[Y ty s] µ tµ s Autokorelační funkce je dána vztahem ρ t,s = C(Yt, Ys) = γt,s D(Yt)D(Y s) γt,tγ s,s

3 Stacionarita Jedním z důležitých vlastností stochastických procesů je stacionarita, což znamená, že pravděpodobnostní rozdělení, které řídí chování stochastického procesu je v čase neměnné, proces je ve statistickém ekvilibriu O procesu {Y t} řekneme, že je striktně stacionární, jestliže simultánní rozdělení Y t1, Y t2,, Y tn je stejné jako simultánní rozdělení Y t1 k, Y t2 k,, Y tn k pro všechna t a všechna možná zpoždění k Jestliže funkce γ s,t závisí na svých argumentech pouze prostřednictvím jejich rozdílů k = s t, pak říkáme, že proces je kovariančně stacionární Autokovarianční funkcí takového procesu budeme rozumět funkci jedné proměnné γ k = γ s t = γ s,t Je-li navíc střední hodnota procesu µ t konstantní pro všechna t (µ t = µ), proces {Y t} označujeme za slabě stacionární V dalším budeme místo slabě stacionární proces psát jen krátce proces stacionární

4 Stacionarita autokovarianční a autokorelační funkce Autokovarianční funkce γ k stacionárního stochastického procesu je definována jako γ k = C(Y t, Y t k ) = E[(Y t µ)(y t k µ)], a autokorelační funkce (ACF) ρ k je dána vztahem ρ k = C(Yt, Y t k) D(Yt)D(Y t k ) = γ k γ 0

5 Parciální autokorelační funkce Korelace mezi dvěma náhodnými veličinami je často způsobena tím, že obě veličiny jsou korelovány s veličinou třetí Parciální autokorelace podávají informaci o korelaci veličin Y t a Y t k očištěnou o vliv veličin ležících mezi nimi Parciální autokorelaci se zpožděním k stacionárního procesu {Y t} vyjadřuje parciální regresní koeficient φ kk v autoregresi k-tého řádu Y t = φ k1 Y t 1 + φ k2 Y t φ kk Y t k + e t, kde e t je veličina nekorelovaná s Y t j, j 1 Je to funkce zpoždění k a nazývá se parciální autokorelační funkce (PACF) ρ kk

6 Parciální autokorelační funkce Předpokládejme, že stacionární proces {Y t} má nulovou střední hodnotu Po vynásobení obou stran předchozí rovnice veličinou Y t j má střední hodnota této rovnice tvar takže platí Pro j = 1, 2,, k potom dostáváme γ j = φ k1 γ j 1 + φ k2 γ j φ kk γ j k, ρ j = φ k1 ρ j 1 + φ k2 ρ j φ kk ρ j k ρ 1 = φ k1 ρ 0 + φ k2 ρ φ kk ρ k 1 ρ 2 = φ k1 ρ 1 + φ k2 ρ φ kk ρ k 2 ρ k = φ k1 ρ k 1 + φ k2 ρ k φ kk ρ 0 Tyto rovnice se nazývají Yule-Walkerovy rovnice

7 Parciální autokorelační funkce Řešením této soustavy (Cramerovým pravidlem) pro k = 1, 2, postupně dostáváme ρ 11 = φ 11 = ρ 1, 1 ρ1 ρ 1 ρ 2 ρ 22 = φ 22 = 1 = ρ2 ρ2 1, ρ1 1 ρ 2 1 ρ ρ 1 ρ 2 ρ k 2 ρ 1 ρ 1 1 ρ 1 ρ k 3 ρ 2 ρ k 1 ρ k 2 ρ k 3 ρ 1 ρ k ρ kk = φ kk = 1 ρ 1 ρ 2 ρ k 2 ρ k 1 ρ 1 1 ρ 1 ρ k 3 ρ k 2 ρ k 1 ρ k 2 ρ k 3 ρ 1 1

8 Odhady Obecně jsou parametry µ, γ 0 a ρ k neznámé, za předpokladu stacionarity použijeme odhady µ = Y = 1 n n Y t, γ 0 = 1 n t=1 n (Y t Y ) 2 t=1 kde n je počet hodnot (délka) časové řady Odhad ρ k je dán výběrovou autokorelací n t=k+1 ρ k = (Yt Yt)(Y t k Y t) n t=1 (Yt Y, k = 1, 2,, n 1 )2 (V programu R lze spočítat pomocí funkce acf)

