Výroba a použití vodíku. Svět = 50 mil.tun H 2 /rok



Podobné dokumenty
Technické plyny. kapalný vzduch kyslík dusík vzácné plyny vodík (syntézní plyny)

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

Amoniak průmyslová výroba syntetického amoniaku

TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN. Most, Autor: Doc. Ing. J.LEDERER, CSc.

OMEZOVÁNÍ NEGATIVNÍCH ENVIRONMENTÁLNÍCH DOPADŮ PŘI VÝROBĚ PALIV A PETROCHEMIKÁLIÍ. Seminář, Bratislava, Autor: J.LEDERER

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

Ing.Hugo Kittel, CSc., MBA, ČeR a.s. Kralupy n.vlt. Presentace vypracovaná pro ČAPPO Praha

OMEZOVÁNÍ NEGATIVNÍCH ENVIRONMENTÁLNÍCH DOPADŮ PŘI VÝROBĚ PALIV A PETROCHEMIKÁLIÍ. Most, Autor: Doc. Ing. J.LEDERER, CSc.

zpracování těžkých frakcí na motorová paliva (mazut i vakuový zbytek)

Ropa Kondenzované uhlovodíky

Zpracování ropy doc. Ing. Josef Blažek, CSc. 4. přednáška

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C?

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství

Průmysl dusíku. amoniak - kyselina dusičná - dusičnan amonný - močovina - chloramin - hydrazin. NaClO NaOH CO(NH 2 ) 2.

Paliva. nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování

Energetické využití odpadu. 200 let První brněnské strojírny

1. Termochemie - příklady 1. ročník

ČESKÉ RAFINÉRSKÉ, a.s.

Úlohy: 1) Vypočítejte tepelné zabarvení dané reakce z následujících dat: C 2 H 4(g) + H 2(g) C 2 H 6(g)

Zpracování ropy doc. Ing. Josef Blažek, CSc. 3. přednáška

Inovace výuky prostřednictvím šablon pro SŠ

Perspektivní metody. PROČ sušení pevných paliv? Většina dodané energie se ztrácí. Klasická metoda sušení horkými spalinami

Zplyňování a zkapalňování uhlí Doc. Ing. Karel Ciahotný, CSc.

11. Zemní plyn jako energetická a chemická surovina. Ing. Tomáš Hlinčík, Ph.D.

Chemické procesy v ochraně životního prostředí

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců

Kyslík a vodík. Bezbarvý plyn, bez chuti a zápachu, asi 14krát lehčí než vzduch. Běžně tvoří molekuly H2. hydridy (např.

Registrační číslo projektu: CZ.1.07/1.4.00/ Název projektu: Investice do vzdělání - příslib do budoucnosti

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013

Zpracování ropy doc. Ing. Josef Blažek, CSc. 9. přednáška

CÍL. 20 % motorových paliv nahradit alternativními palivy

Test vlastnosti látek a periodická tabulka

Separace plynů a par. Karel Friess. Ústav fyzikální chemie, VŠCHT Praha. Seminář Praha

H H C C C C C C H CH 3 H C C H H H H H H

ANODA KATODA elektrolyt:

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

Zplyňování. Ing. Martin Lisý, PhD. Energetický ústav VUT v Brně Fakulta strojního inženýrství

rní zdroj energie pro elektromobily Petr Vysoký

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9.

VÝUKOVÝ MODUL MEMBRÁNOVÝCH PROCESŮ TÉMATA PŘEDNÁŠEK

Vliv chemické aktivace na sorpční charakteristiky uhlíkatých materiálů

Kombinovaná výroba elektrické energie, tepla a biosorbentu z biomasy. Michael Pohořelý & Siarhei Skoblia. Zplyňování

Složení soustav (roztoky, koncentrace látkového množství)

Kyselina dusičná. jedna z nejdůležitějších chemikálií

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10

EU peníze středním školám digitální učební materiál

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

ANODA KATODA elektrolyt:

ZŠ ÚnO, Bratří Čapků 1332

STEJNOSMĚRNÝ PROUD Galvanické články TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

Přehled technologii pro energetické využití biomasy

ODSTRAŇOVÁNÍ KYSELÝCH SLOŽEK Z PLYNŮ ZE ZPLYŇOVÁNÍ BIOMASY

ELEKTROLÝZA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

Chemické veličiny, vztahy mezi nimi a chemické výpočty

ZŠ ÚnO, Bratří Čapků 1332

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ

CHEMICKÉ TECHNOLOGIE PRO PROCESNÍ INŽENÝRSTVÍ N VÝROBA MTBE

Přírodní zdroje uhlovodíků. a jejich zpracování

VÝROBA VODÍKU reforming benzinových frakcí parní reforming zemního plynu parciální oxidace ropných zbytků zplyňováním biomasy elektrolýza

Termochemie. Katedra materiálového inženýrství a chemie A Ing. Martin Keppert Ph.D.

