Můj rodinný dům Schiedel



Podobné dokumenty
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STAVEBNÍ VALAŠSKÉ MEZIŘÍČÍ NÍZKOENERGETICKÝ DŮM

F.4.3. OBSAH DOKUMENTACE. Technická zpráva 01 Půdorys 1.NP 02 Půdorys 2.NP 03 Půdorys 3.NP 04 Půdorys 4.NP 05 Půdorys 5.NP 06 Izometrie rozvodů 07

Můj rodinný dům - ACTIVE HOUSE

CIHLOVÝ PASIVNÍ DŮM PRO BUDOUCNOST HELUZ

F.4.3. OBSAH DOKUMENTACE. Technická zpráva 01 Půdorys 1.NP 02 Půdorys 2.NP 03 Půdorys 3.NP 04 Půdorys 4.NP 05 Půdorys 5.NP 06 Izometrie rozvodů 07

spotřebičů a odvodů spalin

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

Vytápění BT01 TZB II - cvičení

Pokrytí potřeby tepla na vytápění a ohřev TV (90-95% energie užité v domě)

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou

Výpočet potřeby tepla na vytápění

[PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu

kde QVYT,teor tis tes tev

SNÍŽENÍ ENERGETICKÉ NÁROČNOSTI BUDOVY RESTAURACE S UBYTOVÁNÍM PROJEKTOVÁ DOKUMENTACE PRO PROVÁDĚNÍ STAVBY

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY DLE VYHLÁŠKY 78/2013 SB.

Krycí list technických parametrů k žádosti o podporu z oblasti podpory B - Výstavba rodinných domů s velmi nízkou energetickou náročností

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu

Větrání plynových kotelen. Komíny a kouřovody. 8. přednáška

SAMOSTATNĚ STOJÍCÍ RODINNÉ DOMY

Tepelně vlhkostní posouzení

BEÁTA DEVELOPERSKÝ PROJEKT U HŘIŠTĚ PROSTĚJOV, VRAHOVICE Kč VČETNĚ DPH, POZEMKU, GARÁŽE A VENKOVNÍCH ÚPRAV VE STANDARDU GAMA

TEXTOVÁ ČÁST PROJEKTU

REZIDENCE PASEKY, ČELADNÁ RODINNÝ DŮM (TYP A) ARCHITEKTONICKÁ STUDIE KAMIL MRVA ARCHITECTS ŘÍJEN 2012

3. Potřeba tepla a paliva - Denostupňová metoda

Krycí list technických parametrů k žádosti o podporu: B - Výstavba rodinných domů s velmi nízkou energetickou náročností

VÝPOČET TEPELNÝCH ZTRÁT

VÝPOČET TEPELNÝCH ZTRÁT

Komínové systémy Schiedel Technické oddělení Schiedel

(dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

[PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

10. Energeticky úsporné stavby

BEÁTA U HŘIŠTĚ Kč. Nízkoenergetický Rodinný dům DEVELOPERSKÝ PROJEKT PROSTĚJOV, VRAHOVICE

CARLA U HŘIŠTĚ Kč. Nízkoenergetický Rodinný dům DEVELOPERSKÝ PROJEKT PROSTĚJOV, VRAHOVICE

SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav

Energeticky pasivní dům v Opatovicích u Hranic na Moravě. pasivní dům v Hradci Králové

F.1.4. ZAŘÍZENÍ PRO VYTÁPĚNÍ STAVEB

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. DLE VYHL.Č. 78/2013 Sb. RODINNÝ DŮM. čp. 24 na stavební parcele st.č. 96, k.ú. Kostelík, obec Slabce,

PASIVNÍ PRINCIPY VYUŽITÍ SLUNEČNÍ ENERGIE

NG nová generace stavebního systému

OPTIMAL novinka. . plnohodnotné poschodí s plnou výškou. jednoduché m Kč Kč Kč EUROLINE 2016

EFEKTIVNÍ ENERGETICKÝ REGION DOLNÍ BAVORSKO

Obr. 3: Pohled na rodinný dům

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům

Nerezové komínové systémy KERASTAR, ICS, PERMETER

EKOLINE m Kč Kč Kč EUROLINE m m 3

DOJDETE K VELICE ZAJÍMAVÝM EKONOMICKÝM VÝSLEDKŮM!!!

