Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
|
|
- Mária Marková
- před 6 lety
- Počet zobrazení:
Transkript
1 Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu (test o směr. odchylce) Describe/Numeric Data/One Variable Analysis +Pane Options (Hypothesis Tests) Intervalový odhad rozptylu (směr. odchylky) Ověření polohy Studentův t-test (test o střední hodnotě) Intervalový odhad střední hodnoty Znaménkový test (test o mediánu) Wilcoxonův test (test o mediánu) Ověření shody relativní četnosti s očekávanou pravděpodobností Test o parametru Intervalový odhad parametru rozdělení binomického rozdělení binomického Ověření normality Describe/Distributions/Distribution Fitting (Uncensored Data) + Pane Options (Tests for Normality) Schéffého test POZOR! Nezapomeňte na možnost využití pole Select při zadávání dat, analyzujete-li vícerozměrná data zadána ve standardním datovém formátu. Intervalový odhad rozptylu (směrodatné odchylky) Intervalový odhad střední hodnoty Intervalový odhad parametru rozdělení binomického Studentův t-test (test o střední hodnotě) Znaménkový test (test o mediánu) Test o rozptylu Describe/Numeric Data/One Variable Analysis + Tabular Options (Confidence Intervals) Describe/Hypothesis Tests Normal Sigma Describe/Numeric Data/One Variable Analysis + Tabular Options (Confidence Intervals) Describe/Hypothesis Tests Normal Mean Describe/Hypothesis Tests Binomial Proportion Describe/Numeric Data/One Variable Analysis + Tabular Options (Hypothesis Tests ) t-test Describe/Hypothesis Tests Normal Mean Describe/Numeric Data/One Variable Analysis + Tabular Options (Hypothesis Tests ) sign test Describe/Hypothesis Tests Normal Sigma (Požadované statistiky zadejte na základě zadání na základě Summary Statistics ) Test o parametru binomického rozdělení Describe/Hypothesis Tests Binomial Proportion Odhad rozsahu výběru Describe/Sample Size Determination Martina Litschmannová 1
2 Dvě dichotomické proměnné Párová (spojitá) data Dvě nezávislé spojité proměnné STATISTICKÁ INDUKCE PRO DVOUROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Předpoklady Testy, resp. intervalové odhad F-test (test shody rozptylů) Ověření shody rozptylů (homoskedasticity) Intervalový odhad poměru rozptylů, resp. směr. odchylek Leveneův test Dvouvýběrový Studentův t-test Ověření shody měr polohy (středních hodnot, resp. mediánů) Shoda rozptylů (homoskedasticita) Různé rozptyly (heteroskedasticita) (test shody stř. hodnot) Intervalový odhad rozdílu stř. hodnot Aspinové-Welchův test (test shody stř. hodnot) Intervalový odhad rozdílu stř. hodnot Mannův-Whitneyův test (test shody mediánů) Párový Studentův t-test Ověření shody úrovně párových dat Intervalový odhad střední hodnoty rozdílů Párový znaménkový test Wilcoxonův párový test Ověření shody pravděpodobností Test homogenity dvou binomických rozdělení Intervalový odhad rozdílu parametru binomických rozdělení Martina Litschmannová 2
3 STATISTICKÁ INDUKCE PRO DVOUROZMĚRNÁ DATA Ověření normality Describe/Distributions/Distribution Fitting (Uncensored Data) + Pane Options (Tests for Normality) Schéffého test POZOR! Nezapomeňte na možnost využití pole Select při zadávání dat, analyzujete-li vícerozměrná data zadána ve standardním datovém formátu. Intervalový odhad poměru rozptylů, resp. směr. odchylek Intervalový odhad rozdílu stř. hodnot Intervalový odhad střední hodnoty rozdílů Intervalový odhad rozdílu parametru binomických rozdělení Test o shodě rozptylů F-test Leveneův test (test o shodě rozptylů není-li splněn předpoklad normality) Studentův t-test + Aspinové-Welchův test (testy o shodě středních hodnot) Compare/Two Samples/Two Sample Comparison (možnost volby vstupu buď dva sloupce data a identifikátor!!!)+tabular Options (Comparison of Standard Deviations) Compare/Two Samples/Hypothesis Tests Normal Sigmas Compare/Two Samples/Two Sample Comparison (možnost volby vstupu buď dva sloupce data a identifikátor!!!)+tabular Options (Comparison of Means) Compare/Two Samples/Hypothesis Tests Normal Means POZOR!!! Zaškrtávacím polem v Pane Options je nutné nastavit, zda jsou nejsou shodné rozptyly. Compare/Two Samples/Paired-Sample Comparison )+ Tabular Options (Confidence Intervals ) Poznámka: Párová data Compare/Two Samples/Hypothesis Tests Binomial Proportions Compare/Two Samples/Two Sample Comparison (možnost volby vstupu buď dva sloupce data a identifikátor!!!)