Energetické využití obnovitelných a alternativních zdrojů z hlediska celkových emisí

Omezování plynných emisí. Ochrana ovzduší ZS 2010/2011

SHRNUTÍ A ZÁKLADNÍ POJMY UČEBNICE ZÁKLADY CHEMIE 1

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)

Kombinovaná výroba elektrické energie a tepla pomocí vysokoteplotních palivových článků s tuhým elektrolytem

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce

H - -I (hydridy kovů) vlastnosti: plyn - nekov 14x lehčí než vzduch bez barvy, chuti, zápachu se vzduchem tvoří výbušnou směs redukční činidlo

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY

VÝUKOVÝ MODUL MEMBRÁNOVÝCH PROCESŮ SYLABY PŘEDNÁŠEK TRANSPORT LÁTEK MEMBRÁNAMI MEMBRÁNOVÉ MATERIÁLY

Odstraňování Absorption minoritních nečistot z bioplynu

E ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA

CCS technologie typu pre-combustion v podmínkách České Republiky

chartakterizuje přírodní vědy,charakterizuje chemii, orientuje se v možných využití chemie v běžníém životě

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Název odpadu N Jiné odpady z fyzikálního a chemického zpracování rudných nerostů obsahující nebezpečné látky x

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Třídění látek. Chemie 1.KŠPA

Denitrifikace. Ochrana ovzduší ZS 2012/2013

2. KINETICKÁ ANALÝZA HOMOGENNÍCH REAKCÍ

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli

Technologie přímého aditivního odsíření pro fluidní kotle malých a středních výkonů

Amoniak průmyslová výroba syntetického amoniaku

Přírodní zdroje uhlovodíků

"...s určitými riziky ve vztahu k životnímu prostředí jsou spojeny všechny systémy a druhy lidské činnosti, ať už si toho jsme vědomi, či nikoli...

UHLOVODÍKOVÉ TECHNOLOGIE PERSPEKTIVY A VÝZVY

Energie z odpadních vod. Karel Plotěný

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou.

ZŠ ÚnO, Bratří Čapků 1332

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata

Technologie zplyňování biomasy

Negativní vliv energetického využití biomasy Ing. Marek Baláš, Ph.D.

ZÁKLADNÍ CHEMICKÉ VÝPOČTY

Transkript:

Výroba a použití vodíku Svět = 50 mil.tun H 2 /rok

Obsah Výroba vodíku z rafinérských a petrochemických procesů On purpose výroba vodíku Nové směry ve výrobě vodíku Hlavní technologie na bázi vodíku Perspektivy vodíková ekonomika

Výroba vodíku distribuce postupů 3 35 59 3 1 2 3 4 59 % Parní reforming Separace z rafinérských a 35 % petrochemických procesů (katalytický reforming, pyrolýza) 3 % POX 3 % Ostatní zdroje

Vodík možné výroby 1. Štěpení uhlovodíků vodní parou 2. Parciální oxidace uhlovodíkú 3. Konverze vodního plynu 4. Vodík z reformování benzinů 5. Koksárenský plyn - zdroj vodíku 6. Elektrolýza vody, kyselin, chloridu sodného 7. Rozklad vodní páry železem 8. Rozklad methanolu 9. Rozklad amoniaku 10. Rozklad vody 11. Moderní procesy pro výrobu vodíku

Hlavní směry použití vodíku 49 1 4 46 Hydrogen reakce Rafinérské použití Methanol Amoniak Metalurgie polovodiče

Výroba vodíku z rafinérských a petrochemických procesů RAFINERIE Katalytický reforming SRR, CCR cca 1% hmot. Koksování a visbreaking Katalytické krakování PETROCHEMIE Pyrolýza cca 1 % hmot. Dehydrogenační procesy ČIŠTĚNÍ SEPARACE Procesy: kryogenní, difúzní, absorpční, adsorpční Nejdůležitější technologie: PSA, aminové vypírky

Vodík z pyrolýzy Metan do systému topného plynu Pyroplyn z odlučovače 5 výtlaku kompresoru Chlazení pyroplynu -37 C -72 C -96 C 3.08 MPa 1 8 16 DA 301 20 Demetanizer d 1 =2000 mm d 2 =3000 mm h=51700 mm DC 301 VT pára FA 301 FA 209A FA 209B -98 C 28 29 FA 302-130 C 40 Ch. voda C 3 chlad. 15 C 3.1 MPa -165 C 68 70 C 3.13 MPa Metanizační reaktor d=2100 mm h=4700 mm výška náplně: 2400 mm Vodík Vodík do EA 406, 407 Zbytek demetanizeru do DA 401 Voda do DA 103 Propylenové chladivo +18 / +3 / -24 / -40 C Etylenové chladivo -55 / -75 / -100 C

Metanizace vodíku CO, CO 2, O 2 H 2 CH 4 + H 2 O EXO Teplota 300 C Katalyzátor Ni /Al 2 O 3

Vodík z katalytického reformování 1 % hmot. H 2

REFORMING - TERMODYNAMIKA

REFORMING - semiregenerativní

CCR reforming s kontinuální regenerací katalyzátoru

Syntézní plyn ze zemního plynu 1. Reakce

Výroba synplynu 1 - CH 4 + H 2 O CO + 3H 2 2 - CH 4 + CO 2 2CO + 2H 2 3 - CO + H 2 O CO 2 + H 2 neúplným spalováním CH4 + 0,5O2 CO + 2H2

Parní reformovámí vysoké teploty katalyzátory obsahující Ni katalyzátor je umístěný v trubkách parní reformér obsahuje dvě sekce - konvekční - radiační po odstranění síry se zemní plyn smísí s vodní parou a zahřeje se na teplotu 780 K před vstupem do trubek reforméru pomě páry/uhlík 2,5-4,5 mol H 2 O na mol C