Mistral ENERGY, spol. s r.o. NÁZEV STAVBY: Instalace krbového tělesa MÍSTO STAVBY: VYPRACOVAL:. TOMÁŠ MATĚJEK V BRNĚ, LISTOPAD 2011

NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti. Komfortní bydlení - nový standard

Porovnání tepelných ztrát prostupem a větráním

Zápočtová práce z předmětu Konstruování s podporou PC

Technologie staveb Tomáš Coufal, 3.S

EKOLINE Kč Kč Kč EKOLINE 1237 RODINNÉ DOMY EUROLINE m m 3

Ukázka zateplení rodinného domu Program přednášky:

Návrh alternativního zdroje energie pro ohřev TUV v RD

Funkce a rozdělení komínů

V závislosti na intenzitě slunečního záření ohřívá vnitřní klima objektu řízeným průběhem teplovzdušného proudění

Příloha č. 1. Přehled nákladů na výtapění při spotřebě tepla 80 GJ

Solární energie. Vzduchová solární soustava

Technická zpráva Technické zařízení budov

Seznam dokumentace. příloha název měřítko. Průvodní zpráva. B Půdorys přízemí 1 : 50. C Základy domu 1 : 50. D Řez A A 1 : 50. E Pohled Jih 1 : 50

Projektová dokumentace adaptace domu

D a. STAVBA: MALOKAPACITNÍ UBYTOVACÍ ZAŘÍZENÍ - MIROŠOV U JIHLAVY na p.č. 1/1 k.ú. Mirošov u Jihlavy (695459)

OBSAH. 1. Technická zpráva 2. Půdorys přízemí 3. Půdorys podkroví 4. Schéma tělesa 5. Schéma zdroje tepla

RODINNÝ DŮM STAŇKOVA 251/7

Brno-Nový Lískovec Komplexní regenerace panelových domů. Jana Drápalová,

Obr. 3: Pohled na rodinný dům

Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY DLE VYHLÁŠKY 78/2013 SB.

York Z Á K L A D N Í P O P I S R O D I N N É H O D O M U ARCHITEKTONICKÉ, FUNKČNÍ A DISPOZIČNÍ ŘEŠENÍ IDENTIFIKAČNÍ ÚDAJE

PROJEKT PRO STAVEBNÍ POVOLENÍ AREÁL BYDLENÍ CHMELNICE, BRNO - LÍŠEŇ zpracovaný podle vyhlášky 148/2007 Sb.

Vyberte si kvalitní komín

Průvodní zpráva. Identifikační údaje. Urbanistické řešení. Architektonické řešení. Obytný soubor na ulici Pastviny v Brně - Komíně.

Obr. č. 1: Pasivní dům Plzeň-Božkov, jihozápadní pohled

POSOUZENÍ KCÍ A OBJEKTU

Komplexní vzdělávací program pro podporu environmentálně šetrných technologií ve výstavbě a provozování budov

14 Komíny a kouřovody

Vyberte si kvalitní komín

Stacionární kondenzační kotel s vestavěným zásobníkem

MODERNÍ SYSTÉM. Inteligentní zařízení pro teplovzdušné vytápění a větrání s rekuperací tepla s tepelným čerpadlem vzduch-voda. Výstup.

TECHNOLOGICKÝ POSTUP STAVBY NÍZKOENERGETICKÉHO DOMU RESPERKIVE JINAK POSTAVENÉHO PASÍVNÍHO DOMU

Úvod Historie Princip Trombeho stěny Funkce Trombeho stěny v období podzim až jaro Funkce Trombeho stěny v létě...

VÝPOČET ENERGETICKÉ NÁROČNOSTI BUDOV A PRŮMĚRNÉHO SOUČINITELE PROSTUPU TEPLA podle vyhlášky č. 148/2007 Sb. a ČSN

Obnovitelné zdroje energie Budovy a energie

Standardy. Projekt řadových rodinných domů č. 1-6 a 7-9 v Řevnicích

člen Centra pasivního domu

Teplovodní krbové vložky

Energetická efektivita

Energetická náročnost budov

EKOkonstrukce, s.r.o. U Elektrárny 4021/4B H o d o n í n

KombiGas představení systému. Ing. Jiří Vrba, Schiedel

Závazná stanoviska vydaná v lednu 2019

ČÁST D DSP-D.1-SO01-TZB-VYT-001: TECHNICKÁ ZPRÁVA VYTÁPĚNÍ

Obr. 3: Řez rodinným domem

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY zpracovaný podle zák. 406/2000 Sb. v platném znění podle metodiky platné Vyhlášky 78/2013 Sb.

