Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace"

Transkript

1 Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing. Martin Dostál, Ph.D. Ing. Karel Petera, Ph.D. Prof. Ing. Tomáš Jirout, Ph.D.

2 Modelování potrubních sítí Cílem práce je vytvoření matematického modelu potrubní kanalizační sítě, který by umožňoval o určit průtok odcházející z kanalizační sítě na čistírnu odpadních vod v závislosti na přítocích do kanalizační sítě z jednotlivých jímek, o zjistit tlakové poměry v kanalizační síti a to z hlediska dimenzování potrubních prvků kanalizační sítě o a zjistit energetické poměry, tj. množství energie potřebné na provoz kanalizační sítě. Úkolem tohoto matematického modelu je o porovnání různých strategií vyprazdňování jednotlivých jímek kanalizační sítě právě z hlediska co nejrovnoměrnějšího nátoku na čistírnu odpadních vod zpracovávající odpadní vody (primární cíl), o a pokus o optimalizaci jednotlivých segmentů potrubní sítě z hlediska úspory materiálu a energií potřebných pro čerpání při zachování správného dimenzování prvků potrubní sítě z hlediska povolených tlaků a minimálních průtokových rychlostí.

3 Modelování potrubních sítí Matematický model potrubní sítě Stacionární jedná se o výchozí matematický model potrubní sítě, který umožňuje spočítat průtoky v jednotlivých větvích potrubní sítě a tlaky v jednotlivých uzlech potrubní sítě pro zadané přítoky. nestacionární bez uvažování stlačitelnosti a setrvačných sil tento model využívá výše popsaný stacionární model, který řeší v každém časovém kroku. Na základě tohoto řešení je pak možné získat časové závislosti průtoků a tlaků v potrubní síti. Model samozřejmě vyžaduje informace o přítocích v jednotlivých uzlech potrubní sítě, tj. v jednotlivých splaškových jímkách (nutné zvolit vhodnou strategii generování množství odpadních vod odpovídajících počtu EO pro danou jímku v závislosti na denní době), velikosti jednotlivých jímek odpadních vod a charakteristiku kalového čerpadla a strategii vyprazdňování jednotlivých jímek, tj. strategii zapínání a vypínání kalového čerpadla (zatím je implementována ta nejjednodušší varianta, kdy čerpadlo zapíná a vypíná při určité výšce hladiny v jímce). nestacionární s uvažováním stlačitelnosti tento model umožňuje předpovídat jevy s náhlými změnami probíhajícími v potrubní síti, například náhlé zavření průtoku v nějaké větvi potrubní sítě (ráz). Soustava hyperbolických diferenciálních rovnic popisující proudění stlačitelné tekutiny kanálem v proměnných výška H a průtok Q.

4 Modelování potrubních sítí Stacionární/nestacionární model Model je založen na aplikaci rovnice kontinuity v jednotlivých uzlových bodech potrubní sítě Laminární proudění větví potrubní sítě lze popsat, viz Bird et al. (2007) Pro turbulentní proudění například

5 Modelování potrubních sítí Dosazením do rovnice kontinuity spolu s uvažováním hydrostatických tlaků od nestejných výšek dostaneme soustavu rovnic. resp. v maticovém tvaru Soustava rovnic (nelineární) je řešena iteračním způsobem s využitím programových nástrojů a knihoven funkcí programu MATLAB.

6 Modelování potrubních sítí TK Kojetice / případová studie 694 uzlových bodů Doba simulace denního cyklu 3 hod Výpočtové schéma TK (uzly černě a větve modře). Souřadnice uzlových bodů X a Y jsou v metrech.

7 Simulační výpočet TK Kojetice TK Kojetice / případová studie Výsledky výpočtu veličin jednoho časového kroku. Na svislé ose grafu jsou znázorněny tlaky v uzlových bodech kanalizační potrubní sítě. Na výstupu kanalizační sítě je zadán atmosférický tlak.

8 Simulační výpočet TK Kojetice Přítok jímek

9 Simulační výpočet TK Kojetice Dvoustavové spínání čerpadla jímky

10 Simulační výpočet TK Kojetice Spínání čerpadla v pevných časových intervalech (1/den)

11 Simulační výpočet TK Kojetice Spínání čerpadla v pevných časových intervalech (3/den)

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok - Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé

Více

MĚŘENÍ A MODELOVÁNÍ DYNAMICKÝCH DĚJŮ V PRUŽNÉM POTRUBÍ. Soušková H., Grobelný D.,Plešivčák P.