Parní reformování Pokud se použijí pro parní reforming vyšší uhlovodíky, zařazuje se tzv. před-reformer Odstraňují se uhlíkové prekurzory Reaktor s katalytickým ložem Adiabatický, teplota cca 770K

Čištění synplynu synplyn z reforméru namá požadované složení a proto se musí upravovat složení se mění v závislosti na způsobu štěpení

Vypírání CO 2 a H 2 S Fyzikálně: RECTISOL (tlakové praní methanolem) Chemicky: alkanolaminy alkacidy (k. N-methylaminopropanová) potaš SULFINOL (sulfolan) konečný stupeň: je odstranění CO metanizací

Principy parní reforming vs. POX ENDO CH4 + H2O(g) = CO + 3H2 CH4 + 2H2O(g) = CO2 + 4H2 CO + H2O(g) = CO2 + H2 CO2 + H2 = CO + H2O parní reforming KONVERZE (EXO) CH4 + O2 = CO + 2H2 [EXO] CH4 + 2O2 = CO2 + 2H2O [EXO] CH4 + H2O = CO + 3H2 [ENDO] CH4 + CO2 = 2CO + 2H2 [ENDO] parciální oxidace

Výroba vodíku parní reforming Rafinace suroviny: CH 3 -SH + H 2 CH 4 + H 2 S T = 400 C Ni, Co-Mo /Al 2 O 3 Parní reforming: CH 4 + H 2 S (g) ZnO CH 4 + H 2 S (ads) Konverze: Methanizace: CH 4 + H 2 O CO + H 2 T = 800 C 15% Ni /α-al 2 O 3 CO + H 2 O CO 2 + H 2 1. Fe-Cr /Al 2 O 3 T = 350 C 2. Cu-Zn /Al 2 O 3 T = 200 C CO + H 2 CH 4 + H 2 O T = 300 C Ni /Al 2 O 3

ZP H 2 264 trubek, 3,5 MPa technol.param. T = 800-870 C P = 2,8-3,5 MPa S/O = 3-6 mol H 2 O 400 C Ni,Co- Mo/Al 2 O 3 CO + 3H 2 ZnO Ni/ Al 2 O 3 800 C PARNÍ REFORMING CH 4 + H 2 O = CO + 3H 2 PARNÍ REFORMING 350 C Fe-Cr 200 C Cu-Zn CO + H 2 O = CO 2 + H 2 KONVERZE H 2 CO 2 + H 2 H 2 O DEA CO + H 2 = CH 4 + H 2 O METHANIZACE CO 2 + H 2 O AMINOVÁ VYPÍRKA 300 C Ni/Al 2 O 3 H 2

Výroba vodíku parní reforming Palivo Hydrodesulfurace Pec reformingu VT pára Spaliny Odplyn PSA - proces Vzduch Parní kotel Reaktor konverze CO Vodík - produkt Uhlovodíky Demin. voda

Výroba vodíku parní reforming Hydrogen production by steam reforming, gas purification by pressure swing adsorption (Design : German Linde) a) Desulfurization ; b) Feed preheater/superheater ; c) Reformer ; d) Waste-heat boiler ; e) CO shift reactor (HT shift) ; f) Cooling of raw gas ; g) Pressure swing adsorption ; h) Off-gas puffer for fuel ; i) Convection zone with steam production, steam superheating, and air preheating

PARNÍ REFORMING TEPLOTNÍ PROFIL V REAKTORU Tube wall temperature and heat flux in a reformer tube A) Outer tube wall temperature vs. heat flux profile divided into, e.g., eight reformer sections B) Hatched area: inclined to the right = heat requirements of the reaction; inclined to the

PSA

PSA pressure swing adsorption Six-bed PSA unit. Main flows for adsorption, repressurization, counterflow expansion (dump), counterflow purge, etc. for H 2 production by adsorber A. After termination of this adsorption step, next on-stream adsorber is B, etc. Adsorber A B C D E F Function Adsorptio n Repres- surizatio n Dum p Purg e Depres- surizatio n Start pressure, (MPa) 2.8 1.6 0.4 0.2 0.8 2.8 Final pressure, (MPa) 2.8 2.2 0.2 0.2 0.4 2.2 Depres- surizatio n

Výroba vodíku - POX C x H y + O 2 + H 2 O CO + H 2 + CO 2 (H 2 S, HCN) C x H y C + C m H n (endo) C + O 2 CO 2 (exo) C m H n + H 2 O CO + H 2 (endo) Teplota 1300 C Tlak 3.5 MPa Poměr uhlovodíky : O 2 : H 2 O = 1 : 1 : 0.6 Surový plyn, obj.% CO 2 4.07 CO 46 H 2 49 CH 4 0.2 H 2 S 0.7 COS 0.03

Litvínovský POX zplyňování zbytku z visbreakingu Resudual Oil Steam O 2 H 2 S water 1 3 4 5 5 CO : H 2 Carbon Black 2 waste water water solution CO 2 H 2 CO 2 Wash Low Temp. CO Shift CO 2 Wash High Temp. CO Shift 2H 2 : CO 1 - Reactor, 2 TLE, 3 Carbon Black washing, 4 - Cyanide absorption, 5 H 2 S washing

Aminová vypírka odstranění kyselých plynů MEA monoethanolamin, DEA, MeDEA triethanolamin vhodný pro sorpci CO 2, methyldiethanolamin - vhodný pro sorpci H 2 S

