Analýza kvantitativních dat II. Standardní chyby a intervaly spolehlivosti (1.)

Podobné dokumenty
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

Metodologie pro Informační studia a knihovnictví 2

AKDII. - Seminární práce. revize Jiří Šafr (6/2/2014) Sociologie volného času

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Seminář 6 statistické testy

Testování hypotéz a měření asociace mezi proměnnými

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)

Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test

LEKCE 6 ZÁKLADY TESTOVÁNÍ HYPOTÉZ

Seminář 6 statistické testy

PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady

Metodologie pro ISK II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Karta předmětu prezenční studium

Spokojenost se životem

Analýza dat na PC I.

Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead

Testy nezávislosti kardinálních veličin

ÚKOL ,77 5,00 5 2,531,003,056 -,869,113

Uni- and multi-dimensional parametric tests for comparison of sample results

Analýza dat z dotazníkových šetření

LEKCE02a ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH DAT vzorový výsledek cvičení

Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy

STATISTICKÉ ODHADY Odhady populačních charakteristik

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

ADDS cviceni. Pavlina Kuranova

LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica

Lineární regrese. Komentované řešení pomocí MS Excel

Jste aktivní sportovec?(pravidelně sportuji alespoň 2x týdně) Jakým sportovním činnostem se pravidelně věnujete? (alespoň 1 x za dva týdny v sezóně)

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Ranní úvahy o statistice

Metodologie pro Informační studia a knihovnictví 2

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica

= = 2368

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry

Vymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Popisná statistika. Statistika pro sociology

Číselné charakteristiky

Intervalové Odhady Parametrů

Základy popisné statistiky

Statistické testování hypotéz II

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

INDUKTIVNÍ STATISTIKA

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA

4EK211 Základy ekonometrie

Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1

Stav Svobodný Rozvedený Vdovec. Svobodná Rozvedená Vdova 5 8 6

Korelační a regresní analýza. 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza

Příprava souboru dat a analýza

Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.

Návrhy dalších možností statistického zpracování aktualizovaných dat

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM

Návod na statistický software PSPP část 2. Kontingenční tabulky

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

Opakování: Nominální proměnná více hodnotová odpověď.

Normální (Gaussovo) rozdělení

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Analýza rozptylu. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Srovnávání více než dvou průměrů

Tomáš Karel LS 2012/2013

Technická univerzita v Liberci

Jana Vránová, 3. lékařská fakulta UK

Testování statistických hypotéz

Fisherův exaktní test

KGG/STG Statistika pro geografy

Manuál pro zaokrouhlování

KORELACE. Komentované řešení pomocí programu Statistica


Jednofaktorová analýza rozptylu

Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)

Popisná statistika. Komentované řešení pomocí MS Excel

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání

STATISTICKÉ ZJIŠŤOVÁNÍ

Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží

Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

4EK211 Základy ekonometrie

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Metodologie pro ISK 2, jaro Ladislava Z. Suchá

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

Aplikovaná statistika v R

Cvičení ze statistiky - 7. Filip Děchtěrenko

Transkript:

UK FHS Historická sociologie (LS 2012+) Analýza kvantitativních dat II. Standardní chyby a intervaly spolehlivosti (1.) Jiří Šafr jiri.safr(at)seznam.cz Poslední aktualizace 23/11/2014

Obsah Logika měření ve výběrových šetřeních: chyby měření Principy inferenční statistiky a intervalového odhadu Co předchází výpočtu intervalu spolehlivosti: 1. Standardní (směrodatná) chyba K čemu je standardní chyba (SE)? SE pro kardinální znaky (průměr) a pro nominální (P resp. %) 2. koeficient spolehlivosti (z-values) - krátký exkurz do normálního rozložení a teorie pravděpodobnosti Využití CfI Výpočet CfI pro kvalitativní nominální proměnnou (tj. pro %) (Ne)možnosti výpočtu CfI v SPSS a alternativy Simultánní intervaly spolehlivosti Standardní chyba a intervaly spolehlivosti pro další parametry (korelační koeficient, medián, rozdíl podílů) 2

Chyby měření Při interpretaci a analýze výsledků z výběrových dat je třeba mít neustále na paměti, že vznikly zpracováním dat získaných z výběrového šetření (populace vzorek). všechny (publikované) údaje jsou pouze odhady zatížené určitou chybou a nikoliv přesná čísla. Tato chyba má dvě složky: výběrovou a nevýběrovou. 3

Nevýběrová chyba vyskytuje se u všech zjišťování (tedy i u vyčerpávajících cenzovních šetření) Vzniká z důvodu: špatné práce v případné fázi výzkumu (konceptualizace, operacionalizace) neochotou respondentů sdělovat úplné a přesné informace atd. validita nedokonalé metodiky, jejího nepřesného dodržování chybnými postupy při zpracování dat významně ovlivnit ji lze precizní prací ve všech fázích přípravy a průběhu šetření zhodnotit její vliv na výsledky je obtížné (možností je např. porovnání s údaji zjištěnými při úplném cenzu, pokud je máme k dispozici) (Dále se jí nebudeme zabývat.) 4

