Intervalové Odhady Parametrů
|
|
- Veronika Bláhová
- před 6 lety
- Počet zobrazení:
Transkript
1 Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Rudolf Blažek & Roman Kotecký, 2011 Pravděpodobnost a statistika BI-PST, LS 2010/11, Přednáška 9 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnos@
2 Statistické Metody Statistické Metody 2
3 Statistické Metody Pravděpodobnost Vyberu náhodně 30 kuliček (s vracením) Nevidím do dlaně Vidím do krabičky: V krabičče mám 60% červených kuliček P(20 z 30 je červených) =? (0.6) 20 (0.4) 10 =
4 Statistické Metody Statistika Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 20 z 30 je červených Nevidím do krabičky Kolik procent kuliček v krabičce je asi červených? 4
5 Statistické Metody Statistika: Bodové a intervalové odhady Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 20 z 30 je červených Kolik procent kuliček Nevidím do krabičky v krabičce je asi červených? Bodový odhad: cca 2/3 = 66.67% Intervalový odhad s 95% spolehlivostí: 48.76% 84.57% 5
6 Statistické Metody Statistika: Testování hypotéz Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 20 z 30 je červených Nevidím do krabičky Je v krabičce 40% červených kuliček? Závěr s 95% jistotou: NE Protože na 95% věřím: 48.76% 84.57% 6
7 Konfidenční Intervaly, Intervaly spolehlivosti (Confidence Intervals) 7
8 Bodové odhady populačního průměru μ a rozptylu σ 2 Bodové odhady μ a σ 2 Nechť X1, X2, X3,..., Xn je náhodný výběr (i.i.d. náhodné veličiny) se střední hodnotou μ a rozptylem σ 2 (konečnými). Jako bodový odhad μ použijeme výběrový průměr Jako bodový odhad σ 2 použijeme výběrový rozptyl s 2 n = 1 n 1 X n = 1 n P n i=1 X i P n i=1 (X i X n ) 2 i.i.d....( independent and identically distributed ( ( ( nezávislé a stejně rozdělené 8
9 Intervalový odhad popul. průměru μ Intervalový odhad střední hodnoty μ Nechť X1, X2, X3,..., Xn je náhodný výběr (i.i.d. náhodné veličiny) se střední hodnotou μ a rozptylem σ 2 (konečnými). (1 α)100% Konfidenční interval pro μ je X n ± z /2 / n or X n ± q 1 /2 / n kde zα/2 a q1-α/2 jsou kritická hodnota a kvantil pro N(0,1) Zde předpokládáme, že známe přesně hodnotu σ 2 9
10 Intervalový odhad popul. průměru μ Věta Pravděpodobnost pokrytí μ konfidenčním intervalem s hladinou spolehlivosti (1 α)100% je přibližně (1 α), pokud velikost výběru n je dostatečně velká: P µ X n ± z /2 / n (1 ) přibližně pro velkou velikost výběru n Toto je založeno na Centrální Limitní Větě (CLV, CLT) Vztah platí přesně pokud Xi mají normální rozdělení 10
11 Standardizace normální náh. veličiny Věta Nechť Y ~ N(μ,σ 2 ) je normální (t.j. Gaussovská) náhodná veličina se střední hodnotou μ a rozptylem σ 2. Pak Z = Y µ N(0, 1) T.J. Z má standardní normální rozdělení se střední hodnotou 0 a rozptylem 1. 11
12 Standardizace normální náh. veličiny Střední hodnota a rozptyl Z: EZ = E Y µ = 1 E(Y µ) = 1 (EY µ) =0 Var Z = Var Y µ = 1 2 Var (Y µ) = 1 2 Var Y =1 Hlavní tvrzení věty Z zůstane Gaussovská po lineární transformaci veličiny X Rozdělení Z lze najít vypočtením její hustoty jakožto transformace náhodné veličiny X 12
13 Standardizace normální náh. veličiny Y N(µ, 2 ), Z = Y µ N(0, 1) Intervaly ± k σ kolem těžiště μ P(µ k < Y <µ+ k ) = P( k < Y µ<k ) = P( k < Y µ < k) = P( k < Z < k) 13
14 Standardizace normální náh. veličiny Z ~ N(0,1)
15 Standardizace normální náh. veličiny Y ~ N(μ,σ 2 ) μ 3σ -3 μ 2σ -2 μ σ -1 μ0 μ+σ 1 μ+2σ 2 μ+3σ 3 15
16 Standardizace normální náh. veličiny Z ~ N(0,1) 68.27%
17 Standardizace normální náh. veličiny Y ~ N(μ,σ 2 ) 68.27% μ σ -1 0μ μ+σ 1 17
18 Centrální limitní věta (CLV) Věta) ) ) ) ) ) ) ) ) Central Limit Theorem (CLT) Nechť X1, X2, X3,..., Xn je náhodný výběr (i.i.d. náhodné veličiny) se střední hodnotou μ a rozptylem σ 2 (konečnými). Pak pro velké n je výběrový průměr přibližně normální: X n = 1 n P n i=1 X i approx. N(µ, 2 /n) Podobně platí P n i=1 X i approx. N(n µ, n 2 ) 18