Ropný zbytek (mazut, VBR) O 2 + H 2 O F : O 2 : H 2 O = 1 : 1 : 0,6 T= 1400 C P= 3,5 MPa C X H Y = C + C M H N C + O 2 = CO 2 C M H N + H 2 O = CO + H 2 EXO ENDO P O X H 2 O CO + 3H 2 CO 2 + CO + H 2 + C(SAZE) + H 2 S 350 C Fe-Cr 200 C Cu-Zn CO + H 2 O = CO 2 + H 2 KONVERZE 2.AV - CO 2 H2 + CO CO 2 + H 2 + CO H 2 O DEA CO + H 2 = CH 4 + H 2 O METHANIZACE CO 2 + H 2 O AMINOVÁ VYPÍRKA 300 C Ni/Al 2 O 3 H 2

Výroba vodíku - POX Oxidační reaktor Kotel na odpadní teplo Chlazení plynu Synplyn Mazut Voda Kyslík Kondenzát Napajecí voda Chladící voda Kyanovodíkova voda Saze

Zbytek z visbreakingu surovina POX Typické vlastnosti VFCR používaného jako surovina pro parciální oxidaci Rozmezí Penetrace 25 C [p.j.] 15 25 Bod měknutí [ C] 55 65 Hustota při 20 C [kg/m 3 ] 1060 1075 Kinem. viskozita 150 C [cst] 220 350 Dynam. viskozita 230 C [mpa.s] 17,2 20,2 Bod vzplanutí-ok [ C] 260 360 Bod vzplanutí-zk [ C] 260 300 Element. analýza C [%hm.] 85,3 87,7 H [%hm.] 8,3 10,2 S [%hm.] 2,5 3,5 Dusík [ppm] 6500 9000 Obsah popela [ppm] 820 1100 MCRT [%hm.] 31 40 Kovy V [ppm] 250 330 Ni [ppm] 250 300 Na [ppm] 30 90 SimDist 5% [ C] 400 50% [ C] 590

Parametry reaktoru PROCESNÍ PODMÍNKY V REAKČNÍM OBJEMU _ REAKTORU vstup Postupová rychlost v reaktoru, při zanedbání plynné turbulence v důsledku probíhajících reakcí : Tlak 3,35 MPa Teplota 250,00 C množství pára + kyslík 803,86 m 3 /h surovina 10,20 m 3 /h výstup - reaktor tlak 3,35 MPa teplota 1300,00 C plyn (30 000 Nm3/h) 5084,03 m 3 /h 1,66 m reaktor průměr 9,00 m výška 2,15 m 2 průřez - plocha 19,37 m 3 objem Postupová rychlost v reaktoru doba zdržení - reakční doba 0,66 m/s 13,72 s

Hořáky POX/ Litvínov Tři dvojice reaktorů Dvě čistící linky Výroba H2: 122 000 Nm3/hod Výroba sazí Chezacarb

VÝROBA VODÍKU ELEKTROLÝZOU KATODA 2 H 2 O (l) + 2 e H 2 (g) + 2 OH (aq) ANODA 2 OH (aq) 1/2 O 2 (g) + H 2 O (l) + 2 e CELKOVÁ REAKCE H 2 O (l) H 2 (g) + 1/2 O 2 (g) Schematic of a water electrolysis cell a) Anode ; b) Diaphragm ; c) Cathode ; d) Oxygen outlet ; e) Anodic electrolyte cycle ; f) Anion ; g) Cation ; h) Cathodic electrolyte cycle ; i) Hydrogen outlet ; j) Cell wall DNES CENA VODÍKU Z ELEKTROLÝZY TROJNÁSOBNÁ!!!

Guvernér Arnold Schwarzenneger tankuje vodík do nádrže Toyoty a dole do Hummeru.

Varianty (novější) výroby vodíku

Autotermní reformování reformování ZP ve směsi s parou a kyslíkem v přítomnosti katalyzátoru: reformér: zóna spalování (2200K) zóna reformování (1200-1400K), s katalytickým lůžkem tlak 20-100 bar molární poměr suroviny: H 2 O/CH 4 : 1-2 O 2 /CH 4 : 0,6

Autotermní technologie maximální efektivita výroby synplynu CH 4 + O 2 = CO + 2H 2 [EXO] CH 4 + 2O 2 = CO 2 + 2H 2 O [EXO] CH 4 + H 2 O = CO + 3H 2 [ENDO] CH 4 + CO 2 = 2CO + 2H 2 [ENDO]

Suché reformování CH 4 + CO 2 2 CO + 2H 2 Hr = 247,3 KJ / mol T 913 K Procesy : CALCOR a SPARG

Suché reformování Katalyzátory : La 2 NiO 4 zeolit (membránový katalyzátor) La NiO 3 La 0,8 Ca (anebo Sr ) 0,2 NiO 3 La Ni 1-x CO x O 3 ( x = 0,2 1 ) NiAl 2 O 4 La 2 NiO 4 + LaNiO 3 ( zmesné oxidy, t =500-850 C)

Sekundární reformer čpavkový synplyn vzduch 80 % konverze

Vstup dusíku

ZPLYŇOVÁNÍ UHLÍ - PRINCIP CmHn C + O 2 CxHy + H 2 O C + CxHy CO 2 EXO CO + H 2 ENDO

Zplyňování uhlí C H 0,8 O 0,1 O 2, H 2 O CO + H 2 + (CO 2 )