Výběrová chyba Populace výběr populace Vybírá se náhodně (bez vracení) pouze jeden výběrový soubor a údaje z něho reprezentují základní soubor (populaci). Chybu způsobenou volbou výběrového souboru lze s určitou předem zvolenou pravděpodobností vymezit na základě teorie výběrových šetření 5

Přesnost chyby měření S výběrovými šetřeními jsou v sociálních vědách spjaty tzv. výběrové a nevýběrové chyby. Nevýběrové chyby (nonsampling error): odmítnutí odpovědi, chyby při pořizování dotazníku. nelze kvantifikovat vychýlení odhadu. (ty se objevují i v případě šetření celé populace - cenzu) Výběrové chyby (sampling error): vznikající vztažením charakteristik výběrového souboru na celý základní soubor vliv: velikosti výběru, metody výběru, velikosti populace lze je interpretovat pomocí tzv. intervalů spolehlivosti = intervaly zkonstruované kolem bodového odhadu tak, že surčitou pravděpodobností skutečná hodnota odhadované charakteristiky (tj. v celé populaci) leží právě vtomto intervalu. Nejčastěji se u odhadů konstruuje 95% interval spolehlivosti v něm s 95% pravděpodobností leží skutečná hodnota odhadované charakteristiky (připouštíme 5 % 6 chybu)

Velikost výběrové chyby lze vyjádřit buď Standardní (směrodatnou) chybou - bodovým odhadem rozptylu/směrodatné odchylky nebo intervalem spolehlivosti pro odhad sledovaného ukazatele. Nejčastěji se okolo odhadu konstruuje tzv. 95 % interval spolehlivosti (vynásobením směrodatné odchylky odhadu kvantilem normovaného normálního rozdělení, tj. hodnotou 1,96). interval, ve kterém s 95 % pravděpodobností leží skutečná hodnota odhadované charakteristiky 7

Chyba měření Pravděpodobnostní výběry nikdy nedávají statistiky (změřené hodnoty ve vzorku) přesně odpovídající parametru (hodnotám v celé v populaci) T = M + e T = skutečná hodnota proměnné (v populaci) M = naměřená hodnota T e = je chyba měření 8

Intervaly spolehlivosti Tolerance chyb (margin of error) suma všech možných výběrových chyb, která kvantifikuje nejistotu výsledků měření pravděpodobnostní interval ± (např. 95% interval spolehlivosti určuje rozpětí kolem naměřené hodnoty) ovlivněno: velikostí výběru, metoda výběru, velikost populace 95 % (konfidenční) interval spolehlivosti jsme si jistí, že naše výběrová data z 95 % (tj. námi zvolená spolehlivost) budou obsahovat skutečnou hodnotu v celé populaci 9

Intervaly spolehlivosti (CI) princip intervalového odhadu Odhadujeme parametry základního souboru (populace) jsou-li nám známy pouze charakteristiky výběru Při intervalovém odhadování se charakteristika základního souboru popisuje pomocí intervalu, k níž se přidává pravděpodobnost, že odhad bude správný spolehlivost odhadu (1-α). Použití pro průměr, podíl (%), rozptyl, korelační koeficient Obecně CfI lze vyjádřit: Bodový odhad ± Koeficient spolehlivosti pro zvolenou hladinu x Směrodatná chyba odhadu Např. pro 95 % CfI a procentní údaj ohledně účasti ve volbách: Se spolehlivostí 95 % můžeme tvrdit, že podle zjištění výzkumu půjde volit 62,8 % (± 2,7 %) občanů, tj. v rozmezí 60,1 až 65,5 %. 10

Výsledky výběrových šetření jsou vždy jen odhadem skutečného parametru (v populaci). Jejich přesnost je závislá především na velikosti výběrového souboru a podílu hodnot daného znaku. Orientační pomůcka: pro vzorek z velké (národní) populace cca N=1000 se skutečné (populační) relativní četnosti (procenta) pohybují v těchto intervalech: Pozorované četnosti (%) Intervaly spolehlivosti 10 % nebo 90 % 20 % nebo 80 % 30 % nebo 70 % 40 % nebo 60 % 50 % ± 1,9 ± 2,5 ± 2,7 ± 3,0 ± 3,1 Zdroj: [Special Eurobarometer 337] My si ale dále ukážeme, jak to spočítat přesně a navíc pro jakoukoliv hodnotu a míru (%, průměr, rozdíl %, korelace, ) 11