VÝPOČET ENERGETICKÉ NÁROČNOSTI A PRŮMĚRNÉHO SOUČINITELE PROSTUPU TEPLA NÍZKOENERGETICKÝCH RODINNÝCH DOMŮ

Vyberte si kvalitní komín

Transkript:

TEXTOVÁ ČÁST Můj rodinný dům Schiedel vypracoval: Jakub Červenka konzultoval: ing. arch. Zdeněk Starý Střední průmyslová škola stavební ve Valašském Meziříčí

ARCHITEKTONICKÉ ŘEŠENÍ idea: Respektovat stávající ráz krajiny, pouze jej doplnit o jednoduchý funkční objekt rodinného domu. Myšlenka splynutí krajiny s domem a vzájemném propojení byla podpořena celkovým konceptem moderního ekologického bydlení.

tvarosloví: Základna vnitřního prostoru domu vychází ze čtvercového tvaru. Na základní čtvercovou podstavu se přidávají další potřebné objemy domu. Vnitřní část domu se dělí na společenský prostor zastřešený pultovou střechou a klidovou zónou zastřešenou plochou střechou. Vnější prostory tvoří nepostradatelný kontinuální přechod mezi vnitřním a vnějším prostředím.

dispozice: Vnitřní prostor domu je transparentně otevřený. Umožňuje tak stálou komunikaci mezi uživateli domu. Lze jej vyčlenit jako kuchyňský kout s jídelní částí na zvednuté platformě, obývací část se salonem na zapuštěné platformě. Na tuto platformu domu navazuje vnější předprostor. Všechny části domu spojuje monumentální krb. Klidová zóna se nachází ve II.NP. Spojovací část mezi dvěma hlavními částmi tvoří galerie, umožňující vizuální kontakt se společenským prostorem a vstup do jednotlivých pokojů. Pokoje jsou navrhnuty jako samostatné s otevřeností do krajiny. V pokojích se nachází samostatná koupelna.

konstrukční řešení: Dům je konstrukčně navrhován jako tradiční dvoupodlažní zděná stavba tvárnic Porotherm CB 440mm, zastřešená zvednutou pultovou střechou se sklonem 22 a sníženou jednoplášťovou plochou střechou. Objekt se nachází na svažitém terénu, opěrné zdi jsou navrhovány železobetonové. Jižní strana domu využívá principu Trombeho stěny jako zisk tepla v zimě a jeden ze způsobů efektivního větrání v létě. Na pultové střeše jsou nainstalovány solární panely pro zisk TUV. Severní stěna klidové zóny je plná, část mezi pultovou a plochou střechou je opatřena okny s ventiklační klapkou.

urbanistické řešení Objekt je koncipován do fiktivní parcely svažitého terénu na periferii města, či do obytné zástavby ve svahu s dostatečným zahradním prostorem.