Hnědé uhlí dnes a zítra? Zplyňování v ČR Zplyňování hnědého uhlí 26 reaktorů Lurgi sesuvné lože zplyňovací médium kyslík, vodní pára tlaková varianta 2,7 MPa, 1000 C Vřesová Čištění vyrobeného plynu proces Rectisol Spalování plynu plynová turbina spalování plynu při 1100 C spaliny (540 C) vedeny do kotle na odpadní teplo

HLAVNÍ PETROCHEMIKÁLIE NA BÁZI VODÍKU METHANOL AMONIAK

Výroba amoniaku vodík : dusík = 3: 1 T= 490 až 520 C Tlak = 29 až 30 MPa Konverze = 17 % Železitý katalyzátor s promotory Exotermní reakce

Vstup dusíku

Sekundární reformer čpavkový synplyn vzduch 80 % konverze

Syntéza amoniaku - termodynamika

Čpavkový reaktor axiálně radiální tok

Methanol CO + 2H 2 CH 3 OH DELTA H = - 92 /mol Varianty výroby: 1. Vysokotlaký proces BASF: 34 MPa, 320 až 380 C, ZnO + Cr2O3 2. Nízkotlaké procesy ICI: 10 MPa, 240 až 260 C, CuO + ZnO 3. Nízkotlaké procesy Lurgi: 5 MPa, 250 až 260 C, CuO + ZnO (trubkový reaktor) 4. Středotlaké postupy

Použití methanolu APLIKACE PODÍL (%) Formaldehyd 40 MTBE 20 Dimethyltereftalát K.octová/acetáty 10 MTO?

Syntéza methanolu - termodynamika

Technologické varianty VÝROBCE KATALYZÁTOR TEPLOTA ( C) TLAK ( MPA) Topsoe CuO+ZnO+Cr2O3 230-260 10-15 Vulcan ZnO+Cr2O3 270-330 15-25 Pritchard CuO 10-25 CCI CuO + ZnO/alumina 240 250 10-25 BASF CuO + ZnO/alumina 200-350 5-25

Methanol synthesis a) Reactor ; b) Heat exchanger ; c) Cooler ; d) Separator ;e) Recycle compressor ; f ) Fresh gas compressor

Lurgi low-pressure methanol process

The ICI low-pressure methanol process a) Pure methanol column ; b) Light ends column ; c) Heat exchanger ; d) Cooler ; e) Separator ; f ) Reactor ; g) Compressor ; h) Compressor recycle stage

Pokroky ve výrobě methanolu 1. Zlepšování procesu 2. Použití CO 2 3. MegaMethanolTechnology 4. MTO 5. MTP

Výroba formaldehydu CH 3 OH CH 2 O + H 2 CH 3 OH+1/2 O 2 CH 2 O +H 2 O endo exo

Výroba k.octové karbonylací methanolu CH 3 OH + CO CH 3 COOH RADIKÁLOVÝ MECHANISMUS T= 200 C P= 30-60 bar (kapalná fáze) HOMOGENNÍ KATALYZÁTOR Rh/HI REAKTOR: KONTINUÁLNÍ VSÁDKOVÝ MÍCHANÝ nebo PROBUBLÁVANÝ

K. octová z ethanolu fermentací

K. octová karbonylací methanolu

Výroba k. octové karbonylací methanolu

VÝROBA MOČOVINY Z AMONIAKU Krystalizace Granulace z taveniny

VODÍKOVÁ EKONOMIKA

VODÍK DNEŠKA 50 mil.tun za rok

Vodíková ekonomika

VODÍKOVÁ EKONOMIKA

VODÍK A ČISTÁ ENERGIE Z UHLÍ

Obsah energie v energetických materiálech (v nosičích energie): 1 kg palivového dřeva (biomasa) vydá 1 kg hnědého uhlí vydá 1 kg černého uhlí vydá 1 kg topného oleje 1 m zemního plynu <1 kwh 1 kwh 3 kwh 4 kwh 5 kwh 1 kg uranu 1 kg uranu 50 000 kwh v reaktorech s pomalými neutrony 2 000 000 kwh v rychlých množivých reaktorech Poznámka: Hnědé energetické uhlí v ČR postačí při současné těžbě na 35 let

Význam syntézního plynu Náhrada ropy?!

CHEMIE SYNTÉZNÍHO PLYNU

FTS Fischer-Tropschova syntéza

FISCHER-TROPSCH SYNTÉZA n CO + (2n+1) H 2 n CO + 2n H 2 n CO + 2n H 2 C n H 2n+2 + H 2 O C n H 2n + H 2 O H(-CH 2 -) n OH + (n-1)h 2 O Fe, Co - katalyzátory

FISCHER-TROPSCH SYNTÉZA REAKTOR MTFB RISER SLURRY Teplota C 240 320 260 Tlak bar 25 23 18 H2/CO mol/mol 1,7 2,5 0,6 Methan % hmot. 2 10 7 Benzin % hmot 18 40 19 Diesel % hmot 14 7 14 Wax % hmot 52 4 38

SASOL UHLÍ SYNGAS FT RAFINERIE SHELL MIDDLE DISTILLATES SYNTHESIS ZEMNÍ PLYN SYNGAS FT

GTP- Gas To Products

GTP.XTP univerzálnost syntézního plynu

FISCHER-TROPSCH SYNTÉZA n CO + (2n+1) H 2 n CO + 2n H 2 n CO + 2n H 2 C n H 2n+2 + H 2 O C n H 2n + H 2 O H(-CH 2 -) n OH + (n-1)h 2 O Fe, Co - katalyzátory