Interval spolehlivosti Interval spolehlivosti volíme. Například zvolíme-li 95 %, znamená to, že parametr naměřený ve výběrovém souboru (např. průměr) se bude v celé populaci nacházet v daném intervalu. Nebo obráceně: Zvolená chyba (alpha) např. 5%, je pravděpodobnost, že průměr (nebo jiná míra) nebude v celé populaci (jejíž vlastnosti z výběru zjišťujeme) mezi spočítaným intervalem a to díky náhodě. 5% pravděpodobnost (type I error), znamená že naměřený rozdíl existuje (např., že lidé budou volit kandidáta X) oproti tomu, že naměřený rozdíl je ve skutečnosti způsoben tím, že vzorek je nereprezentativní. 12

Nejprve ujasnění pojmů (pro jistotu) Rozptyl je variance v hodnotách proměnné Směrodatná odchylka je odmocnina z rozptylu Standardní chyba (např. průměru) je vyjádřením nepřesnosti měření odhadu K jejímu odhadu můžeme použít právě směrodatnou odchylku (v případě průměru), výpočet viz dále 13

Princip inferenční statistiky - kardinální/číselné znaky distribuce průměru v náhodném výběru z populace Zdroj: [De Vaus 1986: 116] Ze vzorku víme, že průměrný příjem je 18tis$ ( bodový odhad), jaký je ale skutečný populační průměr (tj. v celém základním souboru)? Protože víme, že výběrový průměr je zatížen výběrovou chybou, nemůžeme se na tento bodový odhad spolehnout. Potřebujeme zjistit, jak přesně náš vzorek měří. Pokud máme náhodný výběr, odpověď nám dá teorie pravděpodobnosti. Pokud bychom provedli velké množství náhodných výběrů, budeme se postupně blížit ke skutečné 14 populační hodnotě průměrného příjmu. Rozložení hodnot ve vzorku se bude blížit tzv. normálnímu rozložení (Gaussově křivce).

Princip inferenční statistiky kategoriální znaky distribuce pravděpodobnosti (tj. %) v náhodném výběru z populace Zdroj: [De Vaus (1986) 2002: 304] Dtto ale pro podíl (procenta). Na ose X je podíl (relativní počet výskytu) odpovědí pro volbu konzervativní strany v mnoha náhodných výběrech. S rostoucím počtem opakovaných náhodných výběrů se odhadovaná hodnota % blíží skutečné hodnotě v populaci. 15

Binomické rozdělení Návštěva kostela NSR, červenec srpen 1956 % Pravidelná 30,3 Nepravidelná 24,6 Málokdy 28,6 Nikdy 16,5 Celkem 100,0 Náhodný výběr 4000 osob, se rozdělí na skupiny po 40 osobách, vznikne tak 100 dílčích náhodných výběrů. Toto rozdělení odpovídá jako při dotazování u 100 reprezentativních průřezů. Tyto dílčí náhodné výběry však nemají stejné procento osob, které chodí do kostela jen málokdy. Podle zákona velkých čísel musí přitom menší odchylky vystupovat častěji než velké. [Noelleová 1968: 115] Podíl 27,5 % osob, které málokdy navštěvuji kostel, tj. 11 ze 40 dotazovaných, vystupuje např. u 18 ze 100 dílčích náhodných výběrů, naproti tomu jen v jednom výběru je podíl 10 % = 4 ze 40 dotazovaných. Z křivky zvonovitého tvaru lze vyčíst, jaké rozdělení by se dalo očekávat v mezním případě, kdyby se neprošetřovalo pouze 100, ale libovolné množství dílčích náhodných výběrů. 16

Co předchází výpočtu intervalu spolehlivosti: 1. Standardní (směrodatná) chyba a jejímu výpočtu předchází výpočet rozptylu/směrodatné odchylky 2. koeficient spolehlivosti z-values (princip a odvození)

Standardní/směrodatná chyba odhadu parametru (např. průměru) Neboli obecně standardní chyba vzorku Kvantifikuje nepřesnost našeho měření pro průměr: StD Error (of mean) SE = pro podíl (%): StD Error (of proportion) SE = Pozn. Pravděpodobnost, tj. podíl (%) je vlastně průměrem počtu pozorování, takže SE pro pravděpodobnost počítáme v podstatě stejně jako SE pro průměr (Směrodatná odchylka podílu děleného odmocninou z velikosti výběru). 18

Standardní/směrodatná chyba Je menší pokud roste velikost výběrového souboru (roste přesnost odhadu parametru) Zvětšením výběru 2x se interval zmenší jen 1,41krát ( k-násobně), proto pro dvojnásobnou přesnost potřebujme čtyřnásobný rozsah výběru Obvykle nám stačí pokud je pravděpodobnost, že cca 2/3 naměřených hodnot leží v rozsahu hranice průměru nebo +/- 1 jejich vlastní standardní chyby (SE) 19

K čemu je standardní chyba (SE)? ukazuje, jak (ne)přesné jsou naše výsledky pro výpočet intervalu spolehlivosti k testování, zda se dva parametry liší k testu, zda se výběrová charakteristika statisticky významně liší od nuly v základním souboru (dělíme-li např. korelační koeficient r jeho SE a dostaneme-li číslo větší než 2, pak je s 95% pravděpodobností korelace nenulová, tj. existuje i v celé populaci) 20