19 Centrální limitní věta Střední hodnota a rozptyl průměru pro i.i.d. Xi: EX n = E 1 P n n i=1 X i = 1 n E P n = 1 n P n i=1 EX i = 1 n i=1 X i nµ = µ Var X n = Var Hlavní tvrzení centrální limitní věty Průměr n i.i.d. náhodných veličin je přibližně Gaussovský, pokud n je dostatečně velké (a pokud μ a σ jsou konečné). Střední hodnotu a rozptyl průměru jsme znali již dříve: S rostoucím n se těžiště nezmění, ale rozptyl se zmenšuje. 1 n P n i=1 X i = 1 n 2 Var P n i=1 X i = 1 n 2 P n i=1 Var X i = 1 n 2 n 2 = 2 /n 19
20 Ilustrace CLV: průměr n hodů kostkou Histogram of x Density x Histogram of xbar (average of 2 random values) Density xbar 20
21 Ilustrace CLV: průměr n hodů kostkou Histogram of x Density x Histogram of xbar (average of 3 random values) Density xbar 21
22 Ilustrace CLV: průměr n hodů kostkou Histogram of x Density x Histogram of xbar (average of 12 random values) Density xbar 22
23 Ilustrace CLV: průměr n hodů kostkou Histogram of x Density x Histogram of xbar (average of 40 random values) Density xbar 23
24 Ilustrace CLV: průměr n hodů kostkou Histogram of x Density x Histogram of xbar (average of 100 random values) Density xbar 24
25 Ilustrace CLV: průměr n hodů kostkou Histogram of x Density x Histogram of xbar (average of 500 random values) Density xbar 25
26 Standardizace normální veličiny a CLV Centralní limitní věta (CLV, CLT) Dříve Y N(µ, 2 ), Z = Y µ N(0, 1) P(µ k < Y <µ+ k ) = P( k < Z < k) Nyní X n N(µ, 2 /n), Z = X n µ / p n N(0, 1) P(µ k / p n < Y <µ+ k / p n) = P( k < Z < k) 26
27 Standardizace normální náh. veličiny Z ~ N(0,1) 68.27%
28 Standardizace normální náh. veličiny Y ~ N(μ,σ 2 ) 68.27% μ σ -1 0μ μ+σ 1 28
29 Standardizace normální náh. veličiny X n N(µ, 2 /n) 68.27% μ σ -1 0μ μ+σ 1 / p n / p n 29
30 Standardizace normální náh. veličiny Z ~ N(0,1) 95.44%
31 Standardizace normální náh. veličiny Y ~ N(μ,σ 2 ) 95.44% μ 2σ -2 0μ μ+2σ 2 31
32 Standardizace normální náh. veličiny X n N(µ, 2 /n) 95.44% μ 2σ -2 0μ μ+2σ 2 / p n / p n 32
33 Standardizace normální náh. veličiny Z ~ N(0,1) 99.73%
34 Standardizace normální náh. veličiny Y ~ N(μ,σ 2 ) 99.73% μ 3σ -3 0μ μ+3σ 3 34
35 Standardizace normální náh. veličiny X n N(µ, 2 /n) 99.73% μ 3σ -3 0μ μ+3σ 3 / p n / p n 35
36 Intervalový odhad popul. průměru μ Věta Pravděpodobnost pokrytí μ konfidenčním intervalem s hladinou spolehlivosti (1 α)100% je přibližně (1 α), pokud velikost výběru n je dostatečně velká: P µ X n ± z /2 / n (1 ) přibližně pro velkou velikost výběru n Toto je založeno na Centrální Limitní Větě (CLV, CLT) Vztah platí přesně pokud Xi mají normální rozdělení 36
37 Intervalový odhad popul. průměru μ Z ~ N(0,1) α/2 1 α α/ zα/2 -q1-α/2 = qα/2 zα/2 q1-α/2 37
38 Intervalový odhad popul. průměru μ P( X n µ < z /2 / n) (1 ) X n N(µ, 2 /n) α/2 1 α α/2 μ zα/2-2σ 0μ μ+ zα/2 2 σ / p n / p n 38
39 Intervalový odhad popul. průměru μ Získali jsme P( X n µ < z /2 / n) (1 ) Proto můžeme sestrojit konfidenční interval pro μ P µ X n ± z /2 / n (1 ) Pokud σ není známo, pak ho odhadneme pomocí s a použijeme Studentovo t-rozdělení s n-1 stupni volnosti P µ X n ± t /2,n 1 s/ n (1 ) 39
40 Intervalový odhad popul. průměru μ Konfidenční interval (KI) pro μ je jeden z P µ X n ± z /2 / n (1 ) P µ X n ± t /2,n 1 s/ n (1 ) Tyto KI můžeme přepsat obecněji jako X n k 1 SE(X n ), X n + k 2 SE(X n ) (nebo jeho odhad) 40
41 Confidence Interval for a Parameter θ KI pro populační průměr můžeme psát jako X n k 1 SE(X n ), X n + k 2 SE(X n ) Konfidenční interval pro parametr θ často dostaneme jako ˆ k 1 SE ˆ, ˆ + k 2 SE ˆ kde ˆ je bodový odhad p SE ˆ = Var ˆ je standardní chyba ˆ k1, k2 jsou vybrány tak, aby pravděpodobnost pokrytí parametru θ byla 1 α 41