FISCHER-TROPSCH SYNTÉZA REAKTOR MTFB RISER SLURRY Teplota C 240 320 260 Tlak bar 25 23 18 H2/CO mol/mol 1,7 2,5 0,6 Methan % hmot. 2 10 7 Benzin % hmot 18 40 19 Diesel % hmot 14 7 14 Wax % hmot 52 4 38

FTS vliv katalyzátoru a podmínek

Výtěžek hlavních produktů při pyrolýze vyšších n-alkanů Produkt Výtěžek (% hm.) Ethylen 44,7 Propylen 18,9 Butadien 8,2 BTX 5,0 Ostatní 23,0 Oleje 0,2

Jednotky GTL

SYNTÉZNÍ PLYN PŘES METHANOL NA CHEMIKÁLIE

Synplyn + methanol = vítězný tým

Pokroky ve výrobě methanolu 1. Zlepšování procesu 2. Použití CO 2 3. MegaMethanolTechnology 4. MTO 5. MTP

MTP methanol na propylen

Rafinerie na bázi methanolu ETHYLEN, PROPYLEN

BIOMASA - ALTERNATIVNÍ SUROVINA PRO CHEMICKÝ PRŮMYSL

GLOBÁLNÍ ENERGETICKÝ POTENCIÁL BIOMASY 5 1 Celková spotřeba energie a ropných produktů Potencionální energie z ročního přírůstku biomasy bioamasy

BIOMASA PŘEVÁŽNĚ SACHARIDY A ROSTLINNÉ OLEJE roční produkce 100 biliónů tun obnovitelných zdrojů

ZPLYŇOVÁNÍ BIOMASY BIOPLYN FERMENTAČNÍ PROCESY BEŽNĚ ZAVÁDĚNO NÍZKÁ PRODUKČNÍ EFEKTIVITA ZPLYŇOVÁNÍ NA SYNTÉZNÍ PLYN JEN POKUSNÉ PROVOZY ALOTERMÍ PROCESY AUTOTERMNÍ PROCESY PYROLÝZA A NÁSLEDNÁ PARCIÁLNÍ OXIDACE ZPLYŇOVÁNÍ NA METHAN SNG (Substitute Natural Gas)

Zplyňování uhlí + BIOMASY ve fluidním loži BIOMASA

ZPLYŇOVÁNÍ BIOMASY - PYROLÝZA PYROLÝZA NA OLEJ A KOKS SYNPLYN

ZPLYŇOVÁNÍ BIOMASY

GTL REÁLNÉ APLIKACE GAS TO LIQUID

FT syntéza moderní (promotované) Co katalyzátory trubkové reaktory s pevně uloženým kytalyzátorem

FT Syntéza

GTL produkty, výtěžky a použití Ethylen Propylen Benzen

SMDS Bintulu (Malaisie) ASU...separace vzduchu na dusík a kyslík SGP... zplyňování - výroba syntézního plynu HPC... hydrokrakování 575 kt/rok

GTL v Qataru start: 2009 kapacita: 5,5 mil. t/rok

surovina pro GTL Relativní ekonomika GTL investiční náklady Methan (ZP) 1 Uhlí 2 Biomasa 3

Vodík Vodík je ve vesmíru nejrozšířenějším prvkem, na Zemi se vyskytuje převážně ve sloučeninách. Plynný elementární vodík, H 2, se vzhledem k nízké měrné hmotnosti udržuje ve vysokých vrstvách stratosféry (neobyčejně zředěný) ale při povrchu planety jej prakticky nenajdeme. Zato v přebytku najdeme jeho základní anorganickou sloučeninu, vodu H 2 O. Vázaný vodík obíhá v přírodním koloběhu řadou sloučenin organického původu, je součástí živé hmoty a z ní vzniklých produktů jako jsou fosilní paliva (zemní plyn, ropa, uhlí). Přes živou hmotu se dostaly do oběhu i další hydridy jako třeba amoniak, NH 3, a sulfan, H 2 S. Další sloučeniny vodíku jsou produkty průmyslové činnosti. V chemii zaujímá vodík důležitou úlohu, k němu se např. vztahují standardní potenciály elektrodových reakcí, koncentrace vodíkových iontů slouží jako měřítko kyselosti - ph. Vodík tvoří ionty H + (proton), i H - (hydridový ion), takže jej můžeme srovnávat jak s s-prvky (kovy) tak i s p-prvky (nekovy). Velkovýroba vodíku Vodík jako vedlejší produkt vzniká i při pyrolýze uhlovodíků (vysokoteplotním štěpení). Hlavním produktem zde jsou nenasycené uhlovodíky pro průmysl polymerů, zejména ethylen, ale i propylen, butadien aj. Odpadající vodík se většinou spotřebuje v návazných petrochemických výrobách. Hlavním výrobním postupem pro vodík je štěpení (parní reforming) zemního plynu nebo jiných uhlovodíků, kterou se v současné době vyrábí přes 80% vodíku. Poněkud méně náročné, avšak také méně účinné je získání vodíku z methanu nebo jiných ropných frakcí a zbytků částečným spalováním -POX. Výroba vodíku elektrolýzou vody by nebyla příliš hospodárná, určité množství vodíku však je vedlejším produktem jiných elektrochemických výrob. Vodík z amalgamové elektrolýzy soli je kontaminován stopami rtuťové páry, v ostatních případech je elektrolytický vodík dosti čistý. Štěpení zemního plynu (parní reforming) K redukci vody je možno použít i uhlovodíků, při čemž podíl vodíku ve výsledné směsi je vyšší, protože uhlovodíky ropy samy přinášejí do reakce až 15% hm. vodíku, a největší podíl 25% hm. je v zemním plynu. Jde o endotermní reakci CH 4 + H 2 O 3H 2 + CO Standardní hodnoty (při 298 K) této reakce jsou ΔH= 206 kj/mol, ΔG= 143 kj/mol a reakce běží obráceným směrem. (Toho se využívá při Fischer-Tropschově syntéze uhlovodíků.) Avšak nad 620 C je již ΔG záporné; např při 1000 C je ΔH= 227 kj/mol, ΔG= -96 kj/mol a lze tak získávat vodík. Provozně se pracuje při teplotě 750-800 C za použití katalyzátoru NiO. Aby nedošlo k otravě tohoto katalyzátoru sulfanem, odchytávají se poslední stopy sulfanu (pod 1 ppm) ze zemního plynu prosáváním vrstvou ZnO. Cena vodíku závisí na ceně zemního plynu, ale i na dodané tepelné energii. (S použitím oxidů La, Ce, Cr by se snad mohlo pracovat při teplotě jen 450 C.)