Malý exkurz do rozložení pravděpodobnosti nejen k tomu abychom odvodili Z-hodnoty pro koeficient spolehlivosti (vlastnosti normálního rozložení využijeme ještě při testování hypotéz)

Normální rozložení rozsah oblastí pod křivkou Pravděpodobnosti pozorování náhodné proměnné Procenta plochy pod křivkou Pravděpodobnosti pozorování hodnot, odpovídají oblastem pod křivkou Násobky Směrodatné odchylky Rozdíl mezi 2 až 3 StD odpovídá 5 % plochy pod křivkou normálního rozložení. Pravděpodobnost, že se (hodnota) pozorování vyskytne: -nad bodem E je 0,025 -mezi body A a E je 0,95 95 % interval spolehlivosti Tato vlastnost normálního rozložení nám umožňuje činit odhad parametrů základního souboru, známe-li pouze charakteristiky výběru. 22

Směrodatná odchylka a (konfidenční) interval spolehlivosti Normální rozložení Násobky Směrodatné odchylky http://www.stat.tamu.edu/~west/applets/ci.html 23

z-values koeficient spolehlivosti (C) pro danou hladinu významnosti (α) tu si zvolíme, podle toho, jak přesně výsledky chceme prezentovat (nejčastěji 5 %) α = 5 % α = 1 % 2,5 % 2,5 % Násobky Směrodatné odchylky α 10% 5% 1% z α /2 z.1 z.05 z.025 z.01 z.005 z.001 z.0005 C 1.282 1.645 1.960 2.326 2.576 3.090 http://www.stat.tamu.edu/~west/applets/ci.html 3.291 24

a zpět do výpočtu intervalu spolehlivosti

Interval spolehlivosti (předpoklady) Dále budeme uvažovat pouze dvoustranný interval spolehlivosti (existuje také jednostranný CfI, kdy určujeme buď jen horní nebo dolní hranici) pro prostý náhodný výběr a pro velké výběrové soubory (kde n > 30) Předpokládáme alespoň přibližně normální rozložení hodnot zkoumaného jevu (což dost často z principu nemusí být) 26

Připomenutí z AKD I. Intervaly spolehlivosti pro spojitou kardinální proměnnou průměr

Odhad parametru (např. průměru) v populaci na základě výběrového vzorku Standardní chyba průměru StD Error (of mean) SE = s 2 /n nebo SE = s/ n kde s 2 je rozptyl (ve výběrovém vzorku) nebo s je směrodatná odchylka 95 % konfidenční interval CI pro výběrový průměr X = X ± C * SE kde C = 1,96 (pro 95 % CI) z-hodnota Prezentujeme buď dvě čísla: průměr ± konfidenční interval nebo 28 tři čísla: dolní mez - průměr - horní mez.

Výpočet konfidenčního intervalu výběrového průměru Hypotetická populace Průměr v celé populaci μ = 8 jednotky hodnoty A 2 B 6 C 8 D 10 E 10 F 12 Např. věk dětí v ulici Náhodný výběr 2 jednotek (např. dětí v ulici) A (=2) a D (=10) Průměr ve výběru X = (2+10)/2 = 6 Rozptyl (s 2 ) je ve výběru 32 směrodatná odchylka (s) CI = X ± 1,96 * 4 = 6 ± 7,84-1,84 až 13,84 To znamená, že z námi vypočteného bodového odhadu průměrného věku ve výběru (6 let) můžeme usuzovat, že v celé populaci se jeho hodnota s přesností 95 % pohybuje v rozmezí -1,8 až 13,8. (Což je zde jistě neproduktivní informace.) 29

Rozdíl: populace / výběr, StD a SE Vek_AKD2_130305.xls http://metodykv.wz.cz/vek_akd2_ls2013.xls

Využití CfI Deskriptivní pro popis (odhad) určitého parametru v populaci měřeného pomocí výběru s použitím intervalového odhadu (např. průměr, podíl kategorie) EXPLORE Porovnání rozdílů hodnot dvou či více proměnných testování hypotézy pomocí principu statistické indukce ( překrývají se hranice intervalů?), např. v grafech Error-Bar: A) vzájemné porovnání rozdílů hodnot (průměrů) u sady několika proměnných měřených na stejné škále (např. obliba 8 TV žánrů) B) Hodnoty průměrů jedné proměnné v podskupinách kategoriích vysvětlujícího znaku (např. průměr příjmu v kategoriích vzdělání). C) porovnání hodnoty s výsledky z jiného výzkumu (např. časově nebo z jiné země) 31

Porovnání rozdílů hodnot (průměrů) pomocí překryvu intervalů spolehlivosti A) Obliba 8 TV žánrů B) Příjem v podskupinách podle vzdělání Zdroj: Kultura 2011 Zdroj: CVVM 2011-11 GRAPH ERROR (CI) k31_a TO k31_h. GRAPH ERROR (CI) prijem BY vzd4. 32