42 Intervalový odhad popul. průměru μ Intervalový odhad střední hodnoty μ Nechť X1, X2, X3,..., Xn je náhodný výběr (i.i.d. náhodné veličiny) se střední hodnotou μ a rozptylem σ 2 (konečnými). (1 α)100% Konfidenční interval pro μ je X n ± z /2 / n or X n ± q 1 /2 / n kde zα/2 a q1-α/2 jsou a kritická hodnota a kvantil pro N(0,1) Zde předpokládáme, že známe přesně hodnotu σ 2 Pravděpodobnost pokrytí μ je přibližně (1 α) pro velké n. (Přesně (1 α) i pro malé n, když Xi mají normální rozdělení) 42
43 Intervalový odhad popul. průměru μ Intervalový odhad střední hodnoty μ Nechť X1, X2, X3,..., Xn je náhodný výběr (i.i.d. náhodné veličiny) z normálního rozdělení se střední hodnotou μ a rozptylem σ 2. (1 α)100% Konfidenční interval pro μ je X n ± t n 1, /2 s/ n kde tn-1,α/2 je kritická hodnota t-rozdělení s n-1 stupni volnosti Zde hodnotu σ 2 odhadujeme pomocí s 2 (náhodná veličina). Navíc Xi musejí ale mít normální rozdělení. Pak pravděpodobnost pokrytí μ je presně (1 α). 43
44 Intervalový odhad popul. průměru μ Přibližné rozdělení z CLV, přesné pro normální výběr Z = X n µ / p n N(0, 1) α/2 1 α α/ zα/2 zα/2 44
45 Intervalový odhad popul. průměru μ Přesné rozdělení je známo pro normální výběr T = X n µ s/ p n t(n 1) α/2 1 α α/2 -tα/2,n tα/2,n-1 45
46 Intervalový odhad popul. průměru μ Porovnání normálního a Studentova t-rozdělení α/2 1 α α/2 -zα/2 0 zα/ tα/2,n-1 tα/2,n-1 46
47 Pravidla použití normálního a t-rozdělení Kritickou hodnotu zα/2 normálního rozdělení použijeme pokud známe přesně populační rozptyl σ 2 pravděpodobnost pokrytí přesně (1 α) když výběr je z normálního rozdělení (i pro malé n) pravděpodobnost pokrytí přibližně (1 α) když výběr je dostatečně velký (CLV pro velké n) obvykle stačí n = 30 či n = 50 ale pro šikmá či vícemodální rozdělení n musí být veliké 47
48 Pravidla použití normálního a t-rozdělení Kritickou hodnotu tα/2 Studentova t-rozdělení použijeme když populační rozptyl σ 2 odhadujeme pomocí s 2 pravděpodobnost pokrytí přesně (1 α) pokud výběr je z normálního rozdělení (i pro malé n) pravděpodobnost pokrytí přibližně (1 α) pokud výběr je ze symetrického unimodálního rozdělení, bez odlehlých pozorování a velikost výběru je n 15 výběr je ze mírně šikmého, unimodálního rozdělení, bez odlehlých pozorování a velikost výběru je 16 n 40 výběr je velký (n > 40) a bez odlehlých pozorování 48
49 Student-t KI pro střední hodnotu kostky Histogram of x Density x Histogram of xbar (average of 50 random values) Density % KI: cca 1 z 20 mine μ = xbar 49
50 Student-t KI pro střední hodnotu kostky Histogram of x Density x Density Histogram of xbar (average of 50 random values) xbar 95% KI: cca 1 z 20 mine μ =
51 Student-t KI pro střední hodnotu kostky Histogram of x Density x Density Histogram of xbar (average of 50 random values) xbar 95% KI: cca 1 z 20 mine μ =
52 Student-t KI pro střední hodnotu kostky Histogram of x Density x Density Histogram of xbar (average of 50 random values) xbar 95% KI: cca 1 z 20 mine μ =
53 Student-t KI pro střední hodnotu kostky Histogram of x Density x Density Histogram of xbar (average of 50 random values) xbar 95% KI: cca 1 z 20 mine μ =
54 Student-t KI pro střední hodnotu kostky Histogram of x Density x Density Histogram of xbar (average of 50 random values) xbar 95% KI: cca 1 z 20 mine μ =
55 Statistika Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 20 z 30 je červených Nevidím do krabičky Kolik procent kuliček v krabičce je asi červených? 55
56 Standardizace normální náh. veličiny Přibližné rozdělení je známo pomocí CLV Z = X n µ / p n N(0, 1) 2.5% 95% 2.5%