Pec se svislými, 10 m vysokými trubkami, naplněnými katalyzátorem, kterými proudí reakční směs CH 4 + H 2 O. Trubky jsou uloženy v peci a hořáky jsou namířeny přímo na ně. Jednotka vybudovaná v BC-MCHZ v roce 2005 má již kratší trubky, uložené jako svazek v peci s jediným, dobře regulovaným hořákem. produktem je až 99,999%ní H 2. Cena zemního plynu na světových trzích v roce 2003 byla asi 0.60 Kč/kWh. Dobré využití tepla hotového produktu při výrobě páry a předehřevu reakční směsi je základním požadavkem. Vodík se asi z 25% využívá k syntéze jednoduchých organických látek. Pro tento účel můžeme využít obou produktů dané reakce a podle účelu syntézy jen upravit poměr H 2 : CO v syntézním plynu. Většina vodíku je ale potřebná k výrobě amoniaku, NH 3, při které přítomnost uhlíkatých látek vadí, takže provedeme dále nejprve tzv. konverzi na železitém katalyzátoru při 500 o C CO + H 2 O H 2 + CO 2 ΔH= -41 kj/mol Z této směsi se dá vyprat CO 2 do bazického roztoku, např. K 2 CO 3 nebo do organické báze ethanolaminu. Pro syntézu NH 3 oxidy uhlíku vadí i va stopách odstraní se methanací na Ni při 300 o C; odtud odchází 98%H 2 (zbytek je N 2 a CH 4 ). Příměsi plynů je možno od vodíku odloučit velmi dokonale metodou PSA na molekulových sítech. Malé vodíkové molekuly se na zeolitových výplních prakticky nezachycují. Tato metoda se používá také v BC-MCHZ Ostrava a Částečná oxidace zemního plynu Vodík lze z uhlovodíků získat také oxidací neboť vedle klasického úplného spalování CH 4 + 2O 2 H 2 O +CO 2 ΔH= -802 kj/mol je možno dosáhnout i exotermické částečné oxidace CH 4 + O 2 H 2 + H 2 O +CO ΔH= -321 kj/mol nebo dokonce CH 4 + ½ O 2 2H 2 + CO ΔH= -36 kj/mol. Obdobně lze získat vodík i oxidací levných vyšších uhlovodíků z mazutu. Pro ty organické syntézy, ve kterých vadí přítomnost dusíku, musíme na spalování vzít čistý kyslík. Obráceně, s použitím vzduchu můžeme získat v produktu částečného spalování směs vodíku a dusíku, kterou po odstranění oxidů uhlíku můžeme použít na přípravu syntézního plynu pro výrobu amoniaku aniž bychom museli dusík speciálně vyrábět.