V SPSS: interval spolehlivosti pro spojitou proměnnou průměr Např. v rámci EXPLORE (v syntaxu EXAMINE): EXAMINE proměnná. */ třídění 1.stupně včetně grafů. EXAMINE prijem /PLOT NONE /STATISTICS DESCRIPTIVES /CINTERVAL 95 /NOTOTAL. Poněkud nepřehledné, ve výstupu nejprve za celek, pak teprve podskupiny. V rámci MEANS dostaneme pouze standardní chybu průměru = SEMEAN. MEANS prijem /CELLS= MEAN COUNT STDDEV SEMEAN. */ pro třídění 1. ale i 2./3. stupně. Přehledněji dostaneme intervaly spolehlivosti pro třídění 2. stupně v jedné tabulce v rámci jednoduché analýzy rozptylu (One-way ANOVA): ONEWAY prijem BY vzd4 / STATISTICS=DESCRIPTIVES. Nebo graf pro průměry s CI v kategoriích další proměnné: GRAPH /ERRORBAR (CI 95)=prijem BY vzd4. 33

CI ve výstupu z EXPLORE resp. EXAMINE v třídění 2.stupně: závislá proměnná = příjem nezávislá proměnná = pohlaví (s30) Počítáme odděleně průměry s (S.E.) a CI v jejích kategoriích. EXAMINE proměnná. *třídění 1.stupně včetně grafů. Zdroj: data ISSP 2007 EXAMINE prijem BY s30 /PLOT NONE /STATISTICS DESCRIPTIVES /CINTERVAL 95 /NOTOTAL. * třídění 2. stupně a pouze hlavní statistiky. Pro více kategorií je to již poměrně nepraktické uspořádání, proto můžeme použít např.: ONEWAY prijem BY vzd4 / 34 STATISTICS=DESCRIPTIVES.

Graf chybových úseček (průměr s CI) v SPSS GRAPH /ERRORBAR (CI 95)=Var1 BY Var2. Var1 je spojitá (pro ní počítáme průměr) Var 2 je kategoriální (podskupiny) 35

CfI pro průměry v podskupinách ONEWAY prijem BY vzd4/ STATISTICS=DESCRIPTIVES. GRAPH ERROR (CI 95) prijem BY vzd4. 36

Rozdíl: ERRORBAR (graf chybových úseček) BOXPLOT (graf fousatých krabiček) BOXPLOT - graf fousatých krabiček znázornění rozložení (rozptýlení) dat: medián, kvartilové rozpětí (horní a dolní kvartil) a hranic odlehlých (Outliers = ) a vzdálených hodnot (Extremes = *). Jak pro populační tak pro výběrová data. ERRORBAR - graf chybových úseček znázornění průměru a jeho (zvoleného) intervalu spolehlivosti Pouze pro výběrová data. Vnitřní a vnější hradby (hranice velmi vysokých/ní zkých hodnot) Kvartilové rozpětí EXAMINE prijem BY s30 /PLOT=BOXPLOT /STATISTICS=NONE /NOTOTAL. GRAPH /ERRORBAR (CI 95) prijem BY s30. Zdroj: data ISSP 2007 37

Intervaly spolehlivosti pro kvalitativní - nominální proměnnou četnosti (pravděpodobnost / procenta) pro jistotu: Procento je stým násobkem pravděpodobnosti, tj. p 0,1 = 10 % (takže p = 0,8 1-p = 0,2)

Interval spolehlivosti pro relativní četnost tj. pravděpodobnost (tj. % /100), binomický podíl Bodový odhad ± Koeficient spolehlivosti pro zvolenou hladinu (C) x Směrodatná chyba odhadu Pravděpodobnost jevu (bodový odhad) p = x/n Směrodatná chyba pravděpodobnosti SE = p(1 p)/n Interval spolehlivosti p ± z α/2 (SE) C pro 95 % spolehlivost α = 0,05; z α/2 = 1,96 Existuje 95 % spolehlivost, že naměřená hodnota ve výběru bude (v populaci) mezi hodnotami horní a dolní hranice. Máme-li proměnnou s více kategoriemi, pak počítáme p vždy jako dichotomii té které kategorie oproti součtu ostatních (např. vzdělání: VŠ / ostatní stupně (ZŠ+VY+SŠ). 39

Příklad: volební účast v r. 2006 Zdroj: data ISSP 2007 40

Příklad: volební účast v r. 2006 Máme výběrový odhad pro proměnnou Volil2006 (katg. Volil / Nevolil) Směrodatná chyba pravděpodobnosti SE pro Volil: Pravděpodobnost Volil = 750/1196 = 0,628 Pravděpodobnost Nevolil = 446/1196 = 0,373 SE = 0,628(1 0,628)/1196 = 0,014 Odhad Volil bude ležet mezi 0,628 ± 1,96 (0,628)(0,373)/1196 0,628 ± 0,0274 nebo (0,6006; 0,6554) nebo 62,8 (± 2,7)% Zdroj: ISSP 2007 41