TECHNICKÁ ZPRÁVA 2. koncepce vytápění: Navrhuji tři na sobě nezávislé zdroje tepla: plyn podlahové vytápění krb horkovzdušné vytápění Dva hlavní zdroje tepla jsou doplněny Trombeho stěnou Trombeho stěna zdroj tepla využívající energii slunce pasivním způsobem Jednotlivé způsoby vytápění se mohou ekonomicky vhodně doplňovat. Každý uvedených druhů tepla má své přednosti. z Plynové podlahové vytápění: Podlahové vytápění má i přes svou dlouhou minulost stále nejlepší vlastnosti pro ideální rozvádění tepla u koncepcí vytápění budoucnosti. Koncepce vytápění se na něj budou v budoucnosti stále více orientovat, protože umožňuje dosáhnout efektivnějšího využití tepla při snížení energetických nároků. Podlahové vytápění je prozíravým rozhodnutím také s ohledem na neustálé zdražování energií. Tepelná pohoda dosažitelná i ve složitém vnitřním prostoru. Podlahové vytápění umožňuje čistý vzhled interiéru, volnost v dispozici. Horkovzdušné vytápění krbem: Základní princip spočívá v cirkulaci vzduchu. Studený vzduch z místnosti je ohříván prouděním kolem těla krbové vložky. Horký vzduch je pak rozváděn do místností. Díky kompaktnímu prostoru a centrálnímu umístění krbu je možné všechny místnosti vytápět krbem. Tento zdroj tepla bude používán v přechodných fázích vytápění. Výhodou je rychlé předání tepla a vytvoření tepelné pohody. Trombeho stěna I v naší zeměpisné poloze situováním Trombeho stěny na jih lze i v zimních měsících dosáhnout v poměru k nákladům zajímavého efektu. Navíc se jedná o ekologické řešení šetrné k životnímu prostředí. Trombeho stěna je jednou z možností využití slunečního záření (tzv. solárních zisků) k přitápění objektu. Základní princip funkce je jednoduchý a nevyžaduje žádné složité zařízení. Jižní stěna domu je postavena z masivního materiálu dobře akumulujícího teplo. Vnější povrch této stěny je opatřen černou barvou, dobře pohlcující sluneční záření. Před tuto stěnu je předsazena skleněná deska. Mezi stěnou a sklem tak vzniká vzduchová mezera. Ve vlastní stěně jsou otvory ve dvou základních úrovních spodní, kterým může vzduch z interiéru domu proudit do vzduchové mezery a horní, kterým vzduch proudí ze vzduchové mezery zpět do interiéru domu. Tím dochází k ohřevu vzduchu v interiéru. Otvory jsou uzavíratelné pomocí klapek. Vzduchová mezera je v horní části opatřena též klapkou ta po otevření umožňuje proudění vzduchu ze vzduchové mezery ven do exteriéru.

3. Tepelné ztáty objektu 3.1.Tepelně technické parametry stavebních konstrukcí prostupy tepla základní vzorce: tepelný odpor: R = d / λ [ m 2 K/W ] λ = tepelná vodivost [W/m.K ] d = tloušťka konstrukce [ m ] Vnitřní výpočtová teplota místnosti: t i = 20 C Výpočtová teplota vnitřního vzduchu : t ap = 21 C Venkovní výpočtové teploty a otopná období dle lokalit: t e = -12 C Odpor při přestupu tepla na vnitřní straně konstrukce: R si = 0,25 m 2 K/W Odpor při přestupu tepla na vnější straně konstrukce : R se = 0,04 m 2 K/W Tepelný odpor konstrukce: R N = Σ d / λ m 2 K/W Celkový tepelný odpor: R T = R si + R N + R se Součinitel prostupu tepla: U = 1 / R T W/m 2 K zdivo - omítka vápenocementová 5mm λ = 0,97 R = 0,006 m 2 K/W porotherm 440 Si 440mm λ = 0,110 R = 4 m 2 K/W vápenná omítka 10mm λ = 0,87 R = 0,011 m 2 K/W celkem R N = 4,02 m 2 K/W celkem R T = 4,06 m 2 K/W U = 0,25 W/m 2 K

opěrné zdivo - omítka vápenocementová 5mm λ = 0,97 R = 0,006 m 2 K/W porotherm 440 Si 440mm λ = 0,110 R = 4 m 2 K/W železobetonová opěrná zeď 30mm λ = 0,158 R = 0,189 m 2 K/W celkem R N = 5, 09 m 2 K/W celkem R T = 5,94 m 2 K/W U = 0,17 W/m 2 K pultová střecha - sádrokarton 15mm λ = 0,220 R = 0,068 m 2 K/W parozábrana tepelně izolační desky 300mm λ = 0,04 dřevěná krokev 15mm λ = 0,13 pojistná hydroizolace latě trapézový plech R = 7,5 m 2 K/W R = 1,154 m 2 K/W celkem R N = 8,72 m 2 K/W celkem R T = 8,76 m 2 K/W U = 0,11 W/m 2 K plochá střecha omítka vápenocementová 10mm λ = 0,97 železobetonová deska 100mm λ = 1,58 tepelná izolace ORSIL 200mm λ = 0,04 asfaltová krytina - 4mm λ = 0,04 R = 0,001 m 2 K/W R = 0,063 m 2 K/W R = 5 m 2 K/W R = 0,02 m 2 K/W celkem R N = 5,09 m 2 K/W celkem R T = 5,13 m 2 K/W U = 0,19 W/m 2 K