9 Odhady Výběrovou parciální korelační funkci získáme nahrazením ρ i jejím odhadem ˆρ i v odpovídajícím vzorci Byl však odvozen rekurzivní vztah, který výpočet zjednoduší ρ 11 = ρ 1 ρ kk = ˆρ k k 1 j=1 ρ k 1,j ρ k j 1 k 1 j=1 ρ, k 1,j ρ j ρ kj = ρ k 1,j ρ kk ρ k 1,k j, j = 1, 2,, k 1 (V programu R lze spočítat pomocí funkce pacf)

10 Proces bílého šumu white noise Důležitý stacionárním stochastickým procesem je tzv proces bílého šumu Jedná se o posloupnost nezávislých náhodných veličin se stejným rozdělením s nulovou střední hodnotou a konstantním rozptylem Pro bílý {ɛ t} platí { 1 k = 0 ρ k = 0 k 0 ρ kk = { 1 k = 0 0 k 0 Gaussovský bílý šum posloupnost nezávislých náhodných veličin s rozdělením N(0, σ 2 ɛ t )

11 Deterministický trend Např proces Y t = Y 0 + at, t = 1, n obsahuje deterministický lineární trend Y 0 označuje počáteční hodnotu Pro n = 100, Y 0 = 0, a = 1 proces zobrazený v grafu

12 Stochastický trend Např proces ( náhodná procházka nebo random walk ) Y t = Y t 1 + ɛ t, t = 1, n, kde ɛ t WN(0, σ 2 ) lze psát ve tvaru Y t = Y t 1 + ɛ t = (Y t 2 + ɛ t 1) + ɛ t = = (Y t 3 + ɛ t 2) + ɛ t 1 + ɛ t = = t = Y 0 + ɛ ɛ t = Y 0 + i=1 Y 0 značí počáteční hodnotu Dvě z možných realizací procesu (simulací) pro n = 100, Y 0 = 0, ɛ t WN(0, 1) jsou zobrazeny v grafech ɛ i

13 Stochastický trend Např proces ( náhodná procházka s driftem) Y t = Y t 1 + a + ɛ t, t = 1, n, kde ɛ t WN(0, σ 2 ) lze psát ve tvaru Y t = Y t 1 + a + ɛ t = (Y t 2 + a + ɛ t 1) + a + ɛ t = (Y t 3 + a + ɛ t 2) + 2a + ɛ t 1 + ɛ t = = t = Y 0 + at + i=1 Y 0 značí počáteční hodnotu Jedna z možných realizací procesu (simulace) pro n = 100, Y 0 = 0, ɛ t WN(0, 1) je zobrazena v grafu ɛ i

14 Regrese Základem klasické analýzy časové řady Y t je její rozklad na trend T t, sezónní složku S t a složku reziduální (zbytkovou, náhodnou) e t V aditivním modelu má dekompozice tvar Y t = T t + S t + e t, v multiplikativním modelu potom tvar Y t = T t S t e t Obvyklou metodou, jak získat trend je využití lineárních filtrů T t = i= λ iy t+i

15 Regrese Jednoduchým příkladem lineárních filtrů jsou klouzavé průměry délky 2m + 1 s konstantními váhami 1 m ˆT t = Y t+i 2m + 1 i= m Vyrovnanou hodnotu časové řady v čase t získáme jako průměr hodnot Y t m,, Y t 1, Y t, Y t+1, Y t+m Například pro m = 1 dostáváme klouzavý průměr délky 3 ˆT t = 1 (Yt 1 + Yt + Yt+1) 3 V programu R lze klouzavé průměry určit pomocí funkce filter nebo funkce ma z balíčku forecast