+tabular Options (Comparison of Standard Deviations) Compare/Two Samples/Hypothesis Tests Normal Sigmas vstupu buď několik sloupců data a identifikátor!!!)+tabular Options (Variance Check) Compare/Two Samples/Two Sample Comparison (možnost volby vstupu buď dva sloupce data a identifikátor!!!)+tabular Options (Comparison of Means) Compare/Two Samples/Hypothesis Tests Normal Means POZOR!!! Zaškrtávacím polem v Pane Options je nutné nastavit, zda jsou nejsou shodné rozptyly. Tím se nastaví, zda má být použit Studentův t-test Aspinové-Welchův test. Test o střední hodnotě rozdílů párových dat Test o mediánu rozdílů párových dat Test homogenity dvou binomických rozdělení Odhad rozsahu výběrů Compare/Two Samples/Paired-Sample Comparison )+ Tabular Options (Hypothesis Tests ) t test Compare/Two Samples/Paired-Sample Comparison )+ Tabular Options (Hypothesis Tests ) sign test Compare/Two Samples/Hypothesis Tests Binomial Proportions Compare/Sample-Size Determination Martina Litschmannová 3
4 Alespoň tři závislé (spojité) proměnné Alespoň tři nezávislé spojité proměnné STATISTICKÁ INDUKCE PRO VÍCEROZMĚRNÁ DATA Typ proměnné Předpoklady Testy Ověření shody rozptylů (homoskedasticity) Vyvážené třídění Nevyvážené třídění Cochranův test Hartleyův test Bartlettův test Leveneův test Ověření shody měr polohy (středních hodnot, resp. mediánů) Shoda rozptylů (homoskedasticita) ANOVA (Analýza rozptylu = test shody stř. hodnot) (Poznámka: V případě zamítnutí je vhodné provést post hoc analýzu, např. Schéffeho metodou.) Kruskalův-Wallisův test (test shody mediánů, resp. shody distribucí) (Poznámka: V případě zamítnutí je vhodné provést post hoc analýzu, např. Dunnové metodou.) Ověření shody úrovně závislých dat Friedmanův test (Poznámka: V případě zamítnutí je vhodné provést post hoc analýzu Friedmanovou metodou.) Martina Litschmannová 4
5 STATISTICKÁ INDUKCE PRO VÍCEROZMĚRNÁ DATA Ověření normality Describe/Distributions/Distribution Fitting (Uncensored Data) + Pane Options (Tests for Normality) Schéffého test POZOR! Nezapomeňte na možnost využití pole Select při zadávání dat, analyzujete-li vícerozměrná data zadána ve standardním datovém formátu. Testy (Bartletův, Leveneův, Cochranův) o shodě rozptylů ANOVA Post hoc analýza pro ANOVu Kruskalův-Wallisův test Post hoc analýza pro Kruskalův-Wallisův test Friedmanův test Post hoc analýza pro Friedmanův test vstupu buď několik sloupců data a identifikátor!!!)+tabular Options (Variance Check) vstupu buď několik sloupců data a identifikátor!!!) vstupu buď několik sloupců data a identifikátor!!!)+tabular Options (Multiple Range Test) doporučuji použít Bonferroniho test Schéffeho test (pro malé výběry) výběr testu se provádí v Pane Options vstupu buď několik sloupců data a identifikátor!!!)+tabular Options (Kruskal-Wallis and Friedman Tests) Ve Statgraphicsu není k dispozici!!! Lze použít výpočetní applet Kruskalův-Wallisův test (excel). vstupu buď několik sloupců data a identifikátor!!!)+tabular Options (Kruskal-Wallis and Friedman Tests) Ve Statgraphicsu není k dispozici!!! Lze použít výpočetní applet Friedmanův test (excel). Martina Litschmannová 5
6 ANALÝZA ZÁVISLOSTI Analýza závislosti v kontingenční tabulce Název testu Analýza závislosti v kontingenční tabulce Předpoklady testu Očekávané četnosti, alespoň 80% očekávaných četností >5 Testová statistika Míry závislosti Koeficient kontingence (pro čtvercové kontingenční tabulky), Korigovaný koeficient kontingence, kde, Cramerův koeficient ( ). (pro obdélníkové kontingenční tabulky) Tyto koeficienty se mohou vyskytovat v intervalu ( těsnější. ). Čím jsou blíže 1, tím je závislost mezi X a Y Míry závislosti v asociační tabulce Odhad poměru šancí:. Intervalový odhad : Odhad relativního rizika: Intervalový odhad : Analýza závislosti v kontingenční tabulce Describe/Categorical Data/Crosstabulation (jsou-li data ve standardním datovém formátu) Describe/Categorical Data/Contingency Tables (jsou-li data zapsána v kontingenční tabulce POZOR! Lze-li určit, která proměnná je příčina, zadejte ji jako kategoriální proměnnou, tj. tabulku zadejte do SG tak, aby příčina byla jednou proměnnou a varianty následku byly identifikátory dalších sloupců)) Pro ověření předpokladů testu lze zobrazit očekávané četnosti: Pane Options (Expected Frequencies) Test: Tabular Options (Chi-Square Test) Míry závislosti: Tabular Options (Summary Statistics) POZOR!!! Míry závislosti v asociační tabulce nejsou ve Statgraphicsu k dispozici. Martina Litschmannová 6