57 Intervalový odhad popul. průměru μ My ale neznáme σ!! Přibližné rozdělení z CLV... T = X n µ s/ p n t(n 1) 2.5% 95% 2.5%
58 Příklad Example Vyberu náhodně, 30 kuliček (s vracením). Pozorování: 20 z 30 je červených. Výběrové statistiky (č=1, jinak 0): ( Výběrový průměr: ( Výběrová směr. odchylka: X n ± z /2 / n ± / 30 ( Intervalový odhad: (48.76%, 84.57%) 58
59 Statistika: Bodové a intervalové odhady Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 20 z 30 je červených Kolik procent kuliček Nevidím do krabičky v krabičce je asi červených? Bodový odhad: cca 2/3 = 66.67% Intervalový odhad s 95% spolehlivostí: 48.76% 84.57% 59
60 Statistika: Testování hypotéz Vyberu náhodně 30 kuliček (s vracením) Vidím do dlaně: 20 z 30 je červených Nevidím do krabičky Je v krabičce 40% červených kuliček? Závěr s 95% jistotou: NE Protože na 95% věřím: 48.76% 84.57% 60
Intervalové Odhady Parametrů II Testování Hypotéz
Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení
Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
10 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Cvičení 1. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
1 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni
BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Bootstrap - konfidenční intervaly a testy
9. prosince 2008 Konfidenční intervaly obecně Máme data X 1...X n F,(iid), kde F neznáme. Konfidenční intervaly obecně Máme data X 1...X n F,(iid), kde F neznáme. Chceme odhadnout θ = t(f), např. t(f)
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33
1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které
Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test
Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
prosince oboustranný symetrický 95% interval spolehlivosti pro střední hodnotu životnosti τ. X i. X = 1 n.. Podle CLV má veličina
10 cvičení z PSI 5-9 prosince 016 101 intervalový odhad Veličina X, představující životnost žárovky, má exponenciální rozdělení s parametrem τ Průměrná životnost n = 64 náhodně vybraných žárovek je x =
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
Cvičení ze statistiky - 7. Filip Děchtěrenko
Cvičení ze statistiky - 7 Filip Děchtěrenko Minule bylo.. Probrali jsme spojité modely Tyhle termíny by měly být známé: Rovnoměrné rozdělení Střední hodnota Mccalova transformace Normální rozdělení Přehled
8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Pravděpodobnost a statistika
Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
KVADRATICKÁ KALIBRACE
Petra Širůčková, prof. RNDr. Gejza Wimmer, DrSc. Finanční matematika v praxi III. a Matematické modely a aplikace 4. 9. 2013 Osnova Kalibrace 1 Kalibrace Pojem kalibrace Cíle kalibrace Předpoklady 2 3
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT V OSTRAVĚ 20.3.2006 MAREK MOČKOŘ PŘÍKLAD Č.1 : ANALÝZA VELKÝCH VÝBĚRŮ Zadání: Pro kontrolu
populace soubor jednotek, o jejichž vlastnostech bychom chtěli vypovídat letní semestr Definice subjektech.
Populace a Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1 populace soubor jednotek, o jejichž vlastnostech bychom
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost
(8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo
Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Národníinformačnístředisko pro podporu jakosti
Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Příklad datového souboru. Pravděpodobnost vs. statistika. Formální definice. Teorie odhadu
Pravděpodobnost vs. statistika Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými veličinami, jejichž rozdělení je známo Statistika odvozovali jsme charakteristiky těchto rozdělení
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady
PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X