podlaha - dřevěná podlahová krytina 20mm λ = 0,130 R = 0,154 m 2 K/W podkladní deska 20mm λ = 0,130 R = 0,018 m 2 K/W tepelně izolační deska 100mm λ = 0,040 R = 2,5 m 2 K/W betonová deska 50mm λ = 0,130 R = 0,385 m 2 K/W celkem R N = 3,06 m 2 K/W celkem R T = 3,1 m 2 K/W U = 0,32 W/m 2 K

3.2 Tepelné ztráty objektu Výpočet tepelných ztrát obálková metoda teplota podzemního podlaží (nevytápěný prostor) t p = -12 C rozdíl teplot mezi vnitřním a vnějším prostředím Δ t e = t is t e = 20 + 12 = 32 K rozdíl teplot mezi vnitřním prostředím Δ t p = t is t p = 20-0 = 20 K součinitel vyjadřující vliv přirážek a tepelné ztráty infiltrací p i = 1,75 potřeba tepla pro vytápění a ohřev teplé vody: Qz [ W ] přehled vstupních hodnot: konstrukce plocha teplosměnných součinitel prostupu tepla rozdíl teplot druh počet kusů kcí S [m 2 ] U [W/m 2 K] Δ t [k] okna (S o ) 8 31,43 0,9 32 terénní stěny (S t ) 1 21 0,17 20 zdivo (S z ) 4 107,07 0,25 32 střecha pultová (S sp ) 1 107,72 0,11 32 střecha plochá (S p ) 1 37,23 0,19 32 podlaha (S po ) 1 109,62 0,32 20 Q z = (S o.u o. t e + S t.u t. Δ t p + S z.u z. Δ t e + S sp.u sp. Δ t e + S p.u p. Δ t e + S po.u po. Δ t p ).p i potřeba tepla pro vytápění a ohřev teplé vody: Qz = 5495, 43 W Qv = tepelná ztráta s hygienickou výměnou vzduchu Qv = 0,3. Qz = 1, 648,6 W Qc = tepelná ztráta celková Qc = Qz + Qv = 7 144, 1 W

Vyčíslení výkonové potřeby tepla pro vytápění, TUV, větrání Potřeba tepla pro vytápění Návrhová oblast: Přerovsko Venkovní výpočtová hodnota: t e = -12 C Tepelné ztráty objektu: Q c = 7, 144 kw Průměrná vnitřní výpočtová teplota: t is = 19 C Vytápěcí dennostupně : Opravné součinitele a účinnosti systému : D = d. (t - t is e )= 3634 K.dny tepelné ztráty prostupem e i = 0,85 snížení teploty místnosti e t = 0,90 zkrácení doby vytápění e d = 1 možnost regulace soustavy η = 0,95 0 účinnost rozvodu vytápění η r = 0,95 opravný součinitel: ε = e i. e t. e d = 0, 765 Q vyt = ( ε/ η 0. η r ). (24. Qc. D / ( t - t is e )). 3,6. 10-3 Q vyt = 55,8 GJ/rok 15,5 MWh/rok

Potřeba tepla pro ohřev teplé vody: teplota studené vody: t 1 = 10 C teplota ohřáté vody: t 2 = 55 C celková potřeba vody na jeden den: V 2 p = 0,328 m 3 /den 3 měrná hmotnost vody: ρ = 1000 kg/m měrná tepelná kapacita vody: 4186 J/kg/K koeficient energetických ztrát systému: z = 0,5 denní potřeba vody pro ohřev teplé vody: Q TUV = (1+z). ( ρ+ c. V2p. t 2 t 1 )/ 3600 = 25,7 kwh Teplota studené vody v létě: t svl = 15 C Teplota studené vody v zimě: t svz = 5 C Počet pracovních dní soustavy v roce: N = 365 Q TUVr = Q TUV. d + 0,8d. Q TUV. (( t 2 t svl ) / ( t 2 t svz )). (N -d) Q TUVr = 29,2 GJ/rok 8.1 MWh/rok Celková roční potřeba energie na vytápění a ohřev teplé vody Q r = Q vyt + Q TUVr = 85,1 GJ/rok 23,6 MWh/rok

Větrání Výkonové ztráty systému Schiedel aera jsou zanedbatelné, odvádí jen znehodnocený vzduch z místností. K větrání domu je hlavně využívána trombeho stěna. Trombeho stěna využívá pasivního předehřevu vzduchu sluncem v zimních obdobích. Vzduch je vháněn do objektu přisáváním a je regulován pomocí automatických klapek.