16 Regrese Graf zobrazuje obsahuje měsíční produkci piva v Austrálii od ledna 1956 do srpna 1995

17 Regrese Grafy zobrazují klouzavé průměry délky 5 (a = 2), 25 (a = 12), 81 (a = 20)

18 Regrese Délka filtru ovlivňuje stupeň vyhlazení Čím větší je délka klouzavého průměru, tím větší je vyhlazení časové řady Délku klouzavého průměru obvykle volíme tak, aby odpovídala periodě sezónních nebo cyklických fluktuací Při zpracování ekonomických časových řad se často zpracováváme čtvrtletní případně měsíční údaje, jež často obsahují sezónní složku opakující po sudém počtu pozorování (po čtyřech příp dvanácti hodnotách) Pro tyto případy lze použít tzv centrované klouzavé průměry Pro případ čtvrtletních měření určíme vyrovnanou hodnotu ze vztahu ˆT t = 1 [ (Yt 2 + Yt 1 + Yt + Yt+1) + 1 ] (Yt 1 + Yt + Yt+1 + Yt+2) = 4 = 1 (Yt 2 + 2Yt 1 + 2Yt + 2Yt+1 + Yt+2) 8 Jedná je o klouzavý průměr délky 5 s váhami 1, 1, 1, 1, 1 Analogicky pro měsíční použijeme klouzavé průměry délky 13 typu ˆT t = 1 (Yt 6 + 2Yt Yt+5 + Yt+6) 24

19 Regrese (v R je možné je počítat pomocí funkce filter) jsou základem klasické dekompozice, kterou v programu R provádí funkce decompose Poněkud sofistikovanější metodu dekompozice nabízí funkce stl Dekompozici časové řady lze také provádět pomocí lineární regrese (funkce lm viz regresní analýza) Mimo trendu (lineárního, kvadratického atd) je často vhodné do regresního modelu přidat buď sezónní složky, nebo periodické funkce s vhodnými periodami

20 Regrese Použití regresní analýzy Na obrázku je znázorněn vývoj hrubé měsíční mzdy v ČR v období , jedná se o čtvrtletní data

21 Regrese Použití regresní analýzy odhadneme pomocí přímkové regrese, pro numerickou stabilitu výpočtu provedeme transformaci časové proměnné t = rok 1999, takže t = 1, 13 Odhad Sm chyba t-test p-hodnota konstanta 11875, , ,44 0,0000 t 1051, , ,35 0,0000

22 Regrese Použití regresní analýzy Periodickou složku odhadneme pomocí dummy proměnných q 1, q 2, q 3, q 4 potom pomocí polynomu 3 stupně konstantu do modelu nezahrneme, vznikne vlastně součtem dummy proměnných q 1, q 2, q 3, q 4 q 1 = (1, 0, 0, 0, 1, 0, 0, 0,, 1, 0, 0, 0) q 2 = (0, 1, 0, 0, 0, 1, 0, 0,, 0, 1, 0, 0) q 3 = (0, 0, 1, 0, 0, 0, 1, 0,, 0, 0, 1, 0) q 4 = (0, 0, 0, 1, 0, 0, 0, 1,, 0, 0, 0, 1) Odhad Sm chyba t-test p-hodnota t 484, ,8450 3,17 0,0027 t 2 111, ,3280 4,78 0,0000 t 3 5,7907 1,0430 5,55 0,0000 q , , ,30 0,0000 q , , ,35 0,0000 q , , ,63 0,0000 q , , ,09 0,0000

23 Regrese Použití regresní analýzy

24 Regrese Použití regresní analýzy Vyjdeme-li z uvedeného regresního modelu, dostaneme predikce da rok 2013 spolu s 95% intervaly spolehlivosti predikce dolní horní 2013, 1 čtvrtletí 24423, , , , 2 čtvrtletí 25237, , , , 3 čtvrtletí 24943, , , , 4 čtvrtletí 26734, , ,09

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický

Více

Modely stacionárních časových řad

Modely stacionárních časových řad Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Proces bílého šumu Proces {ɛ t} nazveme bílým šumem s nulovou střední hodnotou a rozptylem σ 2 a

Více

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových

Více

Modely pro nestacionární časové řady

Modely pro nestacionární časové řady Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Modely ARIMA Transformace Proces náhodné procházky Random Walk Process Proces Y t = Y t 1 + ɛ t je

Více

Modely pro nestacionární časové řady

Modely pro nestacionární časové řady Modely pro nestacionární časové řady Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Modely pro nestacionární

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

5 Časové řady. Definice 16 Posloupnost náhodných veličin {X t, t T } nazveme slabě stacionární, pokud

5 Časové řady. Definice 16 Posloupnost náhodných veličin {X t, t T } nazveme slabě stacionární, pokud 5 Časové řady Časovou řadou rozumíme posloupnost reálných náhodných veličin X 1,..., X n, přičemž indexy t = 1,..., n interpretujeme jako časové okamžiky. Někdy však uvažujeme i nekonečné posloupnosti