7 KORELAČNÍ A REGRESNÍ ANALÝZA Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient:, kde ( )( ), je výběrová směrodatná odchylka proměnné X (Y). Název testu Test nulovosti korelačního koeficientu Testované parametry Předpoklady testu normalita Testová statistika Nulové rozdělení Analýza závislosti ordinálních veličin Spearmanův korelační koeficient: Název testu Test nulovosti korelačního koeficientu Testované parametry Předpoklady testu Testová statistika Kritický obor { } (T15) Doporučený postup při korelační a regresní analýze 1. Explorační analýza korelačního pole (případný odhad typu regresní funkce, identifikace vlivných bodů) 2. Odhad koeficientů regresní funkce (aplikace vyrovnávacího kritéria např. metody nejmenších čtverců) 3. Verifikace modelu, tj. ověření předpokladů lineárního modelu a) Celkový F-test testujeme, zda hodnota vysvětlované proměnné závisí na lineární kombinaci vysvětlujících proměnných, tj. testujeme nulovou hypotézu H 0 : vůči alternativě H A :. Pokud bychom nulovou hypotézu nezamítli, znamenalo by to, že model je chybně specifikován. b) Dílčí t-testy - umožňují testovat oprávněnost setrvání vysvětlující proměnné v regresním modelu. Testujeme (postupně pro jednotlivá i) nulovou hypotézu ve tvaru H 0 : vůči alternativě H A : pro. Pokud pro konkrétní i nelze zamítnout nulovou hypotézu, je třeba zvážit setrvání příslušné vysvětlující proměnné v modelu. c) Analýza reziduí ověřujeme předpoklady pro použití lineárního regresního modelu. ověření normality reziduí - testy dobré shody, ověření nulovosti střední hodnoty - vizuálně na základě grafu reziduí a odhadovaných hodnot závisle proměnné (rezidua musí kolísat kolem nuly) + dvouvýběrový t test, ověření homoskedasticity vizuálně na základě grafu reziduí a odhadovaných hodnot závisle proměnné (rezidua se systematicky nezvyšují ani se systematicky nesnižují spolu s rostoucími odhadovanými hodnotami), ověření autokorelace reziduí - vizuálně na základě grafu reziduí a odhadovaných hodnot závisle proměnné (autokorelace projeví tak, že se rezidua systematicky snižují Martina Litschmannová 7
8 KORELAČNÍ A REGRESNÍ ANALÝZA zvyšují, resp. můžeme mezi reziduí a předpovídanými hodnotami pozorovat nelineární závislost) + Durbinova-Watsonova statistika. d) Multikolinearita v případě vícenásobné regrese musíme ověřit, zda neexistuje multikolinearita mezi regresory (lze posoudit např. dle korelací mezi regresory). e) Ověření kvality modelu index determinace (udává kolik procent vysvětlované proměnné bylo vysvětleno modelem), koeficient korelace (míra korelace mezi závisle proměnnou a regresorem v případě přímkové regrese), koeficient vícenásobné korelace (míra korelace mezi závisle proměnnou a lineární kombinací regresorů ), koeficienty parciální korelace, např. (míra korelace mezi závisle proměnnou a jedním z regresorů při vyloučení vlivu ostatních regresorů). 4. Využití verifikovaného modelu k predikci odhad střední hodnoty závisle proměnné při daných hodnotách regresorů (pás spolehlivosti), odhad individuální hodnoty závisle proměnné při daných hodnotách regresorů (pás predikce). Pozor na extrapolaci! Pearsonův korelační koeficient + test nulovosti korel. koeficientu Spearmanův korelační koeficient + test nulovosti korel. koeficientu Jednoduchá lineární regrese Vícenásobná regrese Describe / Numeric Data / Multiple Variable Analysis Před použitím Pearsonova korelačního koeficientu nutno ověřit normalitu dat!!! Describe / Numeric Data / Multiple Variable Analysis + Tabular Options (Rank Correlations) Relate / Single Regression Relate / Multiple Regression POZOR!!! Predikce se provádí doplněním datového souboru o hodnoty regresorů a následným použitím Save Results Options (ikona s disketou) Martina Litschmannová 8
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
Návod na vypracování semestrálního projektu
Návod na vypracování semestrálního projektu Následující dokument má charakter doporučení. Není závazný, je pouze návodem pro studenty, kteří si nejsou jisti výběrem dat, volbou metod a formou zpracování
Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem
Pracovní adresář getwd() # výpis pracovního adresáře setwd("c:/moje/pracovni") # nastavení pracovního adresáře setwd("c:\\moje\\pracovni") # nastavení pracovního adresáře Nápověda?funkce # nápověda pro
Semestrální projekt spočívá v nalezení vhodného datového souboru a jeho statistické analýze s využitím metod probíraných v rámci předmětu.