Výroba vodíku v malém Rozklad methanolu a amoniaku Methanol a amoniak jsou látky, které ve velkém vyrábíme reakcí vodíku. Obě tyto látky se poměrně snadno skladují a dopravují. Vhodným katalyzázorem a podmínkami je možno směr vratné syntézní reakce obrátit a dostaneme se tak zpět k vodíku reakcemi CH 3 OH + H 2 O 3H 2 + CO 2 250 o C, katalyzátor Cu 2NH 3 3H 2 + N 2 2 MPa, katalyzátor Ni Reakce jsou poměrně jednoduché a CO 2 nebo N 2 a zbytky výchozích látek nemusejí v některých výrobách vadit, takže pak odpadá problém dalšího čištění vodíku. Pochopitelně takto vyrobený vodík je několikrát dražší než vodík, získávaný přímo ze zemního plynu. Elektrolýza vody Elektrolýzou se voda rozkládá na plynný kyslík a plynný vodík. Protože samotná voda má malou elektrickou vodivost (destilovaná deionizovaná voda je prakticky nevodič), zvyšuje se její vodivost pomocným elektrolytem, např. H 2 SO 4 nebo KOH. Pro výrobu vodíku se nejčastěji volí jako elektrolyt KOH a pracuje se za tlaku 3 MPa. Spotřeba energie je 4-4,5 kwh/nm 3 tj. 45-50 kwh/kg. Příprava vodíku v laboratoři V minulosti se používal rozklad kyseliny zinkem v Kippově přístroji, např. 2 HCl + Zn ZnCl 2 + H 2. Touto reakcí se připravoval vodík pro plnění vzduchoplaveckých balonů (vynalezeny roku 1783). V malém množství přítomné páry kyseliny poškozovaly hedvábný materiál obalu. Kolik kyseliny a zinku je zapotřebí k naplnění balonu, který unese sebe a dvoučlennou posádku (celkem 300 kg)? Jaký je průměr balonu? Laboratoře i menší provozovny dnes odebírají plyn v tlakových lahvích o tlaku 20 MPa. Kolik kg vodíku je v tlakové lahvi o objemu 40 dm3 při tlaku 20 MPa? Větší pracoviště dopravují vodík ve svazcích válcových nádob na automobilních podvozcích. Iodový cyklus rozkladu vody V poslední době se studuje cyklus rozkladu vody na vodík a kyslík reakcemi 2 CaO + 2 I 2 2 CaI 2 + O 2 (100 C), CaI 2 + H 2 O CaO + 2 HI (500 C), 2 HI H 2 + I 2 (300-700 C). Tento proces by mohl být energeticky výrazně výhodnější než parní reforming. Průmyslově se prozatím neprovozuje. Deuterium Voda v přírodě obsahuje asi 0,015 % D 2 O. Je zajímavé, že při elektrolýze uvolňovaný plyn obsahuje menší podíl D 2 zatímco elektrolyt se mírně obohacuje o těžkou vodu, D 2 O. Mnohonásobné opakování elektrolýzy je jeden z významných postupů přípravy D 2 O, používaného např. jako moderátor v jaderných reaktorech. Deuterovaná rozpouštědla v analytické laboratoři slouží k tomu aby se nepřekrylo NMR chování vodíku ve vlastním vzorku. Vodík jako zdroj čisté energie Velmi módní jsou úvahy o využití vodíku jako čistého zdroje energie jak pro spalovací motory, tak pro palivové články. Palivové články, přeměňující chemickou energii reakce kyslíku s vodíkem přímo na energii elektrickou, již existují a probíhá intenzivní výzkum

možnosti zlepšit jejich účinnost a spolehlivost a snížit objem a cenu. Problematické zůstává i skladování vodíku a bezpečnosti práce s ním. Akumulace chemické energie vodíku do snáze transportovatelných látek jako CH 3 OH nebo NH 3 se zdá být alternativou. Intenzivně se pracuje na vratných reakcích kapalných organických látek, které by byly schopny katalyticky uvolňovat vodík při běžných teplotách. Uvažuje se o skladování v nestechiometrických hydridech Ti, Fe, Mg, Ni. Hydridy lehkých kovů představují další možnost; např. práškovitý Li 4 BN 3 H 10 má vyšší koncentraci vratně zachyceného vodíku než vodík kapalný. I když se podaří všechny technické obtíže využití vodíku zvládnout, přenese se problém k výrobě velmi čistého vodíku. Ta je energeticky vysoce náročná, takže v celkové bilanci fosilní paliva neušetříme a produkci skleníkových plynů jen přeneseme na jiné místo. V současnosti se při výrobě 1 kg vodíku vyprodukuje asi 10 kg CO 2. Technické úvahy se zaměřují na přímý rozklad nad 2000 o C H 2 O(g) H 2 + 1/2 O 2 ΔH 298 = 242 kj/mol ΔG 298 = 228 kj/mol který však není zatím technicky využitelný (problém materiálu reaktoru a jeho ohřevu). Dokud nebude úspěšněji vyřešeno využití nukleární energie, nemá vodík jako prostředek přenosu energie k malým spotřebičům velkou nadějnost. Nicméně, vývoj spotřebičů s vysokou energetickou účinností a řešení problémů infrastruktury distribuce a skladování vodíku musí být na pořadu výzkumu již dnes. Bezpečnost práce s vodíkem Ve směsi se vzduchem je vodík výbušný v širokých mezích 4-74%. Známý je zvukový efekt štěknutí při zapálení směsi v otevřené zkumavce; pokud je směs v nádobě s úzkým hrdlem nebo je otvor zkumavky zčásti ucpán, hrozí exploze, doprovázená roztržením nádoby. Malé molekuly vodíku snadno difundují v různých materiálech a pronikají i malými kapilárními otvory. Vodík má již při normální teplotě záporný Joule-Thomsonův koeficient, takže se při expanzi samovolně ohřívá. Rozpustnost vodíku v kovech je velká, například v paladiu a platině se rozpustí několik hmotnostních procent vodíku ve formě "kovového" atomu H. Proto jsou tyto kovy významnými katalyzátory reakcí, v nichž vystupuje vodík. Vodík, přítomný v kovech může mít i nežádoucí účinky, např. dochází k vodíkovému křehnutí oceli. Tlakové lahve s vodíkem jsou opatřeny speciálním levotočivým závitem. (Obecně má každá třída technických plynů na tlakových nádobách jiné závitové koncovky, aby nemohlo nepozorností dojít k jejich chybnému napojení do technických aparatur s katastrofálními následky.) Manipulace s vodíkem je vymezena mezinárodními, národními i podnikovými normami a může ji provádět pouze zaškolená osoba.