MĚŘENÍ A MODELOVÁNÍ DYNAMICKÝCH DĚJŮ V PRUŽNÉM POTRUBÍ. Soušková H., Grobelný D.,Plešivčák P. MĚŘENÍ A MODELOVÁNÍ DYNAMICKÝCH DĚJŮ V PRUŽNÉM POTRUBÍ Soušková H., Grobelný D.,Plešivčák P. Katedra měřicí a řídicí techniky VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Abstrakt : Příspěvek

Více

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska 2004 Jan KRYŠTŮFEK Motivace Účel diplomové práce: Porovnání nelineárního řízení

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Výpočet stlačitelného proudění metodou konečných objemů

Výpočet stlačitelného proudění metodou konečných objemů Výpočet stlačitelného proudění metodou konečných objemů Petra Punčochářová Ústav technické matematiky, Fakulta strojní, Vysoké učení technické v Praze Vedoucí práce: Prof. RNDr. K. Kozel DrSc. Úvod V 80.

Více

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Propojení matematiky, fyziky a počítačů

Propojení matematiky, fyziky a počítačů Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU Autoři: Ing. Petr KOVAŘÍK, Ph.D., Katedra energetických strojů a zařízení, FST, ZÁPADOČESKÁ UNIVERZITA V PLZNI, e-mail: kovarikp@ntc.zcu.cz

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

MODELOVÁNÍ POTRUBNÍCH SÍTÍ. Vladimír Hanta. Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky

MODELOVÁNÍ POTRUBNÍCH SÍTÍ. Vladimír Hanta. Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky MODELOVÁNÍ POTRUBNÍCH SÍTÍ Vladimír Hanta Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Klíčová slova: distribuční logistika, potrubní sítě, optimální potrubní cesta,

Více

VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE

VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE Přednáška na semináři CAHP v Praze 4.9.2013 Prof. Ing. Petr Noskievič, CSc. Ing. Miroslav Mahdal, Ph.D. Katedra automatizační

Více

Modelování a řízení kvality vody ve vodárenské síti

Modelování a řízení kvality vody ve vodárenské síti KONTAKT 2010 V Praze, 20.5.2010 Katedra řídicí techniky Autor: Pavel Švarc (svarcpa2@fel.cvut.cz) Vedoucí práce: doc. Ing. Petr Horáček Csc. 1. část Vodárenská soustava Modelování v reálném čase (Matlab/Simulink)

Více

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ Radim Pišan, František Gazdoš Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně Nad stráněmi 45, 760 05 Zlín Abstrakt V článku je představena knihovna

Více

CFD. Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí

CFD. Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí Program celoživotního vzdělávání: kurz Klimatizace a Větrání 2013/2014 CFD Jan Schwarzer Počítačová

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika

Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika NUMERICKÉ ŘEŠENÍ BUDÍCÍCH SIL NA LOPATKY ROTORU ZA RŮZNÝCH OKRAJOVÝCH PODMÍNEK SVOČ FST 2008 ABSTRAKT Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika Úkolem

Více

Verifikace modelu VT přehříváků na základě provozních měření

Verifikace modelu VT přehříváků na základě provozních měření Verifikace modelu VT přehříváků na základě provozních měření Jan Čejka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF

Více

Vozíky Graf Toku Výkonu

Vozíky Graf Toku Výkonu Graf Toku Výkonu Michal Menkina, Petr Školník TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ..07/2.2.00/07.0247, který

Více

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny

Více

Matematické modely a způsoby jejich řešení. Kateřina Růžičková

Matematické modely a způsoby jejich řešení. Kateřina Růžičková Matematické modely a způsoby jejich řešení Kateřina Růžičková Rovnice matematické fyziky Přednáška převzata od Doc. Rapanta Parciální diferencíální rovnice Diferencialní rovnice obsahujcí parcialní derivace

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Úvodní list. Zdravotní technika 4. ročník (TZB) Kanalizace Výpočet přečerpávané odpadní vody

Úvodní list. Zdravotní technika 4. ročník (TZB) Kanalizace Výpočet přečerpávané odpadní vody Úvodní list Název školy Integrovaná střední škola stavební, České Budějovice, Nerudova 59 Číslo šablony/ číslo sady 32/09 Poř. číslo v sadě 06 Jméno autora Období vytvoření materiálu Název souboru Zařazení