Příklad: volební účast v r. 2006 Voleb do Poslanecké sněmovny konaných ve dnech 2.-3.6. 2006 se účastnilo 64,47 % občanů (oficiální údaj z ČSÚ). Náš výběrový odhad (data ISSP 2007) pro 95 % CfI: 60,06 62,8 65,54 Pro 99 % CfI (kdy z α/2 = 2,326) 59,60 62,8 66,05 Pro 90 % CfI (kdy z α/2 = 1,645) 60,05 62,8 65,01 42

v SPSS CfI pro % standardně pouze v grafu BARCHART GRAPH /BAR(SIMPLE)=PCT BY q34 /INTERVAL CI(95.0). Zdroj: data ISSP 2007 43

BARCHART pro % s CfI, klikací postup 44

Třídění druhého st. v BARCHARTu (s CI pro %) GRAPH /BAR(SIMPLE)=PCT BY q34 BY q38 /INTERVAL CI(95.0). Pro porovnání % volil v 2006 v podskupinách (zde dle členství v odborech) Zdroj: data ISSP 2007 45

Na hotovou tabulku lze aplikovat skript Skript: http://www.acrea.cz/sc_intervaly_spolehlivosti_cetnosti.htm Nebo jobíkem [Gwilym Pryce 2002] v syntaxu vyplníme hodnoty např. z FREQ nebo CROSSTAB http://www.spsstools.net/syntax/distributions/proportiontestsandci.txt Je to ten druhý Large-Sample Confidence Interval for a Single Population Proportion. Přepíšeme/vyplníme jen hodnotu n a p, můžeme také volit velikost CI a počet desetinných míst. Run MATRIX procedure: Confidence Interval for a Single Population Proportion n phat zstar SE Lower Upper 1196,000,627 1,960,014,600,655 ------ END MATRIX ----- Zdroj: data ISSP 2007 46

1. In the output (on FREQ table) you can use (post)script Script can be downloaded from: http://www.acrea.cz/sc_intervaly_spolehlivosti_cetnosti.htm This is most convenient way. However it needs to be stored in a computer and you need the appropriate version of the script fitting to your SPSS version, sometimes even some programming environment needs to be installed (Python), and also it is probably only in Czech. It doesn t exist in PSPP. Source: data ISSP 2007, CR 47

2. Syntax routine CI for proportion [Pryce 2002] http://www.spsstools.net/syntax/distributions/proportiontestsandci.txt Here we have to fill in results, e.g. from FREQ (univariate) or possibly CROSSTAB (bivariate). In fact there are four tests in this syntax. For univariate description it is the second test Large-Sample Confidence Interval for a Single Population Proportion. Fill in only values of n a p, you can also choose CI (originaly set to 99% CI) and decimals shown. *-------------------------------------------------------------------------------. *-------------------------------------------------------------------------------. * Large-Sample Confidence Interval for a Single Population Proportion. * (see Moore and McCabe (2001) Intro to the Practice of Statistics, p. 586-588). *-------------------------------------------------------------------------------. *For the inverse normal computation, I use the approximation used by http://www.hpmuseum.org/software/67pacs/67ndist.htm adapted from Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards 1970. MATRIX. COMPUTE n = {4040}. /* Enter the sample size here (change the number in curly brackets)*/ COMPUTE x = {2048}. /* Enter the number of "successes" (change the number in curly brackets)*/ COMPUTE CONFID = {0.99}. /* Enter the desired confidence level here */ *The remainder of the syntax calculates the Confidence Interval given the values for n and x which you have entered above. *NB you don't need to alter anything from here on. COMPUTE Q = 0.5 * (1-CONFID). COMPUTE A = ln(1/(q**2)). COMPUTE T_ = SQRT(A). COMPUTE zstar = T_ - ((2.515517 + (0.802853*T_) + (0.010328*T_**2))/ (1 + (1.432788*T_) + (0.189269*T_**2) + (0.001308*T_**3))). COMPUTE phat = x/n. COMPUTE SE_phat = SQRT((phat*(1-phat))/n). COMPUTE m = zstar * SE_phat. COMPUTE LOWER = phat - m. COMPUTE UPPER = phat + m. COMPUTE ANSWER = {n, phat, zstar, SE_phat, Lower, Upper}. PRINT ANSWER / FORMAT "F10.5" /Title = "Confidence Interval for a Single Population Proportion" / CLABELS = n, phat, zstar, SE, Lower, Upper. END MATRIX. *NB if you want to obtain values to a greater (lesser) number of decimal places, change the format specified in the last but one line of the syntax. *e.g. if you want only 3 decimal places, change the format to "F10.3". *------------------------------------------------------------------------------. *------------------------------------------------------------------------------. The output: Run MATRIX procedure: Confidence Interval for a Single Population Proportion n phat zstar SE Lower Upper 1196,000,627 1,960,014,600,655 ------ END MATRIX ----- And don't forget, if you use this script (e.g. in diploma thesis) you should credit it, cite: Gwilym Pryce 2002. Large-Sample Confidence Interval for a Single Population Proportion. Inference for Proportions. Available at: http://www.spsstools.net/syntax/distributions/proportiontestsandci.txt. 48 Source: data ISSP 2007, CR