Semestrální projekt Semestrální projekt spočívá v nalezení vhodného datového souboru a jeho statistické analýze s využitím metod probíraných v rámci předmětu Data Data lze využít vlastní (laboratorní měření,
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah
Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.
SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
Cvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Ilustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
VŠB-TU OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY, KATEDRA APLIKOVANÉ MATEMATIKY. Statistika. Vzorce a tabulky
VŠB-TU OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY, KATEDRA APLIKOVANÉ MATEMATIKY Statistia Vzorce a tabuly Martina Litschmannová 3. března 05 Oficiální vzorce a tabuly KOMBINATORIKA Bez opaování Uspořádané
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba lineárních regresních modelů. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE Tvorba lineárních regresních modelů 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Úloha 1 Porovnání regresních přímek u jednoduchého lineárního regresního modelu Porovnání
Analýza rozptylu. Ekonometrie. Jiří Neubauer. Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel
Analýza rozptylu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO Brno) Analýza rozptylu 1 / 30 Analýza
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků
Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a
Korelační a regresní analýza. 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza
Korelační a regresní analýza 1. Pearsonův korelační koeficient 2. jednoduchá regresní analýza 3. vícenásobná regresní analýza Pearsonův korelační koeficient u intervalových a poměrových dat můžeme jako
ADDS cvičení 7. Pavlína Kuráňová
ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost
Testování hypotéz a měření asociace mezi proměnnými
Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 4 Jak a kdy použít parametrické a
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Příloha č. 1 Grafy a protokoly výstupy z adstatu
1 Příklad 3. Stanovení Si metodou OES Byly porovnávány naměřené hodnoty Si na automatickém analyzátoru OES s atestovanými hodnotami. Na základě testování statistické významnosti regresních parametrů (úseku
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Analýza rozptylu. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Srovnávání více než dvou průměrů
PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Analýza rozptylu Srovnávání více než dvou průměrů If your experiment needs statistics, you ought to have done a better experiment. Ernest Rutherford
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )
Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer
ANOVA Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
4EK211 Základy ekonometrie
4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Semestrální práce Licenční studium Galileo Interaktivní statistická analýza
ANALÝZA DAT V R 5. ZÁKLADNÍ STATISTICKÉ TESTY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 5. ZÁKLADNÍ STATISTICKÉ TESTY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PRINCIPY STATISTICKÉ INFERENCE identifikace závisle proměnné
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO a limity její přesnosti Seminární práce Monika Vejpustková leden 2016 OBSAH Úloha 1. Lineární kalibrace...
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
Předmluva S o u h rn... 89
Obsah Předmluva... 17 1 Ú v o d... 2 1 1.1 Empirický výzkum a jeho etap y... 23 1.2 Význam teorie pro v ý zk u m... 27 1.2.1 Konstrukty a jejich operacionalizace... 27 1.2.2 Role teorie ve v ý zk u m u...
Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6
1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6
VŠB Technická univerzita Ostrava BIOSTATISTIKA
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr Tvorba lineárních regresních modelů při analýze dat Příklad 1 Porovnání dvou regresních přímek u jednoduchého lineárního regresního modelu. Počet
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Intervaly spolehlivosti
Intervaly spolehlivosti = intervalové odhady neznámého parametru (odhad pro π, µ, σ 2, ), odvozují se z příslušné CLV spolehlivost = 1 α = pravděpodobnost, že neznámá hodnota parametru je intervalem pokryta;
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
18AEK Aplikovaná ekonometrie a teorie časových řad. Řešení domácích úkolů č. 1 a 2 příklad 1
18AEK Aplikovaná ekonometrie a teorie časových řad Řešení domácích úkolů č. 1 a 2 příklad 1 Obecné pravidlo pro všechny testy Je stanovena nulová hypotéza: H 0 Je stanovena alternativní hypotéza: H A Je
4ST201 STATISTIKA CVIČENÍ Č. 10
4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Ing. Michael Rost, Ph.D.
Statistika úvodní přednáška Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle základního kurzu: seznámit posluchače se základy počtu pravděpodobnosti, seznámit posluchače s aspekty
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá