Metodologie pro Informační studia a knihovnictví 2
|
|
- Radka Jandová
- před 6 lety
- Počet zobrazení:
Transkript
1 Metodologie pro Informační studia a knihovnictví 2 Modul 9: Úvod do induktivní statistiky Obsah Induktivní statistika... 2 Kdy můžeme zobecňovat?... 2 Logika statistické indukce... 3 Proč nelze jednoduše zobecnit ze vzorku na populaci aneb zobecňování průměrů... 4 Výpočet intervalu spolehlivost v Excelu... 5 Výpočet intervalu spolehlivost v SPSS... 5 Zobecňování výsledků třídění druhého stupně (kontingenčních tabulek)... 9
2 Induktivní statistika Dostáváme se nyní k nové kapitole statistického zpracování dat k zobecňování na populaci. Dosud naše výpočty vypovídaly vždy jen o našich respondentech vzorku, který neodpověděl na naše otázky. Cílem výzkumů je ale často vztáhnout výsledky na celou výzkumnou populaci, kterou vzorek zastupuje Připomeňme si rozdíly mezi deskriptivní a induktivní statistikou: Deskriptivní statistika: popisuje rozložení četností naměřených proměnných. Statistická indukce: umožňuje zkoumat vztahy mezi proměnnými a zobecňovat výsledky na základní populaci. Zdroj obrázku: Kdy můžeme zobecňovat? Na úvod je důležité si říci, že zobecňování na populaci si nemůžeme automaticky dovolit v každém výzkumu. Vzorek totiž musí být reprezentativní vzhledem k populaci. Toho lze docílit různými způsoby, základním způsobem, se kterým ale počítá statistická indukce je prostý náhodný výběr. Teorie statistické indukce tedy zobecňování formou zjišťování statistické významnosti - je vyvinuta pro případy velkých reprezentativních náhodných výběrů z velkých základních souborů. Rabušic a Soukup (2007) říkají: Značná část českých sociálních vědců, nemluvě o značné proporci studentů, je posedlá statistickou významností. Testy statistické signifikance v jejich povědomí (neboť tak pochopili smysl testováni v kurzech statistiky) slouží jako všemocné zaklinadlo. Jsou přesvědčeni, že bez testů statistických hypotéz není možné získat vědecky relevantní poznatky. Domnívají se, že tyto testy musí aplikovat na všechny
3 výsledky bez ohledu na to, zdali jejich data pocházejí z pravděpodobnostního (náhodného) výběru, vyčerpávajícího zjišťováni (z cenzu) nebo výběru nenáhodného (kvótního, záměrného, samovýběru). Jsou přesvědčeni, že testy významnosti jim řeknou, co je v datech důležitého, prostřednictvím nalezené statistické signifikance se snaží prokazovat těsnost vztahu dvou proměnných. Nic z toho ovšem statistická významnost neumí. Logika statistické indukce Přestože z úvodních řádků vyplývá, že statistickou indukci není možné aplikovat na značnou část výzkumů, které se v praxi realizují, je přesto dobré seznámit se s její logikou. Základem statistické indukce je testování statistických hypotéz, přesněji řečeno zejména testování tzv. nulové hypotézy. Hypotéza je výrok o vztahu proměnných. Nulová hypotéza předpokládá stav neexistence rozdílu (tj. předpokládá stav shody) mezi proměnnými/skupinami v populaci. (Arbuthnott, 1710) Alternativní hypotéza předpokládá existenci rozdílu (na základě teorie definujeme předpoklady o rozdílech mezi jednotlivými skupinami v populaci) Příklady nulových hypotéz: H0: Neexistuje rozdíl mezi rozložením proměnných ve vzorku a v populaci. H0: Neexistuje vztah mezi časem věnovaným internetu a pohlavím. Ho: Neexistuje rozdíl mezi průměrným příjmem mužů a žen zaměstnaných v knihovnách. Příklady alternativních hypotéz: H0: Existuje rozdíl mezi rozložením proměnných ve vzorku a v populaci. H1: Neexistuje vztah mezi časem věnovaným internetu a pohlavím. H1a: Muži tráví na internetu více času než ženy. (Abychom si mohli dovolit formulovat takto orientovanou hypotézu, měli bychom mít podklady v předchozích výzkumech). NEBO H2b: Ženy tráví na internetu více času než muži. (Abychom si mohli dovolit formulovat takto orientovanou hypotézu, měli bychom mít podklady v předchozích výzkumech). H0: Neexistuje rozdíl mezi průměrným příjmem mužů a žen zaměstnaných v knihovnách. H1a: Muži zaměstnaní v knihovnách mají vyšší příjem než ženy. (Abychom si mohli dovolit formulovat takto orientovanou hypotézu, měli bychom mít podklady v předchozích výzkumech). Pokud data neodpovídají H0, nulovou hypotézu zamítáme. Zamítnutí nulové hypotézy ovšem samo o sobě většinou nestačí k přijetí hypotézy alternativní. Pro přijetí či zamítnutí nulové hypotézy je klíčová hladina statistické významnosti. Statistická významnost je pravděpodobnost, s jakou bychom za předpokladu platnosti nulové hypotézy mohli obdržet data odporující nulové hypotéze. (Soukup 2010)
4 Je-li statistická významnost nízká, nulová hypotéza nejspíš neplatí. Zlaté pravidlo pro induktivní statistiku: Vysoká hodnota testu statistické významnosti (tj. α > 0,05) rozdíl není statisticky významný držíme nulovou hypotézu. Nízká hodnota testu statistické významnosti (tj. α 0,05) rozdíl je statisticky významný zamítáme nulovou hypotézu. Princip většiny statistických testů spočívá v tom, že se výsledky naměřených hodnot porovnávají s teoretickým modelem jejich rozložení z něj jsou odvozeny tzv. kritické hodnoty testu (Reichel 2009). Pro různé druhy hypotéz existuje řada testovacích kritérií. Proč nelze jednoduše zobecnit ze vzorku na populaci aneb zobecňování průměrů Představte si, že zkoumáme populaci magisterských studentů knihovnictví. Chceme vidět, jak se měnil nějaký konkrétní ukazatel třeba jejich váhu v kilogramech. Dejme tomu, že je studentů celkem 200. Náš vzorek je 15 studentů (víme už, že takový vzorek by byl velmi malý, ale pro tento příklad si jej ponechme). Populační průměr sledované vlastnosti je 69,63. Pokaždé, kdy náhodně vybereme nějaký vzorek 15 studentů, dostaneme poněkud odlišné výsledky: Číslo Průměr St. Minimum Medián Maximum Rozpětí měření odchylka 1. 66,12 9,21 47, , ,3 12,48 52,4 71,1 101,1 48, ,67 10, ,1 85,4 31, ,95 10,57 54, ,8 33,3 Takto bychom mohli pokračovat a při každém výběru bychom dostali poněkud jiné výsledky. Nyní vidíme, že z jednoho měření nelze jednoduše zobecnit průměr každý výběr je zatížen tzv. výběrovou chybou. Výběrová chyba je chyba, která vyplývá z faktu, že neměříme populaci, ale vzorek. Velikost výběrové chyby vychází především z distribuce vlastnosti v populaci. Pokud je populace homogenní vzhledem k vybranému kritériu, výběrová chyba bude pravděpodobně menší. Výběrová chyba také bude klesat s velikostí vzorku. Vzorek 50 studentů bude mít pravděpodobně nižší výběrovou chybu než vzorek 15 studentů. Jak se vypořádat s výběrovou chybou? Musíme pochopit, že ze vzorku nemůžeme se 100%pravděpodobností usuzovat na výsledek (průměr) celé populace. O výsledku tedy můžeme hovořit jen jako o odhadu v rámci určitého intervalu a s určitou mírou jistoty.
5 Je jasné, že čím nižší míra jistoty, tím menší může být interval, ve kterém se spolehlivě průměr nachází v populaci, a naopak: pokud chceme mít vysokou míru jistoty, interval bude větší. Nejčastěji volíme interval spolehlivosti 95 % nebo 99 %. To znamená, že o naměřeném výsledku můžeme s 95% (respektive 99%) spolehlivostí tvrdit, že se nachází v daném intervalu. K výpočtu horní a spodní hranice interval spolehlivosti nám pomůže znalost velikosti směrodatné odchylky. Na obrázku vidíme normální rozložení hodnot v populaci. V intervalu jedné směrodatné odchylky od průměru na obou stranách leží 68,2 % všech naměřených hodnot. V intervalu dvou směrodatných odchylek už leží 95 % a v intervalu tří směrodatných odchylek leží 99 % naměřených hodnot. Výpočet intervalu spolehlivost v Excelu V Excelu pro výpočet intervalu spolehlivosti používáme příkaz CONFIDENCE. Podrobný popis použití příkazu najdete zde. K výpočtu potřebujeme znát: koeficient spolehlivosti (0,05 pro 95% interval spolehlivosti a 0,01 pro 99% interval spolehlivosti), směrodatnou odchylku v populaci, velikost výběrového souboru. V praxi ale většinou neznáme hodnoty průměru v populaci či výši směrodatné odchylky. Proto byly vyvinuty postupy realizovatelné při využití standardní odchylky naměřeného průměru tzv. T- rozložení a T-test. Výpočet intervalu spolehlivost v SPSS V SPSS používáme záložku Explore, kde si na kartě Statistics upravíme velikost intervalu spolehlivosti:
6 SPSS vrátí informace o horní a spodní hranici intervalu spolehlivosti. Hypotézy o shodě dvou populačních průměrů Pro vyhodnocování hypotézy o shodě dvou průměrů používáme tzv. T-test. Studentův t-test (William Gosset) směrodatná odchylka (s), která sama podléhá variabilitě výběru, již nemusí být spolehlivým odhadem populační směrodatné odchylky (zdroj) Pro nás relevantní: Independent Samples T-test Např. zkoumáme vztah mezi pohlavím a počtem dětí (v populaci třicátníků) příklad pracuje s daty z výzkumu Distinkce a hodnoty 2008 (viz Studijní materiály v ISu). Nulová a alternativní hypotéza: H0: Neexistuje rozdíl mezi počtem dětí u skupin podle pohlaví. Ha: Existuje rozdíl mezi počtem dětí u skupin podle pohlaví. Postup v SPSS: Analyze Compare Means Independent Samples T-test Podíváme se, jaké rozdíly jsme naměřili na vzorku:
7 Interpretujeme test ve dvou krocích: 1. podíváme se na výsledky F testu o shodě variací Signifikance u F > 0,05 použijeme T-testu pro případ EQUAL VARIANCES ASSUMED Signifikance u F < 0,05 použijeme T-testu pro případ EQUAL VARIANCES NOT ASSUMED 2. v příslušném sloupci čteme významnost Porovnávání více populačních průměrů Opět si vše ukážeme na příkladu z výzkumu Distinkce a hodnoty Např. zkoumáme vztah mezi vzděláním a počtem dětí Nulová a alternativní hypotéza: H0: Neexistuje rozdíl mezi počtem dětí u jednotlivých vzdělanostních skupin. Ha: Existuje rozdíl mezi počtem dětí u jednotlivých vzdělanostních skupin. Nejprve si zjistíme rozdíly v naměřených průměrech: Analyze Compare Means
8 1. krok: Analyze One way ANOVA Options: Descriptives 2. krok: statistika F a její signifikance 3. krok: Chceme vědět, mezi kterými skupinami statisticky významný rozdíl existuje
9 Zobecňování výsledků třídění druhého stupně (kontingenčních tabulek) Druhým příkladem zobecňování z naměřených hodnot na populaci je zobecňování výsledků třídění druhého stupně kategorizovaných dat. Příklad: Chceme vědět, jak se liší frekvence čtení u skupin podle vzdělání. Formulujeme nulovou a alternativní hypotézu: H0: Neexistuje rozdíl ve frekvenci čtení mezi skupinami třicátníků s různým vzděláním. Ha: Existuje rozdíl ve frekvenci čtení mezi skupinami třicátníků s různým vzděláním. Uděláme si kontingenční tabulku (už ji umíme od modulu 7): Vidíme poměrně zajímavé rozdíly! Můžeme je zobecnit? Pro zobecňování rozdílů u kategorizovaných proměnných se používá jako testovací kritérium tzv. test nezávislosti chí kvadrát (χ2).
10 Chí-kvadrát je založený na srovnávání naměřených a očekávaných proměnných Očekávaná četnost: počet jednotek, který by do dané kategorie spadl při náhodném rozložení Naměřená četnost: počet jednotek, které jsme v dané kategorii ve vzorku naměřili Reziduál: rozdíl mezi OČ a NČ Adjustované reziduály: koeficient determinace (AR mají přibližně normální rozložení s průměrem 0 a standardní odchylkou 1) Chí kvadrát v SPSS Chí-kvadrát Analyze Crosstabs: Statistics
11 Literatura: Reichel, J Kapitoly metodologie sociálních výzkumů. Praha: Grada. Soukup, P Nesprávné užívání statistické významnosti a jejich možná řešení. Data a výzkum SDA Info 4(2): SOUKUP, Petr - RABUŠIC, Ladislav. Několik poznámek k jedné obsesi českých sociálních věd - statistické významnosti. Sociologický časopis. 2007, roč. 43, č. 2, s ISSN
LEKCE 6 ZÁKLADY TESTOVÁNÍ HYPOTÉZ
1 LEKCE 6 ZÁKLADY TESTOVÁNÍ HYPOTÉZ STATISTICKÉ HYPOTÉZY neboli formální výroky o: neznámých parametrech základního souboru, o tvaru rozložení četností, o statistických vztazích mezi soubory či proměnnými
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Testování hypotéz a měření asociace mezi proměnnými
Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Vymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.
Testování hypotéz 1. vymezení důležitých pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test 4. t-test pro nezávislé výběry 5. t-test pro závislé výběry Vymezení důležitých pojmů nulová
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Metodologie pro ISK 2, jaro Ladislava Z. Suchá
Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
KONTINGENČNÍ TABULKY Komentované řešení pomocí programu Statistica
KONTINGENČNÍ TABULKY Komentované řešení pomocí programu Statistica Vstupní data transformace před vložením Než data vložíme do tabulky ve Statistice, musíme si je předpřipravit. Označme si P Prahu, S Šumperk
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se Ježkovy a Širůčkovy seminární skupiny liší ve výsledcích v. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)
ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Testování hypotéz Biolog Statistik: Matematik: Informatik:
Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů.
Neparametricke testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Náhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích
Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové
Ranní úvahy o statistice
Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Návod na statistický software PSPP část 2. Kontingenční tabulky
Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Epidemiologické ukazatele Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Vzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
Regrese. 28. listopadu Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly:
Regrese 28. listopadu 2013 Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly: 1. Ukázat, že data jsou opravdu závislá. 2. Provést regresi. 3. Ukázat, že zvolená křivka
ADDS cvičení 7. Pavlína Kuráňová
ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost
NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
Analýza rozptylu. Ekonometrie. Jiří Neubauer. Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel
Analýza rozptylu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO Brno) Analýza rozptylu 1 / 30 Analýza
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6
1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
t-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
Analýza dat z dotazníkových šetření
Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší
LIMITY APLIKACE STATISTICKÝCH TESTŮ VÝZNAMNOSTI V PEDAGOGICKÉM VÝZKUMU: SEMINÁŘ PRO NESTATISTIKY
LIMITY APLIKACE STATISTICKÝCH TESTŮ VÝZNAMNOSTI V PEDAGOGICKÉM VÝZKUMU: SEMINÁŘ PRO NESTATISTIKY Seminář ČAPV 2018 Upozornění Prezentace obsahuje pouze doprovodný text k semináři pro doktorandy v rámci
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů
Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že