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

Cvičení 9 dekompozice časových řad a ARMA procesy

Cvičení 9 dekompozice časových řad a ARMA procesy Cvičení 9 dekompozice časových řad a ARMA procesy Příklad 1: Dekompozice časové řady Soubor 18AEK-cv09.xls obsahuje dvě časové řady (X a Y) se 72 pozorováními. Použijte časovou řadu Y. a) Pokuste se na

Více

Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28

Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28 Základy ekonometrie XI. Vektorové autoregresní modely Základy ekonometrie (ZAEK) XI. VAR modely Podzim 2015 1 / 28 Obsah tématu 1 Prognózování s VAR modely 2 Vektorové modely korekce chyb (VECM) 3 Impulzní

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Politická ekonomie 45: (2), str. 281-289, VŠE Praha, 1997. ISSN 0032-3233. (Rukopis) REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Josef ARLT, Vysoká škola ekonomická, Praha 1. Úvod Pro modelování

Více

Ekonometrie. Jiří Neubauer

Ekonometrie. Jiří Neubauer Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých

Více

8 ANALÝZA ČASOVÝCH ŘAD SEZÓNNÍ SLOŽKA

8 ANALÝZA ČASOVÝCH ŘAD SEZÓNNÍ SLOŽKA 8 ANALÝZA ČASOVÝCH ŘAD SEZÓNNÍ SLOŽKA RYCHLÝ NÁHLED KAPITOLY Následující kapitolou pokračujeme v tématu analýza časových řad a blíže se budeme zabývat problematikou jich pravidelné kolísavost, která je

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

KGG/STG Statistika pro geografy. Mgr. David Fiedor 4. května 2015

KGG/STG Statistika pro geografy. Mgr. David Fiedor 4. května 2015 KGG/STG Statistika pro geografy 11. Analýza časových řad Mgr. David Fiedor 4. května 2015 Motivace Úvod chceme získat představu o charakteru procesu, která časová řada reprezentuje Jaké jevy lze znázornit

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

STATISTIKA I Metodický list č. 1 Název tématického celku:

STATISTIKA I Metodický list č. 1 Název tématického celku: STATISTIKA I Metodický list č. 1 Analýza závislostí Základním cílem tohoto tématického celku je seznámit se s pokročilejšími metodami zpracování statistických údajů.. 1. kontingenční tabulky 2. regresní

Více

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky A0M38SPP - Signálové procesory v praxi - přednáška 7 2 Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky (momenty) Matematická definice korelační

Více

Přednáška 4. Lukáš Frýd

Přednáška 4. Lukáš Frýd Přednáška 4 Lukáš Frýd Časová řada: stochastický (náhodný) proces, sekvence náhodných proměnných indexovaná časem Pozorovaná časová řada: jedna realizace stochastického procesu Analogie: Průřezový výběr,

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Faktorová analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Faktorová analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) 1 / 27 úvod Na sledovaných objektech

Více

2011 (datový soubor life expectancy CR.txt). Budeme predikovat vývoj očekávané doby dožití pomocí

2011 (datový soubor life expectancy CR.txt). Budeme predikovat vývoj očekávané doby dožití pomocí Příklady užití časových řad k predikci rizikových jevů 1 Očekávaná doba dožití v ČR Máme k dispozici časovou řadu udávající očekávanou dobu dožití v České republice od roku 1960 do roku 2011 (datový soubor

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

Univerzita Karlova v Praze procesy II. Zuzana. funkce

Univerzita Karlova v Praze   procesy II. Zuzana. funkce Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských

Více

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Regrese používáme tehd, jestliže je vsvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Specifikace modelu = a + bx a závisle proměnná b x vsvětlující proměnná Cíl analýz Odhadnout hodnot

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Analýza hlavních komponent

Analýza hlavních komponent Analýza hlavních komponent Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) Analýza

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

VEKTOROVÉ AUTOREGRESE. APLIKACE V PROGNÓZOVÁNÍ.

VEKTOROVÉ AUTOREGRESE. APLIKACE V PROGNÓZOVÁNÍ. VEKTOROVÉ AUTOREGRESE. APLIKACE V PROGNÓZOVÁNÍ. Vektorové autoregrese (VAR se používají tehdy, když chceme zkoumat časové řady dvou či více proměnných. Je sice možné za tím účelem použít dynamické modely

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS ANALÝZA A SROVNÁNÍ ČASOVÝCH ŘAD POMOCÍ

Více

Aplikovaná ekonometrie 7. Lukáš Frýd

Aplikovaná ekonometrie 7. Lukáš Frýd Aplikovaná ekonometrie 7 Lukáš Frýd Nestacionární časové řady Možné příčinny Sezonost Deterministický trend (time trend) Jednotkový kořen (Stochastický trend) Strukturní zlomy Časový trend (deterministický

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Univerzita Palackého v Olomouci , Ostrava

Univerzita Palackého v Olomouci , Ostrava Časové řady II Ondřej Vencálek Univerzita Palackého v Olomouci ondrej.vencalek@upol.cz seminář pro VŠB-TUO 2015-03-20, Ostrava Nové kreativní týmy v prioritách vědeckého bádání CZ.1.07/2.3.00/30.0055 Tento

Více

Fakulta elektrotechnická. Komponenta pro měření a predikci spotřeby elektrické energie

Fakulta elektrotechnická. Komponenta pro měření a predikci spotřeby elektrické energie ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická DIPLOMOVÁ PRÁCE Komponenta pro měření a predikci spotřeby elektrické energie Praha, 2014 Autor: Tomáš Reichl i Poděkování Chtěl bych na tomto

Více

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky Navazující magisterské studium studijní obor "Management jakosti" školní rok 2013/2014 Integrované systémy managementu A 1. Koncepce a principy integrovaných

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách 13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních

Více

Chyba predikce při rezervování metodou Chain Ladder u korelovaných vývojových trojúhelníků

Chyba predikce při rezervování metodou Chain Ladder u korelovaných vývojových trojúhelníků Chyba predikce při rezervování metodou Chain Ladder u korelovaných vývojových trojúhelníků Mgr. Marcela Martinů 13. května 2016 5/13/2016 0 Obsah 1. Úvod a. Motivace a cíle b. Základní metody 2. Rozšířená

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management kvality"

Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor Management kvality Tématické okruhy pro státní závěrečné zkoušky Navazující magisterské studium studijní obor "Management kvality" školní rok 2016/2017 Integrované systémy managementu A 1. Koncepce a principy integrovaných

Více

Inovace bakalářského studijního oboru Aplikovaná chemie

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

Univerzita Pardubice. Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky

Univerzita Pardubice. Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky Využití autokorelační funkce při zpracování dat Michaela Hettlerová Diplomová práce 2013 PROHLÁŠENÍ Prohlašuji,

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2016/17 Cvičení 3: Lineární regresní model LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Seznámení s EViews Upřesnění

Více

INDUKTIVNÍ STATISTIKA

INDUKTIVNÍ STATISTIKA 10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný

Více

POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.

POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. POLYNOMICKÁ REGRESE Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. y = b 0 + b 1 x + b 2 x 2 + + b n x n kde b i jsou neznámé parametry,

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík

SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

4.1 Metoda horizontální a vertikální finanční analýzy

4.1 Metoda horizontální a vertikální finanční analýzy 4. Extenzívní ukazatelé finanční analýzy 4.1 Metoda horizontální a vertikální finanční analýzy 4.1.1 Horizontální analýza (analýza vývojových trendů -AVT) AVT = časové změny ukazatelů (nejen absolutních)

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Aplikovaná statistika v R - cvičení 3

Aplikovaná statistika v R - cvičení 3 Aplikovaná statistika v R - cvičení 3 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.8.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.8.2014 1 / 10 Lineární

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

NÁHODNÝ VEKTOR. 4. cvičení

NÁHODNÝ VEKTOR. 4. cvičení NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.

Více

Praktikum z ekonometrie Panelová data

Praktikum z ekonometrie Panelová data Praktikum z ekonometrie Panelová data Jan Zouhar Katedra ekonometrie, FIS VŠE v Praze, zouharj@vse.cz 9. května 2014 1 Terminologie a značení Sledujeme-li pro všechny průřezové jednotky stejná časová období,

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Modelování finančních časových řad pomocí vybraného stochastického modelu

Modelování finančních časových řad pomocí vybraného stochastického modelu U N I V E R ZI T A P A R D U B I C E FAKULTA EKONOMICKO-SPRÁVNÍ Ú S T A V S Y S TÉMOVÉHO IN ŽE N Ý R S T VÍ A I N F ORMATIKY Modelování finančních časových řad pomocí vybraného stochastického modelu DIPLOMOVÁ

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 10 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi

Více