Pro kontingenční tabulku CROSS s31 BY s21. A dosadíme do vzorce (jobíku) Zdroj: data ISSP 2007 Pro kategorii menší město : p dolní mez horní mez Rodinný domek 0,3266 0,2805 0,3727 Menší bytový dům 0,1482 0,1133 0,1832 Větší bytový dům 0,5251 0,4761 0,5742 CROSS s31 BY s21 /cel col. GRAPH /BAR(SIMPLE)=PCT BY s31 by s21/interval CI(95.0). 49

Kalkulátory intervalů spolehlivosti pro nominální znaky (%) http://ncalculators.com/statistics/confidence-interval-calculator.htm ten bohužel nefunguje http://www.surveysystem.com/sscalc.htm http://vassarstats.net/prop1.html 50

Orientační pomůcka: Statistické rozpětí odchylek pro binominální rozdělení Hodnoty 2σ dvě směrodatné odchylky v % Stupeň významnosti 95,45 % n = rozsah náhodného výběru p = četnost znaku v základním souboru v % Zdroj: [Noelleová 1968: 118] 51

Úkol Spočítejte interval spolehlivosti pro podíl vysokoškolsky vzdělaných v ČR Porovnejte se skutečnou hodnotou v populaci (údaje ČSÚ pro 2007) promítnout řešení z AKD2_1_CfI_RESENI 52

Porovnání % rozdílů v třídění 2. stupně (binární proměnné) Zjednodušeně můžeme spočítat interval spolehlivosti pro podíl určité kategorie v podskupinách podle jiné proměnné nebo již existujících výsledků. Např. jednoduše dichotomicky: Volil (závislá proměnná) podle kategorií Křesťanská nábož. orientace (ano/ne; nezávislá p.) a porovnat, zda se hodnoty intervalového odhadu v podskupinách nepřekrývají. Přesnější je řešení pomocí CF samotného % rozdílu mezi těmito kategoriemi (p1-p2). To lze spočítat ručně (viz dále) a nebo dosazením do SPSS jobíku G. Pryce [2002] http://www.spsstools.net/syntax/distributions/proportiontestsandci.txt kde použijeme poslední (4.) test Large-sample Confidence Intervals for Comparing for two population proportions. Pokud spočítaný interval spolehlivosti rozdílu neprochází 0 (tj. nezasahuje nulu = v populaci není nulový), lze tvrdit, že % rozdíl subkategorií (p1-p2) je statisticky významný, tj. platí se zvolenou chybou pro celou populaci. Tento postup lze aplikovat i na kontingenční tabulku s více kategoriemi postupně počítáme CI pro rozdíly vždy dvou 53 hodnot/kategorií. Zde však nastává problém vícenásobného porovnání (viz dále).

Comparing for two population proportions (dichotomised variables in crosstabulation) We can compute confidence interval for proportion of specific value/category within subgroups or for already existing results. For example, dichotomised variables: Voted (dependent var) along categories of Religion (Christian/otherwise) (independent var) and to compare, whether interval estimates within categories of Religion overlap or not. More exact and easier it is via computing CF of % difference between the proportions/categories If the confidence interval of the proportion difference is not including 0 (i.e. it is not zero within the whole population), we can assert, that % difference between the (sub)categories is statistically significant (at given p), i.e. it holds true with given statistical error for whole population. You can compute it by hand (for formula see later) or using SPSS syntax routine by G. Pryce [2002] http://www.spsstools.net/syntax/distributions/proportiontestsandci.txt use the last (4.) test Large-sample Confidence Intervals for Comparing for two population proportions. This method can be applied to a crosstabulation with more categories step by step focusing on one by one value/category comparison. 54