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů - Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:

Více

Cíle a účel hydraulické analýzy

Cíle a účel hydraulické analýzy Předmět: BP003 Vodárenství Přednáška č. 9 Hydraulická analýza vodovodů Inovovaná prezentace přenášky v rámci programu OP VaK Projektu OP VaK CZ.1.07/2.2.00/15.0426 Cíle a účel hydraulické analýzy Cílem

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

Stacionární 2D výpočet účinnosti turbínového jeden a půl stupně

Stacionární 2D výpočet účinnosti turbínového jeden a půl stupně Stacionární D výpočet účinnosti turbínového jeden a půl stupně Petr Toms Abstrakt Příspěvek je věnován popisu řešení proudění stacionárního D výpočtu účinnosti jeden a půl vysokotlakého turbínového stupně

Více

OBHAJOBA DIPLOMOVÉ PRÁCE

OBHAJOBA DIPLOMOVÉ PRÁCE OBHAJOBA DIPLOMOVÉ PRÁCE Lukáš Houser FS ČVUT v Praze Ústav mechaniky, biomechaniky a mechatroniky 28. srpen 2015 Simulační modely tlumičů a jejich identifikace Autor: Studijní obor: Lukáš Houser Mechatronika

Více

Soustavy se spínanými kapacitory - SC. 1. Základní princip:

Soustavy se spínanými kapacitory - SC. 1. Základní princip: Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení

Více

Užití software Wolfram Alpha při výuce matematiky

Užití software Wolfram Alpha při výuce matematiky Jednalo se tedy o ukázku propojení klasického středoškolského učiva s problematikou běžného života v oblasti financí za pomoci využití informačních technologií dnešní doby. Hlavním přínosem příspěvku je

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE DIPLOMOVÁ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE DIPLOMOVÁ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE DIPLOMOVÁ PRÁCE Praha 2000 Martin Fišer ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE TECHNICKÁ FAKULTA KATEDRA TECHNOLOGICKÝCH ZAŘÍZENÍ STAVEB MODERNIZACE ČISTÍRNY ODPADNÍCH

Více

Zada nı bakala r ske pra ce

Zada nı bakala r ske pra ce Zada nı bakala r ske pra ce Konstrukce brzdových posilovačů Rozvoj současné technologie umožnil vytvořením velmi komfortních dopravních prostředků, předně osobních automobilů. Jeden z faktorů komfortu

Více

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY Michal Dorda VŠB - TU Ostrava Fakulta strojní Institut dopravy 1 Úvod V běžné technické praxi se velice často setkáváme s tzv. systémy hromadné obsluhy aniž

Více

Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení

Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení Manoch Lukáš Abstrakt: Práce je zaměřena na stanovení vlivu úhlu napojení distální anastomózy femoropoplitálního

Více

Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)

Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol

Více

NAVRHOVÁNÍ A KONSTRUKČNÍ ŘEŠENÍ STOKOVÝCH SÍTÍ

NAVRHOVÁNÍ A KONSTRUKČNÍ ŘEŠENÍ STOKOVÝCH SÍTÍ Číslo dokumentu: Druh dokumentu: TS 25.07 TECHNICKÝ STANDARD Vydání číslo: Účinnost vydání od: Strana číslo : 1 10.6.2008 1 / 8 NAVRHOVÁNÍ A KONSTRUKČNÍ ŘEŠENÍ STOKOVÝCH SÍTÍ Obsah interní dokumentace

Více

Modelování ternárních systémů slitin

Modelování ternárních systémů slitin Software pro modelování ternárních systémů slitin Modelování ternárních systémů slitin pomocí B-splajnových ploch Zuzana Morávková Jiří Vrbický Katedra matematiky a deskriptivní geometrie Vysoká škola

Více

4EK311 Operační výzkum. 1. Úvod do operačního výzkumu

4EK311 Operační výzkum. 1. Úvod do operačního výzkumu 4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

SIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow in pipe with hydraulic accumulator

SIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow in pipe with hydraulic accumulator Colloquium FLUID DYNAMICS 2009 Institute of Thermomechanics AS CR, v.v.i., Prague, October 21-23, 2009 p.1 SIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow

Více

Odborný posudek. 1.5.B.2 Komplexní systémy pro využití srážkové vody jako vody užitkové