4. Návrh zdrojů tepla plynový kondenzační kotel v provedení turbo Na základě provedených výpočtu na potřebu tepla pro vytápění a ohřev teplé vody Qz = 7,14kW jsem zvolil kondenzační kotel Junkers ZSB 14-3 C CerapurSmart ovýkonu 3,7-14 kw. Maximálních úspor je dosaženo hlavně díky systému plynulé automatické regulace výkonu. Výhodou jsou minimální rozměry, nízká hmotnost a způsob provozu nezávislý na přisávání vzduchu z místnosti instalace. Palivo: zemní plyn nebo propan. krbová vložka Na základě provedených výpočtů s ohledem na velikost krbu navrhuji krbovou vložku CHOPOK R 90 S/330 P 830/480 s proskleným rohem o jmenovitém výkonu 10kW. Krb je navrhován jako doplňkový zdroj tepla a je používán mj. v přechodných teplotních obdobích - Trombeho stěna Částečně přispívá ke snížení spotřeby tepla plynového kotle a krbové vložky. Provoz je závislých na pasivním zdroji tepla slunci. Případné pasivní zisky jsou automaticky regulovány plynovým kotlem.

5. Řešení spalovacího vzduchu pro spotřebiče paliv Navrhuji komínový systém Schiedel Absolut se dvěmi komínovými průduchy a zaintegrovanou vzduchovou šachtou. Systém ABSOLUT využívám pro přívod spalovacího vzduchu k uzavřenému plynovému spotřebiči. Tímto spotřebičem je kotel, který vytápí dům a ohřívá TUV v zásobníku. Spalovací vzduch je nasáván nad střechou v oblasti komínové hlavy. Dále jde do šachty, zaintegrované v konstrukci komína, kterou proudí k místu, kde je připojen kotel. Odtud se přes speciální tvarovky dostane vzduch až do kotle.

6. Návrh spalinových cest 6.1. volba komínového systému: Jako nejvíce vhodný navrhovaný komínový systém se jeví Schiedel absolut. Lze jej vužít pro přívod spalovacího vzduchu k navrhovanému kondenzačnímu turbo kotli. Cely systém je využitelný pro krbovou vložku (s vysokou teplotou spalin), ale i plynový kotel (nízká teplota spalin) díky dvěma samostatným průduchům s přidruženou šachtou pro přívod vzduchu. Výhodou je jednoduché napojení kouřovodu a široká škála napojovacích tvarovek kompenzujících pnutí. Přidružená šachta pro přívod vzduchu nabízí řadu možností při výběru spotřebičů. 6.2. stanovení průměru průduchů: Navrhuji dvousložkový komínový systém pro vytápění plynem a prokrbovou vložku Schiedel absolut s viceúčelovou šachtou, integrovanou tepelnou izolací a s tenkostěnnou vnitřní vložkou. Navržený průměr profilovaných vložek: 180mm

7. Řešení výměny vzduchu v objektu Čerstvý proudící vzduch je do objektu přiváděn pasivně pomocí regulačních klapek Trombeho stěny na jižní straně z venkovního prostředí. Vzduch je u dolní strany stěny nasáván a přirozeně proudí komínovým efektem. Větrání je zvláště v letních měsících regulováno na severní straně domu pomocí ventilační klapky v okně. Výhodou systému je přívod čerstvého ohřátého vzduchu v zimních měsících pomocí ventilačních klapek v trombeho stěně. K větrání jednotlivých uzavřených pokojů využívá dům větrací systém Schiedel AERA, který odvádí znehodnocený vzduch především z koupelny a záchodu. Pomocí řízeného větrání Schiedel aera můžeme automaticky eliminovat vlhost v domě a její srážení.