Comparing for two population proportions SPSS syntax routine by G. Pryce [2002] http://www.spsstools.net/syntax/distributions/proportiontestsandci.txt Here we have to fill in results, e.g. from FREQ (univariate) or possibly CROSSTAB (bivariate). In fact there are four tests in this syntax. For comparing for two population proportions it is the fourth test Largesample Confidence Intervals for Comparing for two population proportions. Fill in only values of n1, n2 and p1, p2, you can also choose CI (originally set to 90% CI) and decimals shown. *-------------------------------------------------------------------------------. *-------------------------------------------------------------------------------. * Large-sample Confidence Intervals for Comparing for two population proportions. * (see Moore and McCabe (2001) Intro to the Practice of Statistics, p. 602-604). *-------------------------------------------------------------------------------. *For the inverse normal computation, I use the approximation used by http://www.hpmuseum.org/software/67pacs/67ndist.htm adapted from Abramowitz and Stegun, Handbook of Mathematical Functions, National Bureau of Standards 1970. MATRIX. COMPUTE n1 = {1222}. /* Enter the first sample size here (change the number in curly brackets)*/ COMPUTE n2 = {1222}. /* Enter the second sample size here (change the number in curly brackets)*/ COMPUTE x1 = {958}. /* Enter the number of "successes" for sample 1 here (change the nb in curly brackets)*/ COMPUTE x2 = {1016}. /* Enter the number of "successes" for sample 2 here (change the nb in curly brackets)*/ COMPUTE CONFID = {0.95}. /* Enter the desired confidence level here */ *The remainder of the syntax calculates the Confidence Interval given the values for n and x which you have entered above. *NB you don't need to alter anything from here on. COMPUTE Q = 0.5 * (1-CONFID). COMPUTE A = ln(1/(q**2)). COMPUTE T_ = SQRT(A). COMPUTE zstar = T_ - ((2.515517 + (0.802853*T_) + (0.010328*T_**2))/ (1 + (1.432788*T_) + (0.189269*T_**2) + (0.001308*T_**3))). COMPUTE p1hat = x1/n1. COMPUTE p2hat = x2/n2. COMPUTE SE_phat = SQRT(((p1hat*(1-p1hat))/n1) + (p2hat*(1-p2hat))/n2)). COMPUTE m = zstar * SE_phat. COMPUTE LOWER = (p1hat - p2hat) - m. COMPUTE UPPER = (p1hat - p2hat) + m. COMPUTE diffp1p2 = p1hat - p2hat. COMPUTE ANSWER = {n1, n2, diffp1p2, zstar, SE_phat, Lower, Upper}. PRINT ANSWER / FORMAT "F10.5" /Title = "Confidence Interval for Comparing 2 Proportions" / CLABELS = n1, n2, diffp1p2, zstar, SE, Lower, Upper. END MATRIX. The output: Example: Non-participation in Run MATRIX procedure: Confidence Interval for Comparing 2 Proportions n1 n2 diffp1p2 zstar SE Lower Upper 1222,00000 1222,00000 -,04746 1,96039,01592 -,07866 -,01626 ------ END MATRIX ----- Sport clubs and Culture association [ISSP 2007, CR] Sport (q13_a) = 958 Culture: (q13_b) = 1016 TOTAL = 1222. The result: the CI is not crossing 0 the difference 4,7 % points is statistically significant (at p < 5%). And don't forget, if you use this script (e.g. in diploma thesis) you should credit it, cite: Gwilym Pryce 2002. Large-Sample Confidence Interval for a Single Population Proportion. Inference for Proportions. Available at: http://www.spsstools.net/syntax/distributions/proportiontestsandci.txt. 55

Or you can use Web Calculator for Confidence Interval for the Difference Between Two Independent Proportions http://vassarstats.net/prop2_ind.html 56

Simultánní intervaly spolehlivosti pro četnosti Dosud jsme činili samostatné závěry, ale chceme-li zhodnotit několik četností zároveň, musíme zajistit, aby všechny parametry byly pokryty předem požadovanou spolehlivostí. Pro souběžný závěr o několika četnostech proto zpřísníme celkovou spolehlivost C na z α / S kde S = počet četnostní pro něž chceme simultánní intervaly spolehlivosti Např. pro 4 četnosti, při požadované α = 0,05: z α / 4 =z α / 0,0125 = 0,02497 tj. přibližně 2,5 Viz tabulky kritických hodnot standardního normálního testu pro simultánní testování. [Řehák, Řeháková 1986: 64-65] 57

Další možnosti využití Intervalu spolehlivosti

Standardizace kardinálních proměnných na z-skóre Užitečná transformace data pro porovnání proměnných měřených na různých škálách (rozpětí) Jak na to viz http://metodykv.wz.cz/akd2_transfznaku1.ppt Dimenze pro-čtenářského klimatu a čtení v dětství v závislosti na vzdělání rodičů, průměry z-skórů, věková kohorta narozených 1974-1978 nadprůměr Průměr škál (=0) podprůměr Zdroj: [Gorčíková, Šafr 2012: 75] Dostupnost/nápodoba Interakce/komunikace Četl/a v dětství Příklad: dvě odlišné dimenze pročtenářského klimatu v rodině a čtení v dětství (3 průměry) podle vzdělání rodičů Závislé proměnné (dimenze pročtenářského klimatu a čtení) jsou spojitékardinální a protože byly měřeny na škálách s odlišným rozpětím jsou standardizované na z-skóry, tj. mají stejnou metriku-rozsah (průměr =0 a StD=1) můžeme porovnávat jejich relativní(!) intenzitu napříč vzdělanostními kategoriemi a to i uvnitř nich, nikoliv ale celkovou hodnotu jako takovou mezi sebou (tj. v třídění 1. stupně).