Odborný posudek. 1.5.B.2 Komplexní systémy pro využití srážkové vody jako vody užitkové Odborný posudek k předkládání žádostí o poskytnutí podpory v rámci Národního programu Životní prostředí Dešťovka 1.5.B.2 Komplexní systémy pro využití srážkové vody jako vody užitkové Žadatel: Karel Vopička

Více

Teorie tkaní. Modely vazného bodu. M. Bílek

Teorie tkaní. Modely vazného bodu. M. Bílek Teorie tkaní Modely vazného bodu M. Bílek 2016 Základní strukturální jednotkou tkaniny je vazný bod, tj. oblast v okolí jednoho zakřížení osnovní a útkové nitě. Proces tkaní tedy spočívá v tvorbě vazných

Více

Výpočet nejistot metodou Monte carlo

Výpočet nejistot metodou Monte carlo Výpočet nejistot metodou Monte carlo Mgr. Martin Šíra, Ph.D. (ČMI, Brno) červen 2012 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. p. 1 Výpočty nejistot

Více

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D. Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických

Více

Struktury a vazebné energie iontových klastrů helia

Struktury a vazebné energie iontových klastrů helia Společný seminář 11. června 2012 Struktury a vazebné energie iontových klastrů helia Autor: Lukáš Červenka Vedoucí práce: Doc. RNDr. René Kalus, Ph.D. Technický úvod Existují ověřené optimalizační algoritmy

Více

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0. A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Světový den vody 2015: Voda a udržitelný rozvoj

Světový den vody 2015: Voda a udržitelný rozvoj SOVAK ČR řádný člen EUREAU Z OBSAHU: Světový den vody 215: Voda a udržitelný rozvoj Novela vyhlášky pro pitnou vodu, metodika stanovení nerelevantních metabolitů Optimalizace systémů tlakových kanalizací

Více

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Konference Vytápění Třeboň 2015 19. až 21. května 2015 OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI Ing. Petr Komínek 1, doc. Ing. Jiří Hirš, CSc 2 ANOTACE Většina realizovaných

Více

Matematika (a fyzika) schovaná za GPS. Global Positioning system. Michal Bulant. Brno, 2011

Matematika (a fyzika) schovaná za GPS. Global Positioning system. Michal Bulant. Brno, 2011 Matematika (a fyzika) schovaná za GPS Michal Bulant Masarykova univerzita Přírodovědecká fakulta Ústav matematiky a statistiky Brno, 2011 Michal Bulant (PřF MU) Matematika (a fyzika) schovaná za GPS Brno,

Více

Kompromisy při zpracování a hodnocení výsledků hydraulických modelů na příkladu hodnocení vodního zdroje Bzenec komplex

Kompromisy při zpracování a hodnocení výsledků hydraulických modelů na příkladu hodnocení vodního zdroje Bzenec komplex Kompromisy při zpracování a hodnocení výsledků hydraulických modelů na příkladu hodnocení vodního zdroje Bzenec komplex 29.3.2017 Jablonné nad Orlicí Matematické modelování (obecně hydrogeologie) ve svých

Více

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE Autoři: Ing. Petr ŠVARC, Technická univerzita v Liberci, petr.svarc@tul.cz Ing. Václav DVOŘÁK, Ph.D., Technická univerzita v Liberci, vaclav.dvorak@tul.cz

Více

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1 ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Počítačová dynamika tekutin (CFD) - úvod -

Počítačová dynamika tekutin (CFD) - úvod - Počítačová dynamika tekutin (CFD) - úvod - Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích

Více

Symetrické stavy v trojfázové soustavě

Symetrické stavy v trojfázové soustavě Pro obvod na obrázku Symetrické stavy v trojfázové soustavě a) sestavte admitanční matici obvodu b) stanovte viděnou impedanci v uzlu 3 a meziuzlovou viděnou impedanci mezi uzly 1 a 2 a c) stanovte zdánlivý

Více

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Václav Čibera 12. února 2009 1 Motivace Na obrázku 1 máme znázorněný mechanický systém, který může představovat

Více

Pracovní text a úkoly ke cvičením MF002

Pracovní text a úkoly ke cvičením MF002 Pracovní text a úkoly ke cvičením MF002 Ondřej Pokora, PřF MU, Brno 11. března 2013 1 Brownův pohyb (Wienerův proces) Základním stavebním kamenem simulací náhodných procesů popsaných pomocí stochastických

Více

A. NÁZEV OBCE. A.1 Značení dotčených částí obce (ZSJ) Hůrky. Mapa A: Území obce

A. NÁZEV OBCE. A.1 Značení dotčených částí obce (ZSJ) Hůrky. Mapa A: Území obce (karta obce: CZ041_0041_08) A. NÁZEV OBCE Název části obce (ZSJ): Mapa A: Území obce Přehledová mapka Kód části obce PRVK: CZ041.3403.4103.0041.08 Název obce: Karlovy Vary Kód obce (IČOB): 06343 (554961)

Více

PROJEKT II kz

PROJEKT II kz PROJEKT II 233 2114 0+5 kz Co Vás čeká?! navrhnout technologii odlévání do písku a kokily pro výrobu zadané součásti, vč. TZ s ohledem na ekonomickou stránku věci navrhnout technologii zápustkového kování

Více

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami (Numerical Modelling of Flow of Two Immiscible Fluids Past a NACA 0012 profile) Ing. Tomáš

Více

ITO. Semestrální projekt. Fakulta Informačních Technologií

ITO. Semestrální projekt. Fakulta Informačních Technologií ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Dynamika vázaných soustav těles

Dynamika vázaných soustav těles Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro

Více

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23 Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony

Více

Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie.

Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. 37. Škrcení plynů a par 38. Vznik tlakové ztráty při proudění tekutiny 39. Efekty při proudění vysokými rychlostmi 40.

Více

4. cvičení- vzorové příklady

4. cvičení- vzorové příklady Příklad 4. cvičení- vzorové příklady ypočítejte kapacitu násosky a posuďte její funkci. Násoska převádí vodu z horní nádrže, která má hladinu na kótě H A = m, přes zvýšené místo a voda vytéká na konci

Více

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?

Více

Modelování úbytku chloru a nárůstu koncentrací železa v distribuční síti pitné vody

Modelování úbytku chloru a nárůstu koncentrací železa v distribuční síti pitné vody Modelování úbytku chloru a nárůstu koncentrací železa v distribuční síti pitné vody Ing. Kateřina Slavíčková, Ph.D., Prof. Ing. Alexander Grünwald, CSc, Ing. Marek Slavíček, Ph.D., Ing. Bohumil Šťastný,

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Instalace solárního systému

Instalace solárního systému Instalace solárního systému jako opatření ve všech podoblastech podpory NZÚ Kombinace solární soustavy a různých opatření v rámci programu NZÚ výzva RD 2 Podoblast A Úspory nejen na obálce budovy, ale

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

Mechanika kapalin a plynů

Mechanika kapalin a plynů Mechanika kapalin a plynů Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tekutiny Tlak Tlak v kapalině vyvolaný vnější silou Tlak v kapalině vyvolaný tíhovou silou Tlak v kapalině vyvolaný

Více

HYDROSTATICKÝ TLAK. 1. K počítači připojíme pomocí kabelu modul USB.

HYDROSTATICKÝ TLAK. 1. K počítači připojíme pomocí kabelu modul USB. HYDROSTATICKÝ TLAK Vzdělávací předmět: Fyzika Tematický celek dle RVP: Mechanické vlastnosti tekutin Tematická oblast: Mechanické vlastnosti kapalin Cílová skupina: Žák 7. ročníku základní školy Cílem

Více

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček Návrh a simulace zkušební stolice olejového čerpadla Autor: Vedoucí diplomové práce: Martin Krajíček Prof. Michael Valášek 1 Cíle práce 1. Vytvoření specifikace zařízení 2. Návrh zařízení včetně hydraulického

Více

p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země

p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země Hladinové (rovňové) plochy Plochy, ve kterých je stálý statický tlak. Při posunu po takové ploše je přírůstek tlaku dp = 0. Hladinová plocha musí být všude kolmá ke směru výsledného zrychlení. Tlak v kapalině,

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 3 DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ Prof. Ing. Vladimír Zeman, DrSc. OBSAH 1. Úvod. Základní výpočtový model v rotujícím prostoru 3. Základní výpočtový model rotoru

Více

Distribuce úniků v zásobních pásmech vodovodní sítě lokality Napajedla

Distribuce úniků v zásobních pásmech vodovodní sítě lokality Napajedla Distribuce úniků v zásobních pásmech vodovodní sítě lokality Napajedla Ing. Jan Berka, Ing. Rostislav Kasal Ph.D., Ing. Jan Cihlář VRV a.s., Nábřežní 4, 150 56 Praha 5 Úvod Význam řešení problematiky úniků

Více

POČÍTAČOVÝ PROGRAM KOLEKTOR 2.1 PRO MODELOVÁNÍ SOLÁRNÍCH KOLEKTORŮ

POČÍTAČOVÝ PROGRAM KOLEKTOR 2.1 PRO MODELOVÁNÍ SOLÁRNÍCH KOLEKTORŮ Simulace budov a techniky prostředí 2006 4. konference IBPSA-CZ Praha, 7. listopadu 2006 POČÍTAČOVÝ PROGRAM KOLEKTOR 2.1 PRO MODELOVÁNÍ SOLÁRNÍCH KOLEKTORŮ Tomáš Matuška, Vladimír Zmrhal Ústav techniky

Více

Praktické využití Mathematica CalcCenter. Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL

Praktické využití Mathematica CalcCenter. Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL Praktické využití Mathematica CalcCenter Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL Obsah Popis Pojetí Vlastnosti Obecná charakteristika Ovladače

Více

OPTIMALIZACE HYDRAULICKÉ ČÁSTI CHLAZENÍ HORKOVZDUŠNÉHO ŠOUPÁTKA

OPTIMALIZACE HYDRAULICKÉ ČÁSTI CHLAZENÍ HORKOVZDUŠNÉHO ŠOUPÁTKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE OPTIMALIZACE HYDRAULICKÉ ČÁSTI CHLAZENÍ HORKOVZDUŠNÉHO

Více

Numerické řešení modelu proudění v porézní hornině s puklinou

Numerické řešení modelu proudění v porézní hornině s puklinou Numerické řešení modelu proudění v porézní hornině s puklinou Martin Hanek Úvod Vedoucí práce prof. RNDr. Pavel Burda, CSc. Zajímá nás jednofázová tekutina v puklině porézní horniny. Studie je provedena

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

HIERARCHICKÝ OPTIMÁLNÍ REGULÁTOR Branislav Rehák ČVUT FEL, katedra řídicí techniky

HIERARCHICKÝ OPTIMÁLNÍ REGULÁTOR Branislav Rehák ČVUT FEL, katedra řídicí techniky HIERARCHICKÝ OPTIMÁLNÍ REGULÁTOR Branislav Rehák ČVUT FEL, katedra řídicí techniky Úvod Teorie dynamických optimalizačních úloh je již delší dobu dobře rozpracována. Přesto není v praxi příliš často využívána.

Více

Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod -

Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - M. Jahoda Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty,

Více

Základní vztahy v elektrických

Základní vztahy v elektrických Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Klasifikace elektrických obvodů analogové číslicové lineární

Více

VÝVOJ PARNÍHO KONDENZÁTORU PRO SIMULACI PROVOZU KONDENZAČNÍCH TURBÍN

VÝVOJ PARNÍHO KONDENZÁTORU PRO SIMULACI PROVOZU KONDENZAČNÍCH TURBÍN VÝVOJ PARNÍHO KONDENZÁTORU PRO SIMULACI PROVOZU KONDENZAČNÍCH TURBÍN M. Cepák, V. Havlena ČVUT FEL, katedra řídicí techniky Abstrakt Tento příspěvek se zabývá modelováním parního kondenzátoru a jeho následnou

Více

Ing. Karel Matějíček

Ing. Karel Matějíček Možnosti MaR ve snižování spotřeby energií Ing. Karel Matějíček 10/2014 Úvod Vliv na spotřeby energií Z hlediska vlastního provozu Projektant Realizační firma Provozovatel Z hlediska vlastního zařízení

Více

ÚLOHA S2 STATICKÁ CHARAKTERISTIKA KONDENZÁTORU BRÝDOVÝCH PAR

ÚLOHA S2 STATICKÁ CHARAKTERISTIKA KONDENZÁTORU BRÝDOVÝCH PAR VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav počítačové a řídicí techniky Ústav fyziky a měřicí techniky LABORATOŘ OBORU IIŘP ÚLOHA S2 STATICKÁ CHARAKTERISTIKA KONDENZÁTORU BRÝDOVÝCH PAR Zpracoval:

Více

6. Mechanika kapalin a plynů

6. Mechanika kapalin a